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Abstract—The discrete logarithm problem has been used as 
the basis of several cryptosystems, especially the Diffie-
Hellman key exchange protocol. P systems are a cluster of 
distributed parallel computing devices in a biochemical type. 
This paper presents a P system with active membranes and 
strong priority to solve the discrete logarithm problem used 
in Diffie-Hellman key exchange protocol. To the best of our 
knowledge, it’s the first time to solve the problem using P 
systems.  
 
Index Terms—P systems, Discrete Logarithm Problem, 
Diffie-Hellman key exchange protocol 
 

I.  INTRODUCTION 

Membrane computing (also called P systems) [1] was 
initiated in 1998 as a new class of distributed and parallel 
computing devices and much effort has been made on this 
research field [2]. In 2003, Thompson Institute for 
Scientific Information, ISI, has qualified the initial paper 
as “fast breaking” and the domain as “emergent research 
frontier in computer science”. Membrane computing is 
inspired from the processes which take place in complex 
structure of a living cell. It has an attractive feature: 
parallelism. 

The discrete logarithm problem plays an important role 
in cryptography. It has been used as the basis of several 
cryptosystems, such as the Diffie-Hellman key exchange 
protocol [3][9]. The problem used in Diffie-Hellman key 
exchange protocol can be formulated as: given a fixed 
primitive element a of a finite field FP(p) with a prime 
number p, and an integer number b, find the least positive 
integer x such that, (mod )  1 , 1xa b p x b p≡ ≤ ≤ − .  

However, no efficient algorithm for finding general 
discrete logarithms is known so far except for that in [4] 
which solves the problem on a quantum computer.  

In this  paper,  we  describe  a  P  system  with  active  

membranes and strong priority to solve the discrete 
logarithm problem (DLP). To the best of our knowledge, 
it’s the first time to solve DLP by membrane computing. 
The scheme we proposed in this paper can find the least 
positive index value x for the DLP in less than 

log( 1)p⎢ ⎥−⎣ ⎦ loops. 
We organize the remainder of this paper as follows. 

Section 2 describes the backgrounds of this paper, 
including the discrete logarithm problem used in Diffie-
Hellman key exchange protocol, and P systems with 
active membranes and strong priority. P systems solving 
the Discrete Logarithm Problem are presented in section 
3. Section 4 briefly gives the conclusion. 

II.  BACKGROUNDS  

A. THE DISCRETE LOGARITHM PROBLEM USED 
IN DIFFIE-HELLMAN KEY EXCHANGE 
PROTOCOL 

The Diffie-Hellman key exchange protocol [3][9] is 
used to build a secure 2-party key distribution channel to 
handle the problem of secure communications.  

The protocol makes use of the conjectured 
intractability of the Discrete Logarithm Problem. The 
problem can be defined as follows. 

 
Problem.  Name: Discrete Logarithm Problem. 
 
Instance: a finite field GF(p) with a prime number p, a 

positive integer number a which is a fixed primitive 
element of GF(p), and a positive integer number b. 
1 , 1a b p≤ ≤ − .    

 (mod )xa b p≡ . (1) 

 
Output: the least positive integer x. 1 1x p≤ ≤ − .  

 log modax b p≡ . (2) 
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A fixed primitive element for a finite field FP(p) is the 
one whose powers build all the non-zero remainders 
modulo the prime number p. For example,  

31 mod 7=3  
32 mod 7=2  
33 mod 7=6  
34 mod 7 =4  
35 mod 7 =5  
36 mod 7 =1  
The set of all the results is {1, 2, 3, 4, 5, 6} which is 

the same to the set of all the non-zero integers modulo 7. 
Thus, 3 is a fixed primitive element of the finite field 
FP(7). 

Calculation of (1) is easy while calculation of (2) is 
much more difficult. 

