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Abstract—There are many factors that can affect the 
calciner process of cement production, such as highly 
nonlinearity and time-lag, making it very difficult to 
establish an accurate model of the cement precalciner kiln 
(PCK) system. In order to reduce transport energy 
consumption and to ensure the quality of cement clinker 
burning, one needs to explore different control methods 
from the traditional way. Adaptive Critic Design (ACD) 
integrated neural network, reinforcement learning and 
dynamic programming techniques, is a new optimal method. 
As the PCK system parameters change frequently with high 
real-time property, ADACD (Action-Dependant ACD) 
algorithm is used in PCK system to control the temperature 
of furnace export and oxygen content of exhaust. ADACD 
does not depend on the system model, it may use historical 
data to train a controller offline, and then adapt online. Also 
the BP network of artificial neural network is used to 
accomplish the network modeling, and action and critic 
modules of the algorithm. The results of simulation show 
that, after the fluctuations in the early control period, the 
controlled parameters tend to be stabilized guaranteeing the 
quality of cement clinker calcining. 
 
Index Terms—adaptive critic design, ADACD, neural 
network, controller,  precalciner kiln system 
 

I.  INTRODUCTION 

As the world's largest cement production nation, 
cement production in China is still in an important phase 
of industrial restructuring. At present about half of the 
cement on the market is produced using the traditional 
methods (shaft, wet rotary kiln) and the other half using 
the newer precalciner kiln (PCK) system. To promote the 
new dry kiln technology, and eliminate the large energy 
consumption of shaft kiln and wet rotary kiln at the same 
time, we should further explore optimization methods for 
the new dry kiln technology to lower energy consumption 
and guarantee the safe and orderly production of cement.  

In this paper, a new type of optimization technology - 
Adaptive Critic Design is used in the PCK system 
production control. From the perspective of a number of 

balances about cement production, that is, the material 
balance, gas balance and heat balance, this paper wants to 
optimize the production of cement, and to further 
improve the efficiency and stability. 

II.  FRAMEWORK OF THE ACD METHOD 

Cassical dynamic programming is the only exact and 
efficient method to compute the optimal control policy 
over time, in a general nonlinear stochastic environment. 
From the versions developed by Howard [1] and 
Bertsekas [2] , dynamic programming can find optimal 
solution of general MIMO nonlinear system in theory, it 
can conquer the feedback caused by undermined factors. 
However, Dynamic programming may cause difficulties 
when it computes and save in memory, especially for 
high dimension system which may case curse of 
dimension. In fact, the real application of Dynamic 
programming need to be Approximate, e.g. the Adaptive 
Critic Design mentioned in this paper. ACD use approach 
function to express cost-to-go function, which avoid 
curse of dimension [3]. The only reason to approximate it 
is to reduce computational cost, so as to make the method 
affordable (feasible) across a wide range of applications. 

A. Dynamic Programming of discrete-time nonlinear 
(time-varying) system 

Suppose that one is given a discrete-time nonlinear 
(time-varying) dynamical system 

ltttutxFtx K,2,1,0],),(),([)1( ==+        (1) 

where nRx∈ represents the state vector of the system 
and mRu∈ denotes the control action. Suppose that one 
associates with this system the performance index (or 
cost) 

∑
∞

=

−=
ik

ik kkukxUiixJ ]),(),([]),([ γ          (2) 

where U  is called the utility function and γ   is the 
discount factor with 10 ≤< γ . Note that the function 
J  is dependent on the initial time i  and the initial state 

Manuscript received January 12, 2009; revised July 21, 2009;
accepted July 17, 2009. 



 Action-Dependent Adaptive Critic Design Based Neurocontroller for Cement Precalciner Kiln 61 

Copyright © 2009 MECS                                                                      I.J.Computer Network and Information Security, 2009, 1, 60-67 

)(ix , and it is referred to as the cost-to-go of state )(ix . 
The objective of the dynamic programming problem is to 
choose a control sequence liikku ,,1,),( K+=  so 
that the function J  (i.e., the cost) in (2) is minimized. 
Dynamic programming is based on Bellman’s principle 
of optimality: An optimal (control) policy has the 
property that no matter what previous decisions have 
been, the remaining decisions must constitute an optimal 
policy with regard to the state resulting from those 
previous decisions. 

