
I. J. Computer Network and Information Security, 2018, 9, 25-36
Published Online September 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2018.09.03

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 25-36

An Efficient Indexing Technique for AES

Lookup Table to Prevent Side-Channel Cache-

Timing Attack

Refazul Islam Refat
Dept. of Computer Science and Engineering, University of Dhaka, Dhaka, Bangladesh

E-mail: refazul.refat@gmail.com

Euna Islam and Md. Mosaddek Khan
Dept. of Computer Science and Engineering, University of Dhaka, Dhaka, Bangladesh

E-mail: euna.islam@gmail.com; mosaddek@cse.univdhaka.edu

Received: 05 April 2018; Accepted: 26 June 2018; Published: 08 September 2018

Abstract—In the era of virtualization, co-residency with

unknown neighbours is a necessary evil and leakage of

information through side-channels is an inevitable fact.

Preventing this leakage of information through side-

channels, while maintaining high efficiency, has become

one of the most challenging parts of any implementation

of the Advanced Encryption Standard (AES) that is based

on the Rijndael Cipher. Exploiting the associative nature

of the cache and susceptible memory access pattern, AES

is proved to be vulnerable to side-channel cache-timing

attacks. The reason of this vulnerability is primarily

ascribed to the existence of correlation between the index

Bytes of the State matrix and corresponding accessed

memory blocks. In this paper, we idealized the model of

cache-timing attack and proposed a way of breaking this

correlation through the implementation of a Random

Address Translator (RAT). The simplicity of the design

architecture of RAT can make itself a good choice as a

way of indexing the lookup tables for the implementers of

the AES seeking resistance against side-channel cache-

timing attacks.

Index Terms—Advanced Encryption Standard (AES),

Cache-Timing Attack, Security.

I. INTRODUCTION

Out of the five candidate algorithms (MARS [1], RC6,

Rijndael [2], Serpent [3], and Twofish [4]) for the AES

model, Rijndael was pronounced as a new standard on

November 26, 2001 as FIPS PUB 197 [5]. The security

barrier of Rijndael cipher is so strong that a cryptographic

break is infeasible with current technology. Even Bruce

Schneier, a developer of the competing algorithm

Twofish, admired Rijndael cipher in his writing, “I do not

believe that anyone will ever discover an attack that will

allow someone to read Rijndael traffic” [6].

A brute force method would require 2128 operations

for the full recovery of an AES-128 key. A machine that

can perform 8.2 quadrillion calculations per second will

take 1.3 quadrillion years to recover this key.

Nevertheless, partial information leaked by side-channels

can tear down this complexity to a very reasonable level.

Side-channel attacks do not attack the underlying cipher;

instead, they attack implementations of the cipher on

systems that inadvertently leak data. Ongoing research in

the last decade has shown that the information

transmitted via side-channels, such as execution time [7],

computational faults [8], power consumption [9] and

electromagnetic emissions [10, 11, 12], can be

detrimental to the security of Rijndael [13] and other

popular ciphers like RSA [14].

In this paper, we will be primarily focusing on the

vulnerability of Rijndael AES to side-channel cache-

timing attack and see how simple cache misses in a

multiprogramming environment can lead to disastrous

consequences. If the plaintext is known, recovery of half

of the key by any privileged process is a matter of

seconds. The prevention is not trivial; there exists trade-

off between performance and degree of

multiprogramming. We will present a concept that

balance this trade-off by introducing a little memory

overhead. It is worth mentioning that even though the

process is arbitrary, the cipher text will always remain the

same.

II. RELATED LITERATURE

In October 2005, Dag Arne Osvik, Adi Shamir and

Eran Tromer presented a paper demonstrating several

cache-timing attacks against AES [15]. One attack was

able to obtain an entire AES key after only 800

operations triggering encryptions, in a total of 65

milliseconds. The attack required the attacker to be able

to run programs on the same system or platform that is

performing AES. That paper presented some decent

defense against side-channel cache-timing attacks such as

avoiding memory access, disabling cache sharing, 30

26 An Efficient Indexing Technique for AES Lookup Table to Prevent Side-Channel Cache Timing Attack

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 25-36

dynamic table storage etc. They revised their paper on

2010 [16] and focused on modern microprocessor

implementations and presented few more preventions.