We discuss the Diffie-Hellman key exchange protocol 
[10] briefly as follows: 

Each user choose a integer number Xi from the set {1, 
2, … , p-1}, and calculate 

 
modiX

iY a p= .    (3) 
 

Each user keeps Xi secret and makes Yi public. 
When the users Ui and Uj need to communicate 

securely, they can calculate the secret key to protect the 
communication according to (4). 

 
modi jX X

ijK a p= .    (4) 
 

The user Ui can get Kij by computing 
 

mod ( mod ) modj i ji iX X XX X
ij jK Y p a p a p= = = . (5) 

 
Uj can get the secret communication key in a similar 

way. It is difficult for the other users to calculate the 
secret communication key of Ui and Uj, since the problem 
to calculate log moda iY p and log moda jY p are both 
Discrete Logarithm Problem. 

B. P SYSTEMS  
P systems are a cluster of distributed parallel 

computing devices in a biochemical type, inspired by the 
structure and functioning of living cells [1][5]. The basic 
model consists of a hierarchical structure composed by 
several membranes. The essential ingredient of P systems 
is membrane structure. A membrane structure consists of 
several membranes which are hierarchically embedded in 
a main membrane. Each membrane delimits one region 
containing some objects. And a P system has evolution 
rules for objects and input-output prescription. An 
elementary membrane is one which does not contain 
other membranes. The space out of the membrane is 
called environment.  

Starting from an initial configuration, the objects 
evolve according to the evolution rules. The evolution 
rules are inspired by the reactions which happen in a 
living cell. All the rules are applied in maximally parallel 
manner. That is, all the rules which can be applied must 

be applied, and all the objects which can involve must be 
involved. 

We give an example of a general P system. 
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（1） V is the alphabet of all the objects used in the P 

system.  
（2） μ expresses the membrane structure of the P 

system. The membrane structure of this P system 
can be illustrated in Fig. 1, where the membrane 
structure can be expressed in the form of 
[1[2[3[7]7[8]8]3[4]4]2[5]5[6]6]1 and Fig. 2 too. 

（3）  , 1 i 8iω ≤ ≤  is strings from V* representing 
the set of objects present in region i. In Fig. 1, a4 
indicates that there are four occurrences of object 
a in membrane with label “3”.  

（4） Ri, 1 i 8≤ ≤  is the set of evolution rules 
associated with the region i. In R3, there are a 
evolution rule 8( , )a a e in→ which produce an 
objects a and sends an object e to the region 8 
from one object a. Each paired objects b and f 
evolve to one object f under bf f→ . 
f δ→ makes the object f disappeared and 

dissolves the membrane.  
（5） 1 i 8iρ ≤ ≤ is the set of priority relationship 

over Ri. 3 1 2{ }r rρ = >  means that the rule r1: 

bf f→ has priority over the rule r2: f δ→ . 
Firstly, the object f will evolve according to r1. 
The rule r2 will not be used unless r1 cannot be 
used. 

（6） The “8” in Πmeans the output region of the P 
system, and the result of the computation is 
collected in the output region. In this example, 
the output is the number of objects present in the 
region 8. 

This P system can calculate 42. We explain the 
computation procedure as follows: 

In the initial configuration, there are four occurrences 
of object a, three occurrences of object b and an object f. 
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At the first step, the rule bf f→ “absorbs” one 

object b with the help of the object f, and 8( , )a a e in→  
produces four objects e and sends them to the region 8. 

The rule f δ→ is not used according 
to ( ) ( )bf f f δ→ > → . 

At the second step, bf f→  “absorbs” one another 

object b with the help of the object f, and 8( , )a a e in→  
produces another four occurrences of object e. Now there 
are eight occurrences of object e in region 8. 

The third step is similar to the second step, and there 
are twelve occurrences of object e in the region 8.  

 At the fourth step, 8( , )a a e in→  produces another 
four objects e and sends them to the region 8. There are 
sixteen (42) occurrences of object e in the region 8. At the 
same time, there is no object b left in the region 3, so 
bf f→  cannot be used. Thus, the rule f δ→ is used 
to dissolve the membrane with label “3”. There is no rule 
in the region 2, so the computation is completed. 