Suppose that one has computed the optimal 
cost ]1),1([* ++ ttxJ from time 1+t to the terminal 
time, for all possible states )1( +tx  , and that one has 
also found the optimal control sequences from time 1+t  
to the terminal time. The optimal cost results when the 
optimal control sequence K),2(),1( ** ++ tutu , is 
applied to the system with initial state )1( +tx  . Note 
that the optimal control sequence depends on )1( +tx . If 
one applies an arbitrary control )(tu  at time t  and then 
uses the known optimal control sequence from 1+t  on, 
the resulting cost will be 

]1),1([]),(),([]),([ * +++= ttxJttutxUttxJ γ   (3) 

where )(tx  is the state at time t ， and )1( +tx  is 
determined by (1). According to Bellman, the optimal 
cost from time t  on is equal to 

 
]}1),1([                

]),(),([{min]),([
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The optimal control )(* tu  at time t is the )(tu  that 
achieves this minimum, i.e., 
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So the solution for )(* tu becomes a simple 
optimization problem. 

B. The basic structure and principle of Adaptive Critic 
Design 

The ACD technique, which was proposed by Werbos 
[4], is a novel optimization and control algorithm based 
on the mathematical analysis to handle the classical 
optimal control problem by combining concepts of 
reinforcement learning and dynamic programming. Use 
of the ACD technique allows the design of an optimal 
adaptive nonlinear controller [5]. 

In the development of dynamic programming, various 
methods can be integrated and the concept of Critic 
development further. Designing neurocontroller by ACD 
is a comprehensive concept of a variety of dynamic 
programming methods. 

The sequence for user-defined cost-to-go function  Q  
is over an infinite time (so-called infinite horizon 
problem), and the Bellman equation using the classical 
dynamic programming to minimize/maximize function 
Q  has the well-known curse of dimensionality problem 
because the DP prescribes a search which tracks 
backward from the final step, retaining in memory all 
sub-optimal paths from any given point to the finish, until 
the starting point is reached [6]. 

A typical structure of ACD consists of three 
modules—action network, critic network and model 
network, as shown in Fig. 1. Model network is the analog 
network in the system. The model network is informed of 
the system state and corresponding control vector, and 
then generates the next state of the system parameters 
estimates. The action network is informed of the system 
state vector, and then generates the control vector to the 
current state. The critic network evaluates the control and 
influences the weights of the action network and critic 
network through its output. 

 
In ACD , action network and critic network are trained 

together, so that the two network weights can be adjusted 
to suit the control system to make the appropriate control 
decision. The output of critic network can choose cost-to-
go function J or the derivative of cost-to-go function to 
the system parameters )()( tRtJ ∂∂ . ACD adapts 
heuristic cost-to-go function (J) through its own critic 
network. In the action dependent versions, action network 
is directly connected to the critic network without using 
models. In this paper, ADACD is used to study the 
optimal control of sugar crystallization. 

Ⅲ.  PRECALCINER KILN SYSTEM 

Precalciner kiln system is mainly composed of four 
parts， i.e., preheater, calciner furnace, rotary kiln and 
grate cooler. Fig. 2 is the simplified schematic of PCK 
system. It is characterized by the addition of a calciner 
furnace between the suspension preheater and the rotary 
kiln, in which the fuel burning exothermic process with 
the raw materials of carbonate decomposition process 
absorbing heat react extremely fast in the state of 
suspension or stream [7,8]. After a whirl air multi-stage 
preheater, raw material powder is heated. Thermal 
material is decomposed by the furnace, with the air 
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Figure 1. The basic structure diagram for ACD. 
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flowing into the end of the preheater. After gas-solid 
separation, the decomposed powder flows into the rotary 
kiln. At this point, the rate of decomposition of material 
powder in the general is about 90%. With the gas coming 
from the bottom up, the heat that breaks down the raw 
materials is provided by the coal burning stove. One part 
of the calciner requires air coming from the exhaust gas 
of grate cooler. This air is named tertiary-air, with a 
temperature range of about 700 ℃ ~ 850 ℃. Another part 
of the air comes from the gas of chamber in the back-end 
of kiln. Pre-decomposed raw materials follow into the 
kiln. Because of kiln-place tilt and rotation, materials 
constantly move to the head of the kiln. In the kiln, the 
material was heated into clinker by the reverse flowed 
high-temperature gas. Finally, the clinker falls into the 
bottom of the grate cooler through the hood of kiln, and 
then unloads into storage by air cooling. The airs for 
rotary kiln combustion come from the first-air and the 
secondary-air [9]. 

