
I. J. Computer Network and Information Security, 2018, 9, 47-59
Published Online September 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2018.09.05

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 47-59

Role of Scripting Language on Unix Operating

System for Risk Assessment

Padma Lochan Pradhan
Information Technology Dept.TGPCET, RTM Nagpur University, India

E-mail: citrprcs@rediffmail.com

Received: 17 April 2018; Accepted: 12 July 2018; Published: 08 September 2018

Abstract—This proposed dynamic scripting language is a

vital role in the complex real-time operating system to

review, analysis, protect, detect & correct on data,

application, network, software and hardware as per the

desired manner to achieve the highest performance of the

RTOS. The dynamic language is a primarily responsible

for analysis of the fine tuning, performance, fault-

tolerance, throughput of the system components at the

right time. This research work contributes to the design

and development of an automated mechanism that

objective to investigate the minimal resource utilization

to the robust computing services. We have to define &

deployment the Unix scripting codes for real time

operating system to achieve the reliability, scalability of

the real-time MIMD platform. We have to run this SPL

on background process to integrate with real-time

hardware, software, network to facilitate to other

dependants components. This dynamic code is integrating,

interfacing, communicating, message passing, replicating

among the several subjects and objects over a real-time

operating system.

Index Terms—Dynamic Scripting programming

Language, Processor, Memory, Performance analysis,

Access Control Mechanism (ACM), Unix File System

(UFS), Procedural Programming Language (PPL), Unix

File System (UFS), Preventive Detective Control (PDC),

Read Write Execute (RWX).

I. INTRODUCTION

The real time operating system is very fast and quick

respondent of any systems programming. These systems

are used in an environment where a large number of

events (generally internal & external dependants) must be

accepted and processed in a short time frame. The real

time processing requires quick transaction and

characterized by supplying immediate response. The real

time programming, applications can be made in almost

any language (see, C, C++, JAVA)[9],[26]. The

environment (operating system, runtime and runtime

libraries) must however be compliant to real time

constraints. In most cases, the real-time means that there's

always a deterministic time in which something happens.

Deterministic timing being usually a very low time value

in the microseconds/milliseconds range [2],[4,5].

The Scripting language for Unix operating system was

the primary purpose behind the creation of C.

Additionally, as programs scripted in C get executed with

speeds equivalent to assembly language, C language has

been an integral part of the development of multiple

operating systems. Unix-Kernel, Microsoft Windows

utilities and operating system, applications, and a large

segment of the Android operating system have all been

scripted in C. Steve Bourne wrote the Bourne shell which

appeared in the Seventh Edition Bell Labs Research

version of Unix. Many other shells have been written;

this particular tutorial concentrates on the Bourne and the

Bourne Again shells. Other shells include the Korn Shell

(ksh), the C Shell (csh), and variables such as tcsh) [15,

16,17].

The scripting languages are high level programming

languages is a set of code, instructions, commands,

scripts, other symbols & syntaxes use to write the

dynamic scripting application software packages for

specific scientific and commercial purpose. The

programming languages that the developer use to write

source code to solve for a specific problem is called high-

level languages (Perl, Java script, PHP, TCL, Python,

Ada, BASIC, COBOL, REXX, C, C++, JAVA). These

scripting languages do not create any executable, binary,

library and link files & no memory will be allocated. The

scripting languages are designed to be easy to readable,

writable, executable, reliable (RWR), available, robust,

scalable and understandable by human being [22], [24,

[26]. These languages are just like common English

sentences. The programmers can able to write postcode,

source code using syntax, logical symbol and just like

English words, grammar as per flow chart and the

algorithm (physical-design-specification). For example,

the control statements and reserved English words like

GOTO, for loop, do while, if then else, continue and

break are used in most major programming languages to

construct the programmed to solve our scientific &

business purpose. The logical operators and symbols

(&&, | |, ++, <, >, == and !=) are common syntaxes are

available in all most all high level programming

languages as available on today on concurrent, parallel

and distributed environment. There are many scripting &

high-level languages are similar enough that

programmers can easily understand source code written

in multiple languages like PERL, PHP, TCL, C, REXX,

48 Role of Scripting Language on Unix Operating System for Risk Assessment

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 47-59

PASCAL, Ada, COBOL, C++, Java & C# for multiple

purpose. Now a day, there are many programming

languages are available and massively used in both

commercial & scientific applications are used in parallel,

distributed and concurrent operating system [9], [26],

[28].

The scripting language is a high level programming

language that supports scripts, programs written in a

special run time environment which can interpret (rather

than compile) and automate the execution of various

tasks that could run one by one in a batch mode operation

of system programmers. The RTOS environments that

can be controlled through automated scripting including

system software, application software, web pages, the

shell of RTOS and embedded systems. There are many of

the scripting languages help in the dynamic scheduling of

the real time operating system [45, 46, 47],[49], [53].

The users are accessing the shell, then preventing the

UFS through ACM (RWX), that graphical diagram

presented here to hand shake with Shell, UFS & Kernel.