 
The hierarchical structure of membranes can also be 

presented by a rooted tree, as shown in Fig.2 which 
describes the membrane structure from Fig.1. 

 

C.  P SYSTEMS WITH ACTIVE MEMBRANES 
There are many variants of P systems, one of which is 

P systems with active membranes [6][7]. P systems with 
active membranes are obtained by including rules for 
membrane division.  

On the other hand, noting the fact that certain reactions 
are more active than others in a living cell, [1][8] 
consider a priority relationship on the set of rules in a 
given region. 

Now, we describe the P systems with active 
membranes and priority. It is a construct expressed in (6). 

 

1( , , , ,..., , , , )mV H R eμ ω ω ρΠ =   (6)  

 
（1） V is a alphabet which contains all the alphabet 

used in the P system; 
（2） H is a set of labels for membranes. 

（3） μ is the initial membrane structure consisting of 
m membranes. 

（4） 1,..., mω ω  are strings over V, describing the 
objects placed in the m regions ofμ . 

（5） R is a finite set of evolution rules, including rules 
for membrane division, of the following forms 
( 0 1 2 1 2 3, , , H, , , { , ,0},for h h h α α α∈ ∈ + −  

*x,y V , a,b,c V∈ ∈ ): 

i. [ x ]h hy α→   
(Object evolution rules, all the object pairs 
that can form string x are replaced by the 
corresponding object pairs in string y.) 

ii. 1 2a[ ] [ ]h h h hbα α→  
(Communication rules, object a is sent into 
the membrane, simultaneously, a evolves to 
object b and the charge of the membrane can 
be modified.) 

iii.  1 2[ a] [ ]h h h h bα α→  
(Communication rules, object a is sent out of 
the membrane, modified to b and the charge 
of the membrane can be modified too.) 

iv. [ a]h h bα →  
(Membrane dissolving rules, the membrane 
is dissolved, a evolves to object b) 

v. 31 2[ a] [ ] [ ]h h h h h hb c αα α→  
(Elementary membrane division rules, the 
membrane is divided into two membranes 
with the same label, maybe of different 
charge; object a is placed into two new 
membranes maybe replaced by new objects b 
and c; each new membrane has a copy of all 
the other objects.) 

vi. 
0 1 1 2 2 0 0 1 1 0 0 2 2 0

0 0 0 0 0[ [ ] [ ] ] [ [ ] ] [ [ ] ]h h h h h h h h h h h h h h
+ − →  

(Membrane division rules for non-
elementary membranes, membrane h0 has 

 
Figure 2.  The tree describing the membrane structure from Fig.2. 

8( , )a a e in→

( ) ( )bf f f δ→ > →

 
Figure 1.  An example of membrane structure 
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two membranes of opposite charge which are 
separated into two new membranes with 
label “h0”; and they have neutral charge.) 

（6） ρ   is a set of priority relations for evolution 
rules. There are two types of priority relation: 
weak priority and strong priority. For rules with 
strong priority, if a rule R1 has priority over a 
rule R2, and R1 can be applied, then R2 can not be 
used, regardless of whether there are objects 
suitable for R2.  

For example, if R1: 0
1 1[ ]FF λ→ and 

R2: 0
1 1[ ]FG H→ , the current multiset is FFFG 

in membrane “0” of neutral charge, then rule R1 
can be used, but R2 cannot be used even there are 
objects FG suitable for R2. On the contrary, R2 
can be used if the relationship between R1 and R2

 

is a weak priority. 
（7） e∈V.  The number of the copies of object e 

sent out to the environment is the computation 
result.  

  Ⅲ. SOLVING THE DISCRETE LOGARITHM PROBLEM 
USING P SYSTEM 

We discuss in this Section on how to apply P systems 
to solve the DLP. Recall the formulation of DLP in 
section 1. We wish to solve the problem shown in (1). 

We construct a P system with active membranes and 
strong priority.  