Most of them lacked conceptual consolidation and

provided as implicit implication. Some of them even

requires alteration of cipher text that might cause

significant overhead in distributed systems to maintain

synchronization. Other works included introduction of

asynchronous circuitry in AES implementation [7].

Fig.1. The Figure Demonstrates how 𝑥0
1, 𝑥1

1, 𝑥2
1, 𝑥3

1
 are Computed. Note that the Bytes of the State Matrix are being used as index of the Lookup

Tables. Since the Lookup Table Remains the same for a Particular S-Box, An Index byte will always Cause Lookup from the same block of Cache

Memory.

 (𝑥0
(𝑟+1)

, 𝑥1
(𝑟+1)

, 𝑥2
(𝑟+1)

, 𝑥3
(𝑟+1)

) ← 𝑇0[𝑥0(𝑟)] ⊕ 𝑇1[𝑥5(𝑟)] ⊕ 𝑇2[𝑥10(𝑟)] ⊕ 𝑇3[𝑥15(𝑟)] ⊕ 𝐾0
(𝑟+1)

(𝑥0
(𝑟+1)

, 𝑥1
(𝑟+1)

, 𝑥2
(𝑟+1)

, 𝑥3
(𝑟+1)

) ← 𝑇0[𝑥0(𝑟)] ⊕ 𝑇1[𝑥5(𝑟)] ⊕ 𝑇2[𝑥10(𝑟)] ⊕ 𝑇3[𝑥15(𝑟)] ⊕ 𝐾0
(𝑟+1)

(𝑥4
(𝑟+1)

, 𝑥5
(𝑟+1)

, 𝑥6
(𝑟+1)

, 𝑥7
(𝑟+1)

) ← 𝑇0[𝑥4(𝑟)] ⊕ 𝑇1[𝑥9(𝑟)] ⊕ 𝑇2[𝑥14(𝑟)] ⊕ 𝑇3[𝑥3(𝑟)] ⊕ 𝐾0
(𝑟+1)

 (1)

(𝑥8
(𝑟+1)

, 𝑥9
(𝑟+1)

, 𝑥10
(𝑟+1)

, 𝑥11
(𝑟+1)

) ← 𝑇0[𝑥8(𝑟)] ⊕ 𝑇1[𝑥13(𝑟)] ⊕ 𝑇2[𝑥2(𝑟)] ⊕ 𝑇3[𝑥7(𝑟)] ⊕ 𝐾0
(𝑟+1)

(𝑥12
(𝑟+1)

, 𝑥13
(𝑟+1)

, 𝑥14
(𝑟+1)

, 𝑥15
(𝑟+1)

) ← 𝑇0[𝑥12(𝑟)] ⊕ 𝑇1[𝑥1(𝑟)] ⊕ 𝑇2[𝑥6(𝑟)] ⊕ 𝑇3[𝑥11(𝑟)] ⊕ 𝐾0
(𝑟+1)

Before understanding the weakest part of the cipher,

we are going to clarify the concept of cache memory and

how they are accessed during real time AES

implementation in the remainder of this section.

A. Memory Access in AES Implementations

The memory access patterns of AES are particularly

susceptible to cryptanalysis. The cipher is abstractly

defined by algebraic operations and could, in principle, be

directly implemented using just logical and arithmetic

operations. However, performance-oriented software

implementations on 32-bit (or higher) processors

typically use an alternative formulation based on lookup

tables as prescribed in the Rijndael Specification [13]. A

number of lookup tables are precomputed once by the

programmer or during system initialization. Here, there

are 8 such tables, 𝑇0, 𝑇1, 𝑇2, 𝑇3 and 𝑇0, 𝑇1, 𝑇2, 𝑇3 , each

containing 256 4-byte words. The contents of the tables,

defined in [13], are inconsequential to most of the cache-

timing attacks because of memory protection.