Fig.1. Prevention of OS Components

II. EXISTING SCRIPTING LANGUAGES

The scripting language is a programming language

designed for integrating and communicating with other

programming languages. Some of the most widely used

scripting languages are JavaScript, VBScript, PHP, Perl,

Python, Ruby, ASP and Tcl. Since a scripting language is

normally used in conjunction with another programming

language, they are often found alongside HTML, Java or

C++. The activities of the shell are not restricted to

command interrelation alone [9], [26], [28].

The shell has a whole set of internal commands that

can be strung together as a language. We need to discuss

this language in this paper. In this work, we focus on the

Bourne shell-the lowest common denominator of all

shells. We have reserved the discussion of the advanced

features of the Koran and Bash shell for Part totally

different programming constructs and have been

separately treated in the proposed method [45, 46, 47]

shell program runs in interpretive mode. It is not

compiled into a separate executable file as a C, exe, dll,

Lib, link programs . Each statement is loaded into

memory when it is to be executed. The shell scripts

consequently run slower than those written in high-level

languages (POP & OOP). However, what makes shell

programs powerful is that external UNIX commands

blend easily with the shell’s internal command modes.

The speed is not a factor in many jobs we do, and in

many cases, using the shell is an advantage – especially

in system administrative tasks. The UNIX system

administrator must be an accomplished shell programmer

[45, 46, 47, 49].

We have already discovered the basic features of the

shell - both as an interpreter and as a scripting language.

But the shell is more capabilities than just an interpreter.

It is also a process, an environment which makes it

available to programs. It is necessary that you understand

the environmental changes that take place when the shell

execute a program, especially a shell script. We should

also know how to change these environmental parameters

(see %, $, #) [15, 16, 17].

The advanced knowledge of shell programming is

needed by the system administrator who has to constantly

devise scripts that monitor and correct system functioning

in a systematic ways. The detailed knowledge of the

shell’s subtle features is also necessary if we aspire to be

an ethical script writer. The following discussions mostly

assume the Bourne shell, but the special features of the

Korn and Bash shells are also examined in commands

mode. [45, 46, 47], [49], [53].

The most of the scripting languages are often string-

oriented, since this provides a uniform representation for

many different things. A type less language makes it

much easier to hook together components. There are no a

priori restrictions on how things can be used, and all

components and values are represented in a uniform

fashion. These any component or value can be used in

any situation; components designed for one purpose can

be used for totally different purposes never foreseen by

the designer. For example, in the Unix shells, all filter

programs read a stream of bytes from an input and write a

string of bytes to an output; any two programs can be

connected together by attaching the output of one

program to the input of the other(&& and | |). The

following shell command stacks three filters together to

count the number of lines in the selection that contain the

word scripting as follows: select | grep scripting | wc 3,

who –Hart | grep top, ps-aef | grep vmstat, ls-ailtr, dmesg.

[22], [26], [27], [35].

Fig.2. Shell Activities Diagram

III. LITERATURE SURVEY

There is a thorough review of the literature was

 Role of Scripting Language on Unix Operating System for Risk Assessment 49

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 47-59

conducted with the primary objective of determining the

risk assessment on the Unix operating system for

complex IT infrastructure for the large electronic

workplace. This research has been conducted on real time

Unix file systems applying hardening, re-configuration,

access control mechanism, scripting, programming and

system programming as per the demand of complex

Business, Technology & Resources.

In early 1950 the Main Frame Computers were non-

interactive, instead using batch processing. In IBM MF

machines Job Control Language (JCL) languages are

used to control batch processing.

The first interactive SHELL were developed in the

1960 to enable remote operation of the first time sharing

systems, and these used this shell script, which controlled

running computer programs within a computer program,

the shell. The JCL, REXX & EXEX language are

generally credited with inventing command substitution,

the ability to embedded commands in scripts that when

interpreted insert a character string in the script under

IBL CP/CMS, MVS and VMS in 1966 [45, 46, 47], [49],

[53].

In early 1950 the Main Frame Computers were non-

interactive, instead using batch processing. In IBM MF

machines Job Control Language (JCL) languages are

used to control batch processing.

The first interactive SHELL were developed in the

1960 to enable remote operation of the first time sharing

systems, and these used this shell script, which controlled

running computer programs within a computer program,

the shell. The JCL, REXX & EXEX language are

generally credited with inventing command substitution,

the ability to embedded commands in scripts that when

interpreted insert a character string in the script under

IBL CP/CMS, MVS and VMS in 1966 [49], [51, 52, 53].

Table 1. History of Shell

Shell Name Developed by Where Remark

BASH (Bourne-Again SHell)
Brian Fox and Chet

Ramey
Free Software Foundation

Most common shell in Linux. It's

Freeware shell.

CSH (C SHell) Bill Joy University of California (For BSD)

The C shell's syntax and usage are

very similar to

the C programming language.

KSH (Korn SHell) David Korn AT & T Bell Labs --

TCSH
See the man page.

Type $ man tcsh
--

TCSH is an enhanced but

completely compatible version of

the Berkeley UNIX C shell (CSH).

There is a major class of scripting languages has grown

out of the automation of job control, which relates to

starting and controlling the behavior of system programs.