 
 

For every prime number p 

0 1 2( , , , , , , , )V H Rμ ω ω ω ρΠ =  is a deterministic P 
system and the evolution generated by this system will 
stop after several steps. In the last step, the number of 
object X sent to the environment is the index x. We 
prove this by describing the process of evolution 
generated by 0 1 2( , , , , , , , )V H Rμ ω ω ω ρΠ = .  

The main idea of this P system to solve DLP is 
enumerating the value of index. Using membrane 
division, the system can check 2n values of the index 
(1~2n) in n loops. Each loop can be divided into three 
stages. We generate enough objects F at stage one; In 
stage two we get the remainder whose value is equal to 
the number of the object F left after using R21. And in 
stage three the system checks if the remainder is equal to 
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b. If it is equal to b, then the object X will be output to the 
environment, otherwise, we go to the next loop. 

Let us take a closer look at how one step of the loop is 
performed from the initial configuration. The process 
with only those critical rules and key objects is briefly 
demonstrated in Fig. 2. 

In the initial configuration, the number of the object G 
in membrane “3” corresponds to the modular b. The 
number of the object X corresponds to the index x whose 
value is one in the initial configuration. The number of 
the object A in membrane “2” corresponds to the element 

a. Moreover, the objects ki ( 1 lo g( 1)i p⎢ ⎥≤ ≤ −⎣ ⎦ ) in 
membrane “3” are used as counters, which control the 
membrane division. 

According to the priority relationship R4,5>R7, the rules 
R0~R6 are used. The objects A of number a are sent into 
the membrane “3”, and we get the objects E of the 
number a2. Simultaneously, by using the rule R7, the 
“electrically neutral” membrane “3” is divided into two 
separate copies of opposite charge. Further, the object ki 
evolves to ti and fi with ti placed into the copy of positive 
charge and fi placed into the copy of negative charge 
respectively. The number of the object ki is log( 1)p −⎢ ⎥⎣ ⎦  
corresponding to the number of loop times. 

Next, R8~R18 are all applied in one step. R12 and R13 
consume all the objects D. R8~R11, R14, and R15 generate 
a2 objects F and 2 objects X in membrane of label “1” 
with positive charge, correspondingly, a3 objects F and 3 
objects X in membrane of label “3” with negative charge. 
In the same step, by using R18, the membrane “2” is 
divided into two copies of neutral charge. 

Now the charge of membranes with label “3” turn to 
neutral again, and according to the priority relationship 
R19>R21>R24>R28, R19 is the next rule to be used. By 
using R19, the number of the object F in those two 
membrane of label “3” are decreased to a2(mod p) and 
a3(mod p) respectively. Then, R21 is used to transform FG 
into H. If there is a membrane of label “3” which does not 
contain F or G after R21 has been applied, in other words,  
a2≡b(mod p) or a3≡b(mod p), this one will be dissolved 
by R25 and all the objects X in it will be sent to the 
environment by R28,R29. Otherwise, the objects F and G 
would be changed back to A by R26 and R27. Hence the 
rule R0 can be used again, and it is the beginning of the 
next loop.  

In this way, in stage one of the i-th ( 1 log( 1)i p≤ ≤ −⎡ ⎤⎢ ⎥ ) 
round, there would be 2i membranes of label “3” 
contained by a membrane of label “2”. And in each 
membrane “2” the objects A of number aj(modp)(1<j<p-1) 
would be sent into the membrane  of label “1” and 
generate a2j(modp) objects F (note that (aj(modp))2(modp)
≡a2j(modp)), 2j objects X in membrane “1” of positive 
charge,  a2j+1(modp)  objects F, 2j+1 objects X in 
membrane “1” of negative charge. Then, through the 
operation in stage two and stage three, we have checked 
the value of the index from 2i to 2i+1-1 in the i-th round. 
Finally, we exhaustively search all the possible values of 

x and can get the correct index value for the DLP in less 
than log( 1)p⎢ ⎥−⎣ ⎦ loops. 

To explain the evolution process more clearly but, 
more importantly, to prove this P system, we give an 
example, to calculate: x=log35mod7. a=3, b=5, p=7. 