 

 

A.  The characters of  PCK System 
Cement production is a complex industrial process 

involving mass transfer, heat transfer and physical 
chemistry reaction, and its stability of the production 
directly impacts the quality of cement. From the 
foregoing analysis of this paper, it can be seen that 
cement clinker calcination system has several notable 
features as follows: 

 (1) Complex physical and chemical process: The 
production should go through the process of combustion 
reaction, heat transfer of materials, water evaporation, 

chemical decomposition of water, the decomposition of 
carbonate, the decomposition and compound of the oxide, 
solid-state reaction, and liquid-phase reaction, etc. Its 
basis theory consists of thermodynamics, dynamics, heat 
transfer, fluid dynamics and the crystallization of the 
mineralogy, and so on. 

 (2) Impact of many factors: There are many factors in 
the calciner process of cement production. From the 
perspective of process control a precalciner kiln can be 
seen as such a system: certain parameters of raw 
materials and operation act on the parameters of the 
device (collectively referred to as process parameters), 
resulting in the corresponding parameters of state. The 
parameters of the total number can be as many as several 
dozens, with functional relationship expressed as: 

)(
))(  ,  ,  (

Indication
StateequipmentoperatingmaterialsRaw

→
 

 (3) High non-linearity: When running at stability PCK 
system is in a dynamic balance as a whole. The impact of 
each parameter maintains a balance in this process. The 
changes are all non-linear in the process of running, 
which further increased the level of non-linearity of the 
system. 

 (4) Large lag: The total time from the raw powder 
being put into the suspension preheater to the cooler 
unloading clinker into silo, is about 30 minutes. Gas 
pumped from the cooler to be eliminated out of the 
preheater would take about 3 minutes. Only in the end of 
the cooler can one observe some state of the calcination. 
The above mentioned process indicates a large lag in the 
calcination process. In addition, some characteristics of 
clinker are obtained only by testing. Workers generally 
test clinker once in every 2 hours, and the testing process 
will take about 1 to 2 hours. According to the processes 
of the hybrid operation, it is necessary to take 1.2 to 3.2 
hours to get most of characteristics of the clinker. 

 (5) Large interference exists in data acquisition: 
Because of the impact of the device, environment, 
measurement and man-made factors, collecting raw data 
from the process of industrial production is vulnerable to 
interference by noise, negligence and missing data points. 
The mass of raw data is often incomplete, with noise 
(including error or existing isolated points which deviated 
from the desired values) and the lack of consistency. 

B.  The balance of PCK system 
In order to ensure the quality of cement, we need to 

pursuit three balances of the production process: 
(1) Material balance: Raw materials heated by 

suspension preheater, are send into the calciner. The rate 
of decomposition of carbonate in the furnace gets up to 
85% -95%. It is hoped that materials stay at a certain 
level in the process of production in reality.  

(2) Gas balance: The direction of gas flow is in the 
opposite direction of materials and exhaust from the 
upper part of the preheater. The gas sucked in furnace and 
kiln relies on negative air pressure, which can be adjusted 
by control valve. The first-air is sucked in furnace or kiln 
with the coal.  

Figure 2. The simplified schematic of PCK system. 
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(3) Heat balance: The needed fuel of the whole system 
is poured about 60% into the furnace and 40% into the 
rotary kiln. Heat consumption of unit clinker is dropped 
to below 3000kJ/kg and the thermal efficiency is raised to 
above 60%. 

C.  Main element analysis of PCK system 
The selection of control and state variables are based 

on quality assurance of cement clinker under the 
mentioned premise. According to our analysis, the entire 
system should be considered to select these variables. 
Only a link for the single point of control to ensure the 
quality of clinker is meaningless. Therefore, we have 
adopted the following principles:  

(1) The variables we selected should be measured 
directly or indirectly. 

(2) Select the variables of normal operation of the 
production to make the production process more stable. 
Under the unusual circumstances, such as testing, kiln 
drying, firing, kiln hanging skin, heading, and stopping 
the kiln, we should use manual control. 

(3) Select several major factors as the objects for 
simulation study. This is to make sure that system 
stability depends on major factors and to avoid non-major 
factors changing to major factors. 