(In this sense, one might think of shells as being

descendants of IBM's JCL, which was used for exactly

this purpose.) Many of these languages' interpreters

double as command line interpreters such as the UNIX

SHELL (Bash, Tcl shell, K shell C shell) and the MS-

DOS command.com (dir, edit, copy, delete) just like of

English-like commands to build scripts [45, 46, 47], [49],

[53].

In order to understand the differences between

scripting languages and system programming languages,

it is important to understand how system programming

languages evolved. The system programming languages

were introduced as an alternative to assembly languages.

In assembly languages, virtually every aspect of the

machine is reflected, affected, corrected in the program.

Each statement represents a single machine instruction

[2,], [4, 5].

Another key difference between scripting languages

and system programming languages is that scripting

languages are usually interpreted whereas system

programming languages are usually compiled. Interpreted

languages provide rapid turnaround during development

by eliminating compile times. Interpreters also make

applications more flexible by allowing users to program

the applications at run-time [49],[51], [53].

The scripting languages are less efficient than system

programming languages, in part because they use

interpreters instead of compilers, but also because their

basic components are chosen for power and ease of use

rather than an efficient mapping onto the underlying

hardware. For example, scripting languages often use

variable-length strings in situations where a system

programming language would use a binary value that fits

in a single machine word, and scripting languages often

use hash tables where system programming languages use

indexed arrays [45, 46, 47].

The file system /etc/services is protected HTTP port,

FTP, Telnet, SMTP and NMTP services This is a service

port and /etc/host file protecting the host. We are

emphasizing on verification and validation of UFS. We

are taken care of protecting; detecting and correcting the

Unix file system by applying access control mechanism.

We are more conscious about scripting programming on

Unix File System server site.

Researcher Ching-Hsien (2014) focused and discussed

on Real-Time Multicore architectures and Wireless

sensor networks, but we are emphasized on Real Time

50 Role of Scripting Language on Unix Operating System for Risk Assessment

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 47-59

programming, dynamic scripting language, system

programming and as per requirement of business,

resources, and technology all the time and every time. We

are emphasizing on the business, resources, and

technology, which are strongly integrated with BCP &

DRP.

According to authors Tiago and Antonio (2014)

suggested the Meta programmed C++ for hardware,

software integration & communication, but not

emphasized on dynamic scripting language, system

programming, and system management as per

requirement of business, resources, and technology all the

time and every time.

Researcher Nassima and Jean (2013) suggested on web

application security (HTTP, XSS, Java) for front-end tool,

but not risk management (system programming &

scripting languages). We are emphasizing on the Unix

backend (UFS) security and risk assessment for all the

time and every time over a cloud computing, distributed

system & pervasive and ambiqutus computing.

Researchers Jan & Maria et al. (2014) emphasized on

XML language privacy & authentication, but not a Unix

file system, OS scripting and system programming.

Researcher Stephane and Raphae (2014) proposed and

worked on the real risk assessment on attack tree, but not

over an Unix OS Risk analysis[53] We are emphasizing

on the system management on Unix based platform. We

are focused and taken care of UFS ACM, scripting and

system programming on Unix operating system all the

time and every time for web services, ubiquitous,

pervasive and self-autonomy system.

According to Martin (2014) developed the application

level (SXX) cross side scripting for privacy & security

policy, but not on server site programming, scripting on

the RTOS. We are more emphasized on RTOS (UFS,

scripting & programming) as per requirement of business.

According to Shujun et al. (2014) suggested the threat

detection, analysis on the application but not on the Unix

operating system. We are taken care of prevention,

detection, and correction of Unix file system through

access control mechanism (ACM) as per business

requirement. The prevention detection correction can be

done through (chmod 111 File System) [Please refers to

section 7.3; Action Plan I).

Authors Marimuthu and Saravanan (2014) are

interested in user and application level authentication but

not on system security management (privacy &

authentication). We are taken care of authentication and

privacy, protection, detection and correction of Unix file

system through access control mechanism as per users,

application and business requirement. We take care of on

UFS ACM, trust, authentication, safety, integrity &

identity management of the Unix operating system and

data management for all the time on web services.

Researchers Diogo et al. (2014) proposed and focused

on security issues on cloud computing [29] but not on the

Unix operating system. We are emphasizing and taken

care of security, issue and risk identification, analysis and

assessment of Unix file system (UFS) through access

control mechanism as per users, application and business

requirement.

The risk of assets is identified in terms of non-identity,

integrity, non-repudiation, high availability,

authentication, accountability, scalability, and reliability.

The critical of each and every risk as rated accuracy of

potential impact likelihood of occurrences [7,8].

Therefore, the risk management consists of sets of the

possible threat that may be hardware, software and

human error, failure, defect uncertainty, unordered,

unsafe and the probability of them occurring at any time.

The exposure of an asset to a particular threat generally

referred as the vulnerability of assets [41],

[49,50,51,51,53,54].

The risk is happening, in the course of system

operation, maintenance and services. As a result of

internal strategies, system processes, policy, procedures,

and information used by the organization. The risk

analysis is the study of potential threats, vulnerabilities

and impacts in order to identify and assess the extent and

potential severity of the risks to which the organization

and its assets are exposed. The risk assessment is closely

associated with risk analysis [41], [49,50,51,51,53,54].