During key setup, a given 16-byte secret key
𝑘 = (𝑘0, 𝑘1, . . . , 𝑘15) is expanded into 10 round keys,
𝐾(𝑟) or 𝑟 = 1, 2, . . . , 10. Each of these rounds is divided

into 4 words of 4 bytes each:

𝐾(𝑟) = (𝐾0
(𝑟)

, 𝐾1
(𝑟)

, 𝐾2
(𝑟)

, 𝐾3
(𝑟)

). The 0
th

 round key is just

the raw key: 𝐾𝑗
(0)

= (𝑘4𝑗 , 𝑘4𝑗+1, 𝑘4𝑗+2, 𝑘4𝑗+3) for

𝑗 = 0, 1, 2, 3. The details of the rest of the key expansions

are mostly inconsequential [16].

Given a 16-byte plaintext 𝑝 = (𝑝0, 𝑝1, . . . , 𝑝15),
encryption proceeds by computing a 16-byte intermediate

state 𝑥(𝑟) = (𝑥0
(𝑟)

, 𝑥1
(𝑟)

, . . . , 𝑥15
(𝑟)

) at each round r. The

initial state 𝑥(0) is computed by 𝑥𝑖
(0)

= 𝑝𝑖 ⊕ 𝑘𝑖(𝑖 =

0,1, . . . ,15) . Thus, the first 9 rounds are computed by

updating the intermediate state as Equation 1, for

𝑟 = 0, 1, … , 8.

 An Efficient Indexing Technique for AES Lookup Table to Prevent Side-Channel Cache Timing Attack 27

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 25-36

Fig.2. The Figure Demonstrates how 𝑥4
1, 𝑥5

1, 𝑥6
1, 𝑥7

1 are Computed.

Finally, to compute the last round, the above process of

table lookup is repeated with r = 9, except that

𝑇0, 𝑇1, 𝑇2, 𝑇3 are replaced by 𝑇0
(10)

, 𝑇1
(10)

, 𝑇2
(10)

, 𝑇3
(10)

. The

resulting 𝑥(10) is the cipher text. Compared to the

algebraic formulation of AES, here the lookup tables

represent the combination of ShiftRows, MixColumns

and SubBytes operations; the change of lookup tables in

the last round is due to the absence of MixColumns [16].

It is clear from the above discussion that computation of a

state matrix requires 16 Table lookups and 16 XOR

operations.

We know, the first round state matrix is computed by

XOR operation between the 16-byte plain text and the 16-

byte plain key. One important point to notice from the

previous discussion is that the state bytes are being used

as index to the lookup tables. Thus any Information of the

accessed index will directly translate to Encryption Key

Byte. For example, assume we know 𝑥𝑖
(0)

. Since plaintext

is known for triggered encryptions, we know 𝑥𝑖
(0)

 too

(Equation 2).

𝑥𝑖
(0)

← 𝑥𝑖
(0)

⊕ 𝑘𝑖
(0)

 (2)

This implies -

𝑘𝑖
(0)

← 𝑥𝑖
(0)

⊕ 𝑥𝑖
(1)

 (3)

Thus knowing 𝑥𝑖
1(1) for 𝑖 = 0, 1, 2, . . . , 15 is sufficient

to recover the full encryption key under the assumption

that the plaintext is known. This is the weakest part of

Round 1; in fact, the weakest part of the Cipher.

B. How Lookup Tables fit in Memory and Cache

Having discussed the issue of memory access in AES

implementation, we now turn our focus on how AES

Lookup tables fit in Memory and in Cache. We know,

each Lookup table has 256 4-Byte entry. That gives it a

total size of 256 * 4 = 1024 Bytes. Now, typical size of

memory block is 64 Bytes even on modern

microprocessors. Hence, for simplicity, we will assume

the memory block size B to be 64 Bytes throughout this

paper. Therefore, each table 𝑇𝑖 will occupy 16 memory

blocks. Also assume that, the initial address of 𝑇𝑖
congruent to the cache. That is, 1st block of the table will

be cached in one of the W cache lines in the 1st cache set.