We explain the evolution process as follows: 
1. Step 0 

In the initial configuration, there are five 
occurrences of object G in the membrane of label 

1
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Figure 3.  The evolution process of the P system solving the Discrete 
Logarithm Problem (step0~4) 
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“3” and three occurrences of object A in the 
membrane of label “2”. 

2. Step 1 
According to the rules R0 and R1, all the three 

objects A will go into the membrane “3”and evolve 
to the object A ′ , and the objects 1k ′′  and 

2k ′′evolve to 1k ′  and 2k ′ . 
3. Step 2 

Under R2 and R3 every object A ′  in the 
membrane “1” evolve to two objects B and D, and 
the objects 1k ′  and 2k ′ evolve to 1k  and 2k . 

4. Step 3 
Two objects B and one object C evolve to one 

object C under the evolution rule R4. The three 
occurrences of object D produce three occurrences 
of object E according to R6. 

5. Step 4 
According to the priority relationship R4,5>R7, the 

last object B and the object C evolve to one object C 
under the evolution rule R4. The three occurrences 
of object D produce another three occurrences of 
object E according to R6. 

The “Step 0-4” of the evolution process solving this 
problem is presented in Fig.3. “Step 0” shows the initial 
configuration. 

6. Step 5 
There is no object B left, so R7 can be used now. 

R7 divides the membrane “3” into two separate 
copies of opposite charge. At the same time, R6 
produces another three occurrences of object E. 
Now there are nine occurrences of object E in both 
of the membranes with label “3”. 

7. Step 6 
R8~R18 “absorb” the objects D, t1, and f1, produce 

one object Z ′′  in both of the membranes with label 
“3”. What’s more, the objects X and E evolve to two 
objects X and nine objects F in the membrane with 
positive charge, and three objects X and 27 objects F 
in the membrane with negative charge. 

8. Step 7 
R19 consumes the objects F, and the numbers of 

the objects F left in the two membranes “3” are 2 
and 6, which are the remainder modulo 7. R20 
transforms object Z ′′  to Z ′ . 

9. Step 8 
R21 transforms the paired objects G and F into 

object H. R22 transforms object Z ′  to Z . 
10. Step 9 

Since there are object G left in membrane “3” 
with positive charge and object F left in membrane 
with negative charge, R23 and R24 delete the object Z 
according to the priority relationship R23,24>R25. R25 
cannot be used to dissolve any membrane, and R26 
transforms the object H back to object F and G, so 
the computation continues. 

The “Step 5-9” of the evolution process solving this 
problem is presented in Fig.4.  

11. Step 10 

In this step, all the objects F evolve to object A 
and be sent out of each membrane “3” by R27. Thus, 
both membrane structures in membrane “1” are 
similar to the initial configuration, and the next loop 
begins. 

12. Step 10~n 
These steps are similar to the step 0~7. Now we 

get four membrane structures composed of 
membranes with label “2” and “3” ([2[3]3]2). We 
focus on the second membrane structure in which 
the number of object F is the same to the number of 
object G. 

13. Step n+1,  
R21 transforms the paired objects G and F into 

object H. R22 transforms object Z ′  to Z . 
14. Step n+2 

There is no F or G left in the region “3”, so the 
rule R23 and R24 cannot be applied. According to the 
priority relationship R25>R26, R25 is used in the 
second membrane structure.  R25 dissolves the 
membrane, and release all the objects in region “3” 
to the region “2”. 

15. Step n+3, Step n+4 
R28 and R29 send X to the environment. The 

number of the objects X is the results: 5.  
The “Step 10-n+4” of the evolution process solving 

this problem is presented in Fig.5.  Fig.6 shows the whole 
evolution process of membrane structure clearly.We can 
conclude that the Discrete Algorithm Problem can be 
solved in at most two loops for p=7. 
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 Ⅳ. CONCLUSION  

We present a P system with active membranes and 
strong priority to solve the Discrete Logarithm Problem 
used in Diffie-Hellman key exchange protocol for the 
first time. In future work, we will further improve the 
performance of this system.  
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