The risk management (identifying, analysis and

mitigation) is a process for optimizing the risks to

acceptable levels (HML) by the application of various

control strategies of prevention, detection, correction,

verification and validation. The risk analysis, assessment,

and managements are the integrated process for business,

technology, and resources for all the time and every time.

Assessing the risks and needs of business, resources, and

technology have become standard practice in much more

IT organization. The understanding of the concepts of

risk and need is essential factors for important of

decisions involving business, resources, and technology.

The risk is created due to the dynamic decision over a

business and technology. The risk is propagated over

vendor, order, and customers across the all related sub-

systems (49, 53, 54].

3.1. Data Collection

These scripting programming language is a high level

computer language, the programmers use to develop

applications, commands, scripts, and other set of

instructions for a computer to execute for specific

purposes. We have to find out the several different

programming and scripting languages currently listed in

our database collection and survey for the specific

requirements as per customer’s on multi-computer

environment for multiple-purpose is defined on the table

2. There are several scripting programming languages,

list out in category wise as of today [45], [47], [49], [51,

52].

Fortunately, the performance of a scripting language is

not usually a major issue. The applications of scripting

languages are generally smaller than applications for

system programming languages, and the performance of a

scripting application tends to be dominated by the

performance of the components, which are typically

implemented in a system programming language [45],

[47], [53].

 Role of Scripting Language on Unix Operating System for Risk Assessment 51

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 47-59

Table 2. Data Collection

SN Heterogeneous OS DESRIPTION TYPES OF LANGUAGES PURPOSE

01 UNIX, Win, NT, Linux APPLICATIONS AND

PROGRAMS DEVELOPMENT

C, C++, JAVA, C#, PERL Commercial & Scientific

02 UNIX, Win, NT, Linux ARTIFICIAL INTELLIGENCE

DEVELOPMENT

LOGIC

(Prolog), LISP, Haskell, ML

Mathematical & Scientific

03 UNIX, Win, NT, Linux DATABASE DEVELOPMENT Dbase, Fox pro, SQL, My SQL,

Sybase, Oracle, Ingress.

Business & Commercial,

ERP

04 UNIX, Win, NT, Linux GAME DEVELOPMENT C, C++, JAVA, RUBY, Ant Entertainment

05 UNIX, Win, NT, Linux DEVICE DRIVER (HARDWARE) C, C++, JAVA, C#, PERL Mathematical, Scientific &

Benchmarking,

06 UNIX, Win, NT, Linux INTERFACE DEVELOPMENT C, C++, JAVA, C#, PERL Mathematical, Scientific &

Benchmarking,

07 UNIX, Win, NT, Linux INTENET, INTRANET & WEB

DEVELOPMENT

DHTML, HTML, JAVA

SCRIPT, PERL, AWK, SED,

Ant, PHP, VBScript. Python.

Business & Commercial,

ERP &Web Engineering

08 UNIX, Win, NT, Linux SCRIPTING DEVELOPMENT HTML, XML, VBScriptPerl,

PHP, Python, Ruby, Ant, Perl

Business, Telecom.

Commercial, ERP, Web &

Mobile Mathematical &

Scientific

09 UNIX, XP, Win7-8 AI, WEB, DLL, Build in UNIX script Macro,Unix sh, PERL,

PYTHON, RUBY, ANT, JAVE,

C, HASKEL, ML, LISP

Business, Telecom.

Commercial, ERP, Web &

Mobile Mathematical &

Scientific

Table 3. Present Scripting Languages

The Past (1960-2000) Less

Demand

The Present (1990-Till Date) High

Demand

 REXX, JCL, EXEC

(1960)

 Unix shells: sh, ksh,

bash (1971)

 Perl (Larry Wall, 1987)

 Python (Guido van

Rossum, 1990)

 Ruby (Yukihiro “Matz”

Matsumoto, 1995)

 PHP (Rasmus Lerdorf,

1995)

 JavaScript (Brendan

Eich, 1995)

• Ruby, Perl, Python, PHP etc.,

are all open source.

• Rely on volunteers

– Write documentation

– Write test cases(RTOS)

– Maintain the systems(HW/SW)

– Port to new platforms

– Fix bugs

– Implement libraries(exe, lib, dll,

link)

– Implement new features

In the Unix world, the most important application

providing such a language was the system shell. In the

beginning, the system engineer used the built-in-shell

language, but it was so limited that they soon enough

started to use more power, general purpose languages

write such scripts (Perl, Python, Unix shell etc.). It leads

to some people starting to call these scripting languages,

even if it is an improper name for them, basically

confusing interpreted language called from the shell

(interpreted to mean here that human being start a file

with a shebang line and do not bother to compile or

anything beyond typing the source code) and scripting

language [15, 16, 17].

Table 4. Existing Risk Analysis & Audit on Unix RTOS

SN
How to do ?
Scripts

What to do?
Description

 Risk Analysis (Problem Analysis)

What happen & When ??