III. THE IDEALIZED PRIME+PROBE TECHNIQUE

The Prime+Probe technique helps to visualize the

vulnerability of AES Cipher during the 1st Round. To

keep things simple, we consider an idealized environment

in which only the attacking process and the victim

encrypting process exists. Also assume that the attacking

process will be able to invoke or interrupt the encrypting

process at any time. Now since we are talking about

triggered encryption, the plaintext is also known. The

Prime+Probe technique has the following 3 phases: Prime,

Trigger and Probe.

28 An Efficient Indexing Technique for AES Lookup Table to Prevent Side-Channel Cache Timing Attack

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 25-36

Fig.3. Demonstration of how AES Lookup Table fits in Memory and cache. On the Left Side, Number of Rows Implies total Number of Cache Sets,
Whereas, Number of Columns Implies Associativity of the Cache. On the right side, Instead of Depicting Memory as a Continuous Array of blocks, it

is Portrayed in Congruence with Cache Memory. Note that all blocks in a row of Memory Competes for the blocks of Corresponding row in Cache
Memory.

Prime: During the Prime phase, the cache is filled

completely by the attacking process. This can be done by

allocating a contiguous amount of memory as big as the

size of the cache and performing a read on it. If S = 32,

W = 8 and B = 64 Bytes, then –

𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑐ℎ𝑒 = 𝑆 ⋅ 𝑊 ⋅ 𝐵 = 16 (4)

As implied by Fig. 3, performing a serial read on a

contiguous memory as big as the cache results in

inception of filling the cache. Continuing this way, we

will end up filling the cache completely after the reading

is finished.

Trigger: With the Cache filled with our data, we are in

a position to invoke the encrypting process and trigger an

encryption of some known plain text. As the encrypting

process reaches the First Round and performs the first

lookup, it is interrupted. It is worth noting here that we

are idealizing the model to illustrate the susceptibility of

the First Round, and recovering the AES Encryption Key

is not the actual intention of the contribution presented in

this paper.

Probe: After we interrupt the encrypting process just

after it performed its first lookup during the First Round

of AES, we perform the Prime again; that is, we fill the

cache again. However, in this time, we maintain a clock

to take the measurement of how long it takes to read a

memory block. Before the Trigger phase, the cache was

completely filled by our data. But after that phase, one

block of the Lookup table 𝑇0 is now in the cache due to

the lookup operation. Therefore, all but that block will

suffer from a cache miss.

Observing the position of the cache miss, we can easily

identify which block of 𝑇0 was accessed since we

assumed

Lookup Tables 𝑇𝑖 to be congruent with the cache. Now,

if we can identify which block of 𝑇0 was accessed during

the First Round, we can extract some valuable piece of

information. Since size of memory block is 64 Bytes,

each memory block holds 16 entry of the Lookup Table.

So for example, if 7th block of T0 was accessed, we can

conclude the index 𝑥0
(1)

 was somewhat between 0x60 and

0x6F; that is, high nibble is 0x6. We know -

𝑥0
(1)

= 𝑥0
(0)

⊕ 𝑘0
(0)

 (5)

Here, 𝑥0
(0)

 is the 1st Byte of the plaintext and 𝑘0
(0)

 is the

1st Byte of the Encryption Key. Now, since addition and

subtraction in Galois Field are the same XOR operation,

rearranging the equation yields -

𝑘0
(0)

= 𝑥0
(0)

⊕ 𝑥0
(1)

 (6)

Because we know 𝑥0
(0)

 from the plain text and the high

nibble of 𝑥0
(1)

 from the Prime+Probe technique, we can

compute the high nibble of the first Byte of the

Encryption Key by a simple XOR operation. Proceeding

this way for every Bytes 𝑥𝑖
(1)

 for 𝑖 = 0, 1, 2, . . . , 15, we

can calculate 𝑘0
(0)

 for 𝑖 = 0, 1, 2, . . . , 15 and dig up half of

the Encryption Key. The idealized procedure is

summarized in Algorithm 1.