We simplify the system, and the model is shown in Fig. 
3. The gray arrows indicate the flow of materials, slim 
black arrows indicate the flow of the air, and bold arrows 
indicate the flow of coal. As can be seen from the chart, 
the major factors which impact the system are the air and 
coal. Therefore, the selected variables for control are 
focused on air, coal, and materials. According to the 
analysis of the preceding sections we select state 
variables as follows. Among them, furnace export is a 
meeting point of PCK system, which reflects a number of 
integrated indicators for the system state. As a result, we 
select the temperature of the furnace export as a state 
variable in this article. Oxygen content of exhaust gases 
can indicates the extent of calcine. Lack of oxygen means 
materials being not fully calcined. Excessive oxygen-
containing indicates excessive ventilation, which 
increases heat loss. Moderate oxygen assures full calcine 
and at the same time avoiding excessive heat loss. 
Therefore, this paper selects oxygen content gas of 
cyclone export as another state variable. Keeping theses 
two state variables within a reasonable range (see the 
under section of the definition of utility function) is the 
goal of production. 

 

D.  The neural network model of PCK system 
Artificial neural network (ANN) modeling of the 

system is shown in Fig. 4. BP-based neural network 
model can better describe the non-linear system 
performance, and has a capacity of generalization. In Fig. 
4, 5,,2,1),( K=itui  are the control variables of the 
system, including raw materials, coal-fed for furnace, 
coal-fed for kiln, rotary speed of kiln and negative 
pressure of C1 export. Variables 2,1),( =jtx j , are the 
temperatures of furnace export and oxygen content of 
exhaust, respectively. 

Modeling data used are as shown in Tab. 1, which are 
real-time data from a new dry-process cement plant 
5000t/d production line of Guigang City, in Guangxi 
province. Sampling time is 2 minutes. The scope of the 
sample data is showed in Tab. 2. 

Using newff function of MATLAB neural network 
toolbox to set up the model, the number of network 
hidden layer is selected to be 60; for the hidden layer and 
output layer the tansig function is used. The training 

method for model uses Bayesian normalized algorithm 
(trainbr). Training data are shown in Tab. 1. In Tab1, 
4000 groups of data are adopted to train, 100 new groups 
of data are used to test the neural network model 
generalization ability. Training parameters are as follows: 

The learning rate net.trainParam.lr = 0.002. 
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Figure 4. Simplified model of PCK system based on the ANN. 
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The largest number of training net.trainParam.epochs = 
5000. 

The training goal net.trainParam.goal = 0.002. 
Selection of the relevant parameters is based on 

experience of parameters adjusting and the settings many 
times over. The ability of generalization curve is shown 
in Fig. 5, and can be seen to well fit the training data. 

 

Ⅳ.  ADACD CONTROLLER DESIGN FOR PCK SYSTEM 

A.  The principle of ADACD 
A typical ACD consists of the three networks: Critic 

Network, Model Network and the Action Network. 
ADACD is an Action-dependent form of ACD. ADACD 
includes: Critic Network and the Action Network, which 
combines Critic Network and Model Network to form a 
new Critic Network [10]. The new Critic Network in fact 
implies a model, but also refers to the output/ 
implementation u  of Action Network. This simplifies 
the structure of the system and increases the flexibility of 
the method in the application, so as to avoid building 
accurate system model, which might not be easily 
obtained in practice. 

In action dependent ACD, action is directly connected 
to the critic without using models, including action 

Figure 5. Fitting curve of PCK system model after training. 

TABLE II.   
REAL-TIME DATA OF PCK SYSTEM 5000T / D PRODUCTION LINE 

Time 
step 

Raw 
material 
u1(t/h) 

Coal-fed for 
furnace 
u2(t/h) 

Coal-fed 
for kiln 
u3(t/h) 

Rotary speed 
of kiln 
u4(r/m) 

Negative pressure 
of C1 export 

u5(kPa) 

Temperature of 
furnace export 

x1(℃) 