01 /var/adm/message System mesg (event mgmt)
Date & time stamp

SECONDARY RISK ASSESSMENT

02 /var/adm/syslog syslog system logs Detective control, Accountability & Authentication

03 /var/adm/sulog super user log Detective control, Accountability & Authentication

04 /var/adm/loginlog user login log Detective control, Accountability & Authentication

05 etc/ssh/sshd_config AES, CKM Key mgmt. Run the scripts: Preventive control

06 df Disk fragmentation Reports file system usage statistics

07 du Disk utilization Summarizes disk usage in a specified directory hierarchy

08 ls - ialtr
Review the file system with all attributes (10

fields) ACM

File long listing with inode [ACM]

PRIMARY RISK ANALYSIS

09 mount, umount Mount the UFS on OS Attaches, or detaches, a file system (super user only)

10 fsck Verify the UFS PRIMARY RISK ANALYSIS

11 mkfs Create the new UFS

12 quota Review disk quota/uses PRIMARY RISK ANALYSIS

13 lsof List of open file statistics List of open file, PRIMARY RISK ANALYSIS

14 Ps -aeuf List of processor statistics Review the all processor

15 who –a current user login on the system Identified the specific user

16 Last login last login on the system Accountability & Authentication

17 /etc/.profile USER PROFILE INCLUDING SHELL
Profile file

PRIMARY RISK ASSESSMENT

18 Ls -ialtr Long listing file system Verify the FS ACM

19 ps -auef Processor detail FS and task currently running

20 iostat Input output statistics Performance of input & output

22 pmstat Processor memory statistics Processor statistics

http://www.computerhope.com/jargon/h/hdml.htm

52 Role of Scripting Language on Unix Operating System for Risk Assessment

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 47-59

IV. PROBLEM STATEMENTS

 Skill manpower and programming cost have been

always higher than HLP.

 Automation, Integration & control of many more

program & subprogram.

 Integration, Security, Integrity, Scalability,

Interoperability’s & high availability are under top

management decision.

 Modification, Updation & Change management

are part of the security issue (Change

Management: ITIL CMDB).

 The scripting, codification, updation, modification,

change when requirement changes as per past &

present Risk Analysis of RTOS.

 Problem in change management & incident

management.

 Inconsistency in large based program.

 Increasing the uncertainty, unsetup, unordered &

unsafe of HW-SW.

V. RESEACRCH QUESTIONS: WHY WE NEED SPL?

 We have to optimize HW, SW, Network &

Application

 To optimize manpower, cost, space & time

 To maximize the performance of CPU & Memory

(Fine tuning, benchmarking).

 To make arrangement for automatic memory

management(Automatic garbage collection: AGC)

 Day by day increasing our business (large volume

of data, Information, data warehousing & data

mining).

 Day by days increasing the millions of users (Web

& Mobile computing).

 Increasing the uncertainty, unsetup, unordered,

unsafe.

 Day by days increasing the hardware & software

capabilities (N-th bits processor & number of CPU,

Memory).

VI. OBJECTIVE

 Our proposed SPL Programming will be great

helpful for (B2B, P2P, G2G,C2C) E-commerce,

E-governess, science to science, product to

product, business to business & society to society

on anywhere & any time.

 Compatibility of past & present requirement of

business continuity planning & disaster recovery

planning (BCP/DRP).

 High availability, reliabilities for internal &

external system audit (CMDB & ITIL).

 Planning, organised, control, analysis & optimize

the system balance among RTOS, Network,

Application & Various types of devices, sub-

systems, resources & users need (High Fault

tolerance).

 Improve the security, reliability, high availability,

scalability & interoperability of the RTOS.

 Improve the analysis mechanism of Fine Tuning,

Fault Tolerance, and Reliability & High

Availability.

 Automation, control, integration of HW, SW

application Packaging.

VII. PROPOSED DYNAMIC SCRIPTING PROGRAMMING

LANGUAGE ON RTOS

7.1. Define

We have to define, design, develop and deployment

(D^4) this proposes scripting programming languages for

web based services and fix up the majors automated

system configuration to maintain residual risk.

Meanwhile, we have to maintain the system control &

balanced by applying the automated method, model,

mechanism (M^3) & tools at the operating system level

to optimize the risk and maximize the decision

management as per business requirement and availability

of resource & technology. Our SPL should be designed in

such way, that the file system, shell and kernel

automatically protected, detected & corrected in around

the clock for millions of users. The scope and features of

the scripting programming languages are as follows

Refers to Figure 2].

 Interpreted (no compilation)

 Dynamically

 High-level model of underlying machine

 Garbage collected

 Prevented, detected & corrected

 Organising, co-ordinating, controlling & analysis

(integration)

 Don’t have to declare variables

 Both Batch and Interactive use.

 Economy of Expression.

 Lack of declarations; simple scoping rules

 Flexible, dynamic typing.

 Easy access to other programs (openness).

 Sophisticated pattern matching.

 High-level data types.

 To support rapid development and interactive use,

scripting languages require very little boilerplate

codification.

We have to implement dynamic SPL to optimize the

system attacks and down time by implementing script

based system programming mechanism & automated

CPU, Memory management, meanwhile improving the

throughput of the UFS, Memory, Processor & Kernel

system. Finally, we have to maximize the performance &

minimize the cost of the operating system. Our objective

is that fix-up the risk at the lowest level with minimal

scripting cost and time.