 An Efficient Indexing Technique for AES Lookup Table to Prevent Side-Channel Cache Timing Attack 29

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 25-36

Fig.4. Demonstration of the Cache Filling Process. Note that Reading Continuous Array of Memory will Cause Allocation of one block from each
Cache set and due to Principle of Locality, Immediate next read Cycle will Cause Allocation of Another block (Different from the Previous) from

each Cache set.

Fig.5. Demonstration of the Prime phase where Reading a Continuous Array of Memory Equal to the size of the Cache will eventually fill the Cache
Completely with Attacker's data in a Noiseless Environment.

IV. PROPOSED RANDOM ADDRESS TRANSLATOR (RAT)

From the analysis in the previous sections, it is

prominent that the existence of linear correlation between

index Bytes of the state matrix and the location of

corresponding accessed block in memory is the primary

reason of vulnerability of AES in the first round. Given

size of memory block (64 Bytes in most of the cases), any

information about the memory access during the

encryption process would directly reveal high nibble of

the index Bytes. Thus if the size of the key is 128 Bit,

pre-knowledge of the high nibbles of the index Bytes

would reduce the brute force complexity to 2
64

. A

machine that can perform 1 quadrillion operations per

seconds would take less than 5 seconds to break the rest

of the key in brute force attempt.

Now, if the correlation can be broken, so that the index

Byte will no longer be used directly to locate the desired

block of the Lookup table, most of the cache-timing

threats will be eliminated. The key concept to the solution

is to perform memory access to obtain the desired content

but from an arbitrary, unpredictable location. This can be

accomplished by introducing a Translator table between

the state matrix and the lookup table. The index Bytes of

the state matrix will then be used as index to the

Translator table to get the location of the desired block.

30 An Efficient Indexing Technique for AES Lookup Table to Prevent Side-Channel Cache Timing Attack

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 25-36

The Translator table is initially aligned with the

Lookup table as illustrated in Fig. 7. This implies that if

the address of i-th row in the lookup table is Xi, the

content of the i-th row of the Translator table is also Xi.

Initially, it has no effect on the accessed memory block of

the lookup table because it is fully aligned with it. After

that, let’s take two rows of the Translator table Ti and Tj

and corresponding two rows of the original lookup table

Li and Lj and perform a swap between them. This is

illustrated in Fig. 8.

Continuing this way, there can be at most 128 swaps

between the entries of the table. Note that an entry can be

swapped only once, so keeping trace of swapped entries

is important. After scrambling, the correlation is

completely broken as illustrated in Fig. 9.

With the RAT activated, there is no such phrase such

as, index 0x05 will access the 1st block of the Lookup

table. Because the content of the address 0x05 is now at

0x7B address (Fig. 9) and that tracing is recorded by the

RAT. The procedure for constructing the RAT is

formulated in Algorithm 2 and 3.

After that, a scrambling is done on both tables

simultaneously and arbitrarily. Note that no entry is

allowed to be scrambled or swapped with other entry

more than once. Also note the presence of rand() methods.

It symbolizes the randomness of the swapping process.

Fig.6. Demonstration of how Information about the Location of the cache miss During First Round Reveals Critical Information about the Encryption
Key. In the Example Scenario, the High Nibble of a Byte (0x6) is Easily Gleaned.

 An Efficient Indexing Technique for AES Lookup Table to Prevent Side-Channel Cache Timing Attack 31

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 25-36

Fig.7. Random Address Translator Initialization.

Fig.8. Random Address Translator after First Swap.

32 An Efficient Indexing Technique for AES Lookup Table to Prevent Side-Channel Cache Timing Attack

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 25-36

Fig.9. Random Address Translator Completely Scrambled. It can be noticed that some of the Entries can be left “unswapped” as the Process Is
Arbitrary. Here 2nd Entry Is Left Intact.

V. PERFORMANCE EVALUATION

There are some other proposed solutions in this field

[16, 17, 18, 19, 20, 21, 22]. We take some of the most

prominent ones and compare it with our proposed

solution.