Oxygen content 
of  exhaust 

x2(%) 

t 444.411 18.992 15.06 3.72 -5.322 880.13 3.192 
t+1 452.079 17.869 15.06 3.775 -5.322 875.98 3.192 
t+2 453.394 19.748 15.06 3.72 -4.974 880.37 2.448 
t+3 450.296 19.748 15.06 3.765 -4.974 886.47 2.448 
t+4 426.181 19.748 15.06 3.724 -4.974 880.62 3.076 
t+5 457.431 19.748 15.06 3.769 -4.974 881.35 3.076 
t+6 452.896 19.748 15.06 3.726 -4.974 880.13 3.076 
t+7 384.061 19.748 15.06 3.738 -5.2315 883.79 3.076 
t+8 426.334 19.748 14.555 3.739 -5.492 885.25 3.076 
t+9 438.636 19.748 14.555 3.726 -5.492 892.09 2.551 
t+10 460.798 18.18 14.555 3.767 -5.492 902.34 2.551 
t+11 463.161 17.615 15.06 3.723 -5.492 902.59 2.551 
t+12 427.905 17.615 15.06 3.765 -5.492 883.54 3.241 
t+13 469.256 18.427 15.06 3.731 -5.492 871.09 3.241 
t+14 462.443 19.005 14.55 3.765 -5.322 866.46 3.241 
t+15 421.268 19.005 14.55 3.724 -5.322 871.83 3.241 
t+16 439.972 19.005 14.55 3.77 -5.322 883.54 6.482 
t+17 437.313 18.415 14.55 3.715 -5.322 886.72 2.905 
t+18 445.191 18.415 14.55 3.746 -5.322 881.1 2.905 
t+19 442.332 18.979 14.774 3.735 -5.322 877.93 2.905 
t+20 456.441 18.979 14.774 3.736 -5.322 880.13 2.905 
…… …… …… …… …… …… …… …… 

TABLE I.   
THE SCOPE OF SAMPLING DATA 

Data 
scope 

Raw 
material 
u1(t/h) 

Coal-fed for 
furnace 
u2(t/h) 

Coal-fed 
for kiln 
u3(t/h) 

Rotary speed 
of kiln 
u4(r/m) 

Negative pressure 
of C1 export 

u5(kPa) 

Temperature of 
furnace export 

x1(℃) 

Oxygen content 
of  exhaust 

x2(%) 
max 488.176 22.128 15.908 3.992 -4.82 967.04 8.557 
min 360.727 6.506 14.111 1.935 -5.7705 847.66 1.678 
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network and critic network, as shown in Fig 6. The 
Action Network is the traditional sense of controller. The 
critic network is separated from the action network. 
When the critic Network and the action Network are 
separated, it is possible to have more ways to adjust and 
strengthen the controller for learning. 

 
In ADACD methods, the output of Critic Network is 

cost function )(tQ . Assuming achieving the training of 
network by minimizing the following error function: 

∑ +−−=
t

c tUtQtQtE 2)]()1()([
2
1)( γ           (6) 

where ])()([)( ttutxQtQ ，，= , )(tU  is the moment 
of  t's utility function, γ （ 10 << γ ） is the discount 
factor. In general practice, the cost function of  )(⋅Q  
needs to be evaluated by Critic Network, )(⋅U  is the 
basic utility function which is given by the practical 
issues. We can get the evaluation of )(tU  by Critic 
Network's twice continues outputs )(tQ  and )1( +tQ . 
We compare the difference between estimated value and 
expected value, to get the needed error sequence, whose 
squares are seen as the object function of the optimization 
process [11]. The definition of utility function in advance 

is the key of Adaptive Critic Design methods for training 
and learning. 

According to equation (6), for all the t, 
when 0)( =tEc , we can further deduce: 

)(

)]2()1([)1(
)1()1()(

1

1 kU

tQtQtU
tQtUtQ

tk

tk∑
∞

+=

−−=

=
+++++=

+++=

γ

γγ
γ

L    （7） 

B.  The critic and action network training for ADACD 
ADACD has only action network and critic network. 

In this Fig 6, the action network outputs the control signal 
)(tu , and the critic network outputs an estimate of cost 

function )(tQ . Fig.7 is the schematic diagram for 
implementation of our proposed ADACD controller. The 
solid lines represent signal flow, while the dashed lines 
are the paths for parameter tuning of the critic network 
and the action network. It will generate control signal 

)(tu  when the action network accepts the system state 
)(tx , then )(tu  and )(tx  add to the critic network 

which will output an approximate of Q  function 
(equation (7)). In Fig.7, PCK system is the neural 
network model for the cement factory as discussed in the 
fourth section, which accepts the control signal )(tu  
from the action network outputs and generates the new 
state )1( +tx . In addition, )(tU  is the utility function, 

and γ  is the discount factor and 1−Z  is the time-delay 
operator [12]. 