7.2. Design

 Role of Scripting Language on Unix Operating System for Risk Assessment 53

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 47-59

Proposed Real Time Unix Machine Scalable Metrics

The following dynamic, scalable matrix data is helping to

our purpose for fine tuning, performance, benchmarking

and throughput. We have to design the machine size

specification, as per business requirement problem size).

The machine size should be greater than the problem size.

Meanwhile, we have to update these data dynamically as

per implementation of UNIX SHELL SCRIPTING as

follows: We have to apply varity of scripting &

programming on the following scecifications for

betterment of our business & technology.

The following preservation metrics satisfying one

program with varity of component or vice versa.

Table 5. Preservations Metrics

B X X X X X X X Business Unix sh HA VLIW MIMD

K M M M M M M M Kernel M HA VLIW MIMD

SPL
Unix

sh

Unix

sh

Unix

sh

Unix

sh

Unix

sh

Unix

sh

Unix

Sh
SPL Unix sh HA VLIW MIMD

E 16 32 64 128 256 512 E=2^n Encryption Unix sh HA VLIW MIMD

UFS UFS UFS UFS UFS UFS UFS UFS UFS UFS UFS UFS MIMD

P 64 128 256 512 1024 2048 P=2^n Processor UFS UFS UFS MIMD

M 4 8 16 32 64 128 M=2^n Memory(MB) Unix sh HA VLIW MIMD

C L L M H H H Control Unix sh HA VLIW MIMD

Note: Whereas X: Volume of the business(unknown),

M: Kernel Value (unknown),VLIW: Very large

instructions word, MIMD: Multiple Instruction on

Multiple Data, HA: High Availability, C: Control, RM:

Risk Mitigation. When control is high, then risk is law as

per Fuzz’s law applied in to benchmarking.

7.3. Development (Mechanism)

Proposed Automation Scripting Language on Unix

Machine

The scripting languages are subsets of sub program,

commands, command variable & Unix buildin commands.

We can package this sets of commands into the shell

programming. This shell programming used in command

mode of various shell like k Shell, Born Shell, Bash etc.

as per availability of resources on the machine. These

simulation of the integrated shell programming languages

are developed as per business requirement of the large

scale real time Unix operating system.

Save the program program-name.sh (source code file)

& make it as chmod +x Source code file name.

Run the script # ./program-name.sh or # sh program-

name.sh

Output will be display interactively one by one in

batch mode as follows:

ACTION I Prevention & Correction (Action & Reaction

Applied To the Newton’s Third Law)

#ACTION I. PREVENTIVE ACCESS CONTROL

MECHANISM (INPUT)
#!/bin/sh

#menu.sh: Uses case to offer 8-item menu

echo " MENU- RISK ANALYSIS ON UNIX RTOS:UFS ACM

Verification & Validation\n

1.List out Current UFS(Attributes)\n2.List out Open File

system\n3.Long listing of UFS status

4.Modification of UFS-ACM(UGO)\n5.Process Status of USER

\n6.USER status\n7.ID of user on the current system\n8.list of attributes

of UFS(ACM)\n9. Quit to UNIX\nEnter your option:\c"

read choice

case "$choice" in

1) ls -ailtr > fl ;;

2) lsof > lsof ;;

3) ls -iltra > long ;;

4) chmod 111 menu*.* ;; [UFS ACM PDC]

5) ps -aef | grep pl > ps ;;

6) users > ulist ;;

7) who -b > lastboot ;;

8) ls -iltra > ufslist ;;

9) exit ;;

*) echo "Invalid option "# ;; not really required for the last option

esac

Prevention & Correction Action plan for IOT (Access

control Mechanism)

54 Role of Scripting Language on Unix Operating System for Risk Assessment

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 47-59

echo '#!/bin/bash' > unix-script.sh

$ echo 'echo Hello Script' >> unix-script.sh

$ chmod 777 unix-script.sh

$ chmod 711 unix-script.sh

$ chmod 555 unix-script.sh

$ chmod 511 unix-script.sh

$ chmod 111 unix-script.sh

$ chmod 000 unix-script.sh

$./unix-script.sh

Hello Script

$

To make it execuatable file as follow:

$ chmod a+rx unix-script.sh

This script apply to the Table 4 & 5.

Detection and Analysis of current Access control

mechanism

ls –iltra Long listing of UFS
Table 6. # ls –iltra | grep “pl” | sort +4n | more (Long listing of
UFS)

ACM Inode Subject Link U G Date Stamp
UFS(Object)

Risk

777 134208 -rwxrwxrwx 1 pl pl 727 2014-11-08
16:02 menu1.sh
141049 -rwxrwxrwx 1 pl pl 461 2014-11-08
16:17 menu4.sh
141050 -rwxr-xr-x 1 pl pl 547 2014-11-08
16:37 menu5.sh
140886 -rwxrwxrwx 1 pl pl 505 2014-11-09
16:52 menu

H

701 123901 -rwx-----x 1 pl pl 727 2014-11-08
16:02 menu1.sh
765234 -rwx-----x 1 pl pl 461 2014-11-08
16:17 menu4.sh
875431 -rwx-----x 1 pl pl 547 2014-11-08
16:37 menu5.sh
213456 -rwx-----x 1 pl pl 505 2014-11-09
16:52 menu.sh