Avoiding Memory Access. Since the cache-timing attacks

exploit the effect of memory access on the cache, any

implementation that does not perform any table lookup

will not suffer from this sort of attacks. Nevertheless, this

solution has a major drawback. That is the performance is

degraded by an order of magnitude. The Sub-Bytes

Transformation phase requires 16 table lookups for the 16

Bytes of a State matrix. The ShiftRows Transformation

phase requires 16 shift operations. The MixColumns

Transformation phase requires 8 shift operations, 8

conditional XOR operations and 12 mandatory XOR

operations. At the end, the AddRoundKey

Transformation phase requires 16 XOR operations. To

summarize the fact, we need a total of 24 shift operations,

16 table lookups, 8 conditional XOR operations, 28

mandatory XOR operations for a single round, as

demonstrated in Fig.10.

 An Efficient Indexing Technique for AES Lookup Table to Prevent Side-Channel Cache Timing Attack 33

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 25-36

Fig.10. Comparison of RAT with Straightforward AES Implementations in a Single Round. An Implementation that Completely Avoids Memory
Access Requires 16 table Lookups, 24 Shift Operations and 36 XOR Operations (8 of which them are Conditional), Whereas Introduction of RAT

Incurs 2 times more table Lookups and 16 XOR Operations in a Single Round.

Fig.11. Performance Evaluation of RAT in terms of Memory Usage.

In fact, the conditional XOR operation is also

vulnerable to timing attack [23]. Other than lagging

behind in terms of security, a straightforward

implementation requires more computation time. So

avoiding memory access does not solve the problem.

Having said that, the positive side is that the

straightforward implementation does not need to maintain

any sort of lookup table other than the S-Box. On the

other hand, table lookup with RAT has an overhead of

maintaining two tables. The Lookup table requires 4096

Bytes of memory space and RAT requires another 1024

Bytes of space.

Disable Cache Sharing. To protect against software-

based attacks, it would suffice to prevent cache state

effects from spanning process boundaries. However, this

is very expensive to achieve in practical settings. On a

single threaded processor, it would require flushing all

caches during every context switch. On a processor with

simultaneous multi-threading, it would also require the

logical processors to use separate logical caches,

statically allocated within the physical cache; some

modern processors do not support such a mode [16].

Using RAT will not impose any restriction about cache

sharing which is perfectly suitable for cloud environment

and virtual machines (without causing evictions and

filling).

34 An Efficient Indexing Technique for AES Lookup Table to Prevent Side-Channel Cache Timing Attack

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 25-36

Fig.12. Comparison with Straightforward Table Lookup Approach.

Static or Disabled Cache. One brutal countermeasure

against the cache-base attacks is to completely disable the

CPU’s caching mechanism. Of course, the effect on

performance would be devastating. A more attractive

alternative is to activate a “no-fill” mode where the

memory accesses are serviced from the cache when they

hit it, but accesses that miss the cache are serviced

directly from the memory:

1. Preload the AES tables into the cache

2. Activate the “no-fill” mode

3. Perform encryption

4. Deactivating “no-fill” mode

The section spanning (1) and (2) is critical, and

attacking process must not be allowed to run during this

time [16]. However, the major drawback of this approach

is that during the encryption process the overall system

will be slowed down by a factor since cache access is

limited during the encryption process. However, using

RAT, the “no-fill” mode is not required. All the other

processes can be allowed to access the cache even during

the encryption proceeds.

Dynamic Table Storage. The cache-based attacks observe

memory access patterns to learn about the table lookups.

Instead of eliminating these, we may try to de-correlate

them. For example, one can use many copies of each

table, placed at various offsets in memory, and have each

table lookup use a pseudo randomly chosen table. By

utilizing more compactly, one can use a single table, but

pseudo randomly move it around memory several times

during each encryption [16]. But the major drawback of

this approach is that it will incur cache misses more than

ever.