 
For the critic network, whose output is )(tQ , the 

weight update needs an error between the real output and 
the desired output of the critic NN. The training for 
network has two phases: the forward computation process 

of the network and the errors back-propagation process to 
update the weights of the network. Critic Network's 
outputs are used to approximate )(tQ  of equation (7), 

 
Action 

Network 

Critic 

Network 

u(t) 

Q(t)≈J(t+1) 

Figure 6. Schematic Diagram of ADACD. 

 
Figure 7. Schematic diagram for implementations of ADACD Controller 
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and the aim for training Critic Network is to minimize the 
error function as follow: 

)]()1([)()( tUtQtQtec −+⋅−= γ              (8) 

21( ) ( )
2c cE t e t= ⋅

                                (9) 

The weight update rule for the network is gradient 
descent rule, which is given by the following equations: 

( 1) ( ) ( )c c cw t w t w t+ = + Δ                       (10) 
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where cl  is the learning rate of the critic network, and  

γ  is the discount factor and cw  is the weight vector in 
the critic network. For the critic network, the hidden layer 
uses the sigmoidal function given by: 

x

x

e
ey −

−

+
−

=
1
1

                                       (12) 

In the MATLAB environment, it can easily call tansig 
function to achieve (12). The output layers adopt linear 
function. 

The main objective of action network (action NN) is to 
generate a sequence control signal u(t) to make the 
performance index be optimal.. The aim of training the 
action network is minimizing the output of the critic 
network )(tQ , and the weights updating equations in the 
action network are as follows: 
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where al  is learning rate of the action network, and aw is 
the weight vector in the action network. For this network, 
both hidden layer and output layer use the Sigmoidal 
function as shown in the equation (12). 

Ⅴ.  SIMULATION RESULTS AND CONCLUSION 

The critic network is chosen as a 7-10-2 structure with 
7 input neutrons, 10 hidden layer neutrons and 2 output 
neutrons. The 7 inputs are 2 states (the temperature of the 
furnace export and the oxygen content of exhaust) and 5 
control variables. These control variables represent raw 
materials, coal-fed for the furnace, coal-fed for kiln, 
rotary speed of kiln and negative pressure of C1 export, 
respectively. The structure of the action network is 
chosen as 2-10-5 with 2 input neutrons, 10 hidden layer 
neutrons and 5 output neutrons. The 2 inputs are the 2 
state variables, and the 5 outputs come from the 5 control 
variables, respectively. Based on the analysis of the data 
from the field, and The “three required balances” 
discussed in section 3, we can concluded that if the 
temperature of the furnace export can be controlled at 
around 850-930℃, and the oxygen content of exhaust is 
in the control of 2% to 4% within the scope of the 
changes, the requirements of the production can be met. 
The utility function is defined as: 

⎩
⎨
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=
others ,1

)23)(()40890)(( 0
)(U 21 txtx

t
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 (17)  

where 2,1),( =jtx j , are the temperature of the furnace 
export and the oxygen content of exhaust, respectively. 

The simulation experiments have been shown in Fig. 8 
and 9. Multiple experiments show that, in spite of the 
random initialized weights of neural network, the 
controller can control the state variables in the required 
scope. From Fig.8, we can see after the small fluctuations 
at the beginning, the temperature of furnace export and 
the oxygen content of exhaust tend to stabilize, and their 
fluctuations are within the scope of the utility function 
defined in (17). Fig. 9(a) shows the coal changes of fuel 
feeding system. Fig. 9(b) shows raw materials feed, 
rotary speed, C1 negative changes in the export. Those 
changes of Fig. 9 are similar to the change in temperature 
trends in Fig. 8, which is being stabilized step-by-step 
after a period of fluctuations.  

Figure 8. Result for the PCK system control. 
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In this paper, the results show that the ADACD 
improves the system operation stability more effectively 
than manual operation. For a large scope of changed data, 
the proposed method can give a good performance on 
control. For such a complex system, PCK system without 
clear expression of their mathematical model of reality, 
ADACD method can achieve better control of the output 
of the system. However, the model of PCK system should 
be improved further, in order to enhance generalized 
ability of the model. 
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Figure 9(a). Control variables changed curve for coal. 

Figure 9(b). Control variables changed curve for raw materials, rotary 
speed of kiln and negative pressure of C1 export. 