M

777 213456 –rwxrwxrwx 1 pl pl 727 2014-11-08
16:02 menu1.sh
654123 -rwxrwxrwx 1 pl pl 461 2014-11-08
16:17 menu4.sh
908761 -rwxrwxrwx l pl pl 547 2014-11-08
16:37 menu5.sh
123456 -rwxrwxrwx 1 pl pl 505 2014-11-09
16:52 menu.sh

H

555 213456 -r-xr-xr-x 1 pl pl 727 2014-11-08
16:02 menu1.sh
213452 -r-xr-xr-x 1 pl pl 461 2014-11-08
16:17 menu4.sh
456123 -r-xr-xr-x 1 pl pl 547 2014-11-08
16:37 menu5.sh
234561 -r-xr-xr-x 1 pl pl 505 2014-11-09
16:52 menu.sh

M

Action on Access control Mechanism #chmod 111

menu*.* >> output file (INPUT)

111 ---x--x--x 1 pl pl 727 2014-11-08 16:02

menu1.sh

---x--x--x 1 pl pl 461 2014-11-08 16:17

menu4.sh

---x--x--x 1 pl pl 547 2014-11-08 16:37

menu5.sh

---x--x--x 1 pl pl 505 2014-11-09 16:52 menu.s

Low

Risk

000 ---------- 1 pl pl 727 2014-11-08 16:02 menu1.sh

---------- 1 pl pl 461 2014-11-08 16:17 menu4.sh

---------- 1 pl pl 547 2014-11-08 16:37 menu5.sh

---------- 1 pl pl 505 2014-11-09 16:52 menu.sh

Access

Deny

#ls –iltra >> output file (Review & Analysis of the Action & Reaction)

(INPUT)

INODE UFS-ACM linkUSR_GRP DT & Time UFS

141044 -rwxrwxrwx 1 pl pl 260 2014-11-08 15:19 CPU.sh

141049 -r--r--r-- 1 pl pl 461 2014-11-08 16:17 menu4.sh

141050 -r--r--r-- 1 pl pl 547 2014-11-08 16:37 menu5.sh

141052 -rwxrwxrwx 1 pl pl 750 2014-11-09 08:12 authentication.sh

140886 -r--r--r-- 1 pl pl 505 2014-11-09 16:52 menu.sh

141063 -rwxrwxrwx 1 pl pl 839 2014-11-10 19:48 perftest.sh

141051 -rwxrwxrwx 1 pl pl 830 2014-11-10 19:56 performance.sh

141060 -rwxrwxrwx 1 pl pl 215 2014-11-11 07:38 CPU1.sh

 OUTPUT

271323 drwxrwxrwx 3 pl pl 4096 2014-11-11 12:26 kamal

141142 -rwxrwxrwx 1 pl pl 775 2014-11-27 10:04 ACM-

SCRIPT271114

271331 -rwxrwxrwx 1 pl pl 15533 2014-12-03 12:26 test3

399032 drwxrwxrwx 3 pl pl 4096 2014-12-04 19:59 Program

134208 -r--r--r-- 1 pl pl 725 2014-12-15 12:04 menu1.sh

271321 -rwxrwxrwx 1 pl pl 775 2014-12-15 12:21 ACM.sh

269357 -rwxrwxrwx 1 pl pl 766 2014-12-15 12:29 ACM

271396 -rw-r--r-- 1 pl pl 1246 2014-12-15 21:36 long

271354 drwxr-xr-x 2 pl pl 4096 2014-12-16 10:19 IJRCTS

141036 drwxr-xr-x 33 pl pl 4096 2014-12-16 11:22 ..

271399 -rw-r--r-- 1 pl pl 0 2014-12-16 11:23 ufslist

269614 drwxr-xr-x 5 pl pl 4096 2014-12-16 11:23 .

ACTION II. Prevention & Correction (INPUT)

ACTION 2 RISK ASSESSMENT ON UNIX RTOS:

Authentication Verification of USR & Mechine.

#!/bin/sh

#menu.sh: Uses case to offer 8-item menu

echo " MENU- RISK ASSESSMENT ON UNIX RTOS:

Authentication Verification\n

1. Listout Current USERS(who) \n2. List out last

users(last)\n3. USERS Status(users)

4. List of open file(lsof) of the RTOS \n5.

Process Status of USER(ps -auef|grep pl) \n6.