This implies that the encryption process will be slowed

down by a factor. More importantly, the performance and

security of this approach are largely architecture

dependent. Using RAT helps us alleviate this situation by

obviating the need of moving around the Lookup table in

the memory.

A. Other Major Advantages

Some important benefits of using the RAT are as

follows:

 The Cipher Text remains the same and the AES

implementation becomes a client dependent

process. We do not need to worry about how other

ends of the terminals are encrypting their data. As

long as the key does not change, Cipher Text

remains the same.

 No need of NOP operation. NOP operations are

introduced to scramble uniform patterns in various

fields. In case of cache-timing analysis, NOP

operation would mean accessing Lookup table

entry, but doing no operation with it.

 No need to introduce disturbance in plaintext.

Sometimes plaintext is modified before it is passed

to the encrypting process. This sort of approach is

not suitable for large scale application where the

interface must be kept as simple as possible.

VI. FUTURE WORKS

The findings we have presented in this paper have

thrown up few new questions that need further

investigation. In the remainder of this section, we discuss

future work to extend the scope and applicability of this

work.

 There are some limitations in the process of

constructing the RAT table. One major limitation

is that swapping is not allowed more than once for

an entry. Thus, there can be a maximum of 128

 An Efficient Indexing Technique for AES Lookup Table to Prevent Side-Channel Cache Timing Attack 35

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 25-36

swaps for a single Lookup table. To allow more

number of swaps per entry, more sophisticated

data structure is required.

 The big picture that summarizes the performance

difference with the straightforward Table lookup

approach is given below. As we can see, we need

2 times more table lookups than the ordinary

approach. The area of future development is to

reduce this particular factor.

 Another big concern is that RAT tables add a fair

amount of memory overhead to the encrypting

process. Whereas the Lookup tables altogether

require 4KB of space, RAT tables requires 1KB of

space. Although this is not a big amount, space

overhead can be reduced with the assistance of

some more tables of smaller sizes.

VII. CONCLUSIONS

It is apparent that Side channel attacks do not divulge

everything at once; instead they ease the calculations and

assumptions that helps rest of the operations

accomplished in a bounded time. Although the existing

AES encryption model has sufficient complexity to blow

away any straightforward attempt to break the security,

side-channels still poses a real threat and a bad

implementation of the cipher might lead to dire

consequences. The most challenging part of security is

now making the implementation of the existing ciphers

resistant to side-channel attacks. Preventing leakage of

information through side-channel is not a trivial task at all.

The empirical observation presented in this paper has

shown that even the straightforward Table lookup

approach can be made secure without the assistance of

any piece of special software or hardware, which is

widely acknowledged requirement in the real settings.

REFERENCES

[1] C. Burwick, D. Coppersmith, E. DAvignon, R. Gennaro,

S. Halevi, C. Jutla, S. M. Matyas Jr, L. OConnor, M.

Peyravian, Sa_ord, et al., Mars-a candidate cipher for

aes, NIST AES Proposal 268.

[2] J. Daemen, V. Rijmen, Aes proposal: Rijndael, NIST

AES Proposal.

[3] R. Anderson, E. Biham, L. Knudsen, Serpent: A

proposal for the advanced encryption standard, NIST

AES Proposal 174.

[4] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall,

N. Ferguson, Twofish: A 128-bit block cipher, NIST

AES Proposal 15.

[5] N. F. Pub, 197: Advanced encryption standard (aes),

Federal Information Processing Standards Publication

197 (2001).

[6] B. Schneier, Schneier on Security: Crypto-Gram,

https://www.schneier.com/crypto-gram-0010.html,

[Online: last accessed 15-May-2018].

[7] L. Spadavecchia, A network-based asynchronous

architecture for cryptographic devices (2006).

[8] R. D. D. Boneh, R. Lipton, On the Importance of

Checking Cryptographic Protocols for Faults, The

Proceedings of the International Conference on the

Theory and Application of Cryptographic Techniques

(EUROCRYPT'97) (1997) 37- 51.

[9] P. C. Kocher, Timing attacks on implementations of

diffie-hellman, rsa, dss, and other systems, in: Advances

in Cryptology-CRYPTO'96, Springer, 1996, pp. 104-

113.

[10] J. R. Rao, P. Rohatgi, Empowering side-channel attacks,

IACR Cryptology ePrint Archive (2001) 37.

[11] K. Gandol, C. Mourtel, F. Olivier, Electromagnetic

analysis: Concrete results, in: Cryptographic Hardware

and Embedded Systems-CHES 2001, Springer, 2001, pp.

251-261.

[12] J.-J. Quisquater, D. Samyde, Electromagnetic analysis

(ema): Measures and counter-measures for smart cards,

in: Smart Card Programming and Security, Springer,

2001, pp. 200-210.

[13] J. Daemen, V. Rijmen, The design of Rijndael: AES-the

advanced encryption standard, Springer, 2002.

[14] R. L. Rivest, A. Shamir, L. Adleman, A method for

obtaining digital signatures and public-key

cryptosystems, Communications of the ACM 21 (2)

(1978) 120-126.

[15] D. A. Osvik, A. Shamir, E. Tromer, Cache attacks and

countermeasures: the case of aes, in: Topics in

Cryptology-CT-RSA 2006, Springer, 2006, pp. 1-20.

[16] E. Tromer, D. A. Osvik, A. Shamir, E_cient cache

attacks on aes, and countermeasures, Journal of

Cryptology 23 (1) (2010) 37-71.

[17] N. Paladi, Trusted computing and secure virtualization

in cloud computing, Ph.D. thesis, Lulea University of

Technology (2012).

[18] A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R. Rao,

P. Rohatgi, Efficient rijndael encryption implementation

with composite field arithmetic, in: Cryptographic

Hardware and Embedded SystemsCHES 2001, Springer,

2001, pp. 171-184.

[19] M. Matsui, How far can we go on the x64 processors?

in: Fast Software Encryption, Springer, 2006, pp. 341-

358.

[20] M. Matsui, J. Nakajima, On the power of bit-slice

implementation on intel core2 processor, in:

Cryptographic Hardware and Embedded Systems-CHES

2007, Springer, 2007, pp. 121-134.

[21] R. Konighofer, A fast and cache-timing resistant

implementation of the aes, in: Topics in Cryptology-CT-

RSA 2008, Springer, 2008, pp. 187-202.

[22] R. V. Meushaw, M. S. Schneider, D. N. Simard, G. M.

Wagner, Device for and method of secure computing

using virtual machines, US Patent 6,922,774 (Jul. 26

2005).

[23] W. Stallings, Cryptography and Network Security:

Principles and Practice, 5th Edition, Prentice Hall, 2011.

URL

http://books.google.com.bd/books?id=wwfTvrWEKVw

C.

Authors’ Profiles

Refazul Islam Refat received Bachelor of

Science (BSc) in Computer Science and

Engineering from the University of Dhaka,

Bangladesh in 2015. His research interest

includes Information Security, Internet of

Things and Crypto Currency.

36 An Efficient Indexing Technique for AES Lookup Table to Prevent Side-Channel Cache Timing Attack

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 25-36

Euna Islam received Bachelor of Science

(BSc) in Computer Science and

Engineering from the University of Dhaka,

Bangladesh in 2015. Her research interest

includes Information Security and

Software Engineering.

Md. Mosaddek Khan completed his PhD in

Computer Science from the University of

Southampton, UK in 2018. He also received

MS and BSc in Computer Science and

Engineering from the University of Dhaka,

Bangladesh in 2012 and 2010, respectively.

His research interest includes Artificial

Intelligence, Multi-Agent Systems and Information Security.

How to cite this paper: Refazul Islam Refat, Euna Islam, Md. Mosaddek Khan,"An Efficient Indexing Technique for

AES Lookup Table to Prevent Side-Channel Cache Timing Attack", International Journal of Computer Network and

Information Security(IJCNIS), Vol.10, No.9, pp.25-36, 2018.DOI: 10.5815/ijcnis.2018.09.03