Process Status of RTS(ps -aufe)\n7. ID\n8. list

of attributes in UFS(ACM)\n9. Quit to

UNIX\nEnter your option: \c"

read choice

case "$choice" in

 1) who -Hart | more ;;

 2) last | more ;;

 3) users ;;

 4) lsof |more ;;

 5) ps -aef | grep pl | more ;;

 6) ps -aufe ;;

 7) id ;;

 8) ls -iltra | more ;;

 9) exit ;;

 *) echo "Invalid option " # ;; not

really required for the last option

esac

REACTION

#Who –Hart >> output file (Authorize user on the system) (INPUT)

pl@pl-HP-15-Notebook-PC:~$ who –Hart (Users Authentication)

NAME LINE TIME IDLE PID COMMENT

EXIT

 system boot 2014-11-21 06:50

 run-level 2 2014-11-21 06:50

LOGIN tty4 2014-11-21 06:50 834 id=4

 OUTPUT

LOGIN tty5 2014-11-21 06:50 839 id=5

LOGIN tty2 2014-11-21 06:50 850 id=2

 Role of Scripting Language on Unix Operating System for Risk Assessment 55

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 47-59

#last >> output file (last users on the system) (INPUT)

pl pts/0 :0.0 Tue Dec 16 11:22 still logged in

pl tty7 :0 Tue Dec 16 11:22 still logged in

reboot system boot 2.6.35-22-generi Tue Dec 16 11:22 - 11:26

(00:03)

pl pts/0 :0.0 Tue Dec 16 10:14 - 10:20 (00:05)

pl tty7 :0 Tue Dec 16 10:14 - down (00:05)

reboot system boot 2.6.35-22-generi Tue Dec 16 10:14 - 10:20

(00:05) OUTPUT

pl pts/0 :0.0 Mon Dec 15 21:19 - 21:39 (00:20)

pl pts/0 :0.0 Mon Dec 15 20:43 - 21:09 (00:26)

pl tty7 :0 Mon Dec 15 20:41 - down (00:58)

reboot system boot 2.6.35-22-generi Mon Dec 15 20:41 - 21:39

(00:58)

pl tty7 :0 Mon Dec 15 17:32 - down (00:00)

ACTION III. Prevention & Correction

ACTION 3 RTOS Performance & Fault Analysis (INPUT)

#!/bin/sh

#menu.sh: Uses case to offer 8-item menu

echo " MENU- RISK ASSESSMENT ON REAL TIME UNIX

OPERATING SYSTEMS: PERFORMANCE, BENCHMARKING &

FAULT TOLERANCE VERIFICATION-ANALYSIS\n

1. Listout CPU Status \n2. listout Memory status\n3. Free Memory(free)

4. Uptimes of the RTOS \n5. Load Factor of UNIX RTS \n6. Process

Status of RTS\n7. Process Tree\n8. Inter Process Comm\n9. Disp Log

Msg of Components\n10. Quit to UNIX\nEnter your option: \c"

read choice

case "$choice" in

 1) top > toptxt ;;

 2) vmstat -a > vmtxt ;;

 3) free -mt > freetxt ;;

 4) uptime > uptimetxt ;;

 5) w > wtxt;;

 6) ps -aufe > pstxt ;;

 7) pstree | more > pstreetxt ;;

 8) ipcs > ipcstxt ;;

 9) dmesg > dmlog;;

 10) exit ;;

 *) echo "Invalid option " # ;; not really required for the last option

esac

REACTION

#uptime (Uptime & Response Time of the system) (INPUT)

11:28:01 up 5 min, 2 users, load average: 0.16, 0.27, 0.16

#free –m

 total used free shared buffers cached

Mem: 3996044 325952 3670092 0 38636 123156

 output

-/+ buffers/cache: 164160 3831884

Swap: 1084412 0 1084412

#vmstat (Virtual memory) (INPUT)

procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu---

-

 r b w swpd free buff cache si so bi bo in cs us sy id wa

 0 0 0 0 3670176 38644 123172 0 0 248 9 112 210 3 1 94 2

output

ipcs Inter process communication system

#ipcs (INPUT)

------ Shared Memory Segments --------

key shmid owner perms bytes nattch status

0x00000000 0 pl 600 393216 2 dest

0x00000000 32769 pl 600 393216 2 dest

OUTPUT

0x00000000 65538 pl 600 393216 2 dest

0x00000000 98307 pl 600 393216 2 dest

0x00000000 131076 pl 600 393216 2 dest

------ Semaphore Arrays --------

key semid owner perms nsems

------ Message Queues --------

key msqid owner perms used-bytes messages

top & uptime scripts display the Unix server activities report

#top >> output file (INPUT)

top (CUP Utilization, no of users, processes activities

07:12:33 up 22 min, 2 users, load average: 0.36, 0.40, 0.27

Mem: 3996044k total, 363144k used, 3632900k free, 38668k

buffers

Swap: 1084412k total, 0k used, 1084412k free, 153244k cached

 OUTPUT

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+

COMMAND OUTPUT

 1540 pl 20 0 91516 13m 10m S 2 0.3 0:10.29 gnome-

terminal

 1070 root 20 0 108m 28m 8116 S 2 0.7 0:19.90 Xorg

 1586 pl 20 0 2624 1116 840 R 1 0.0 0:00.71 top

#ps –uef| grep top >> output file (INPUT)

Warning: bad ps syntax, perhaps a bogus '-'? See

http://procps.sf.net/faq.html

USER PID %CPU %MEM VSZ RSS TTY STAT START

TIME COMMAND

pl 1544 0.0 0.0 6620 3276 pts/0 Ss 06:53 0:00 bash

PATH=/usr/

pl 1619 0.0 0.0 4560 996 pts/0 R+ 07:17 0:00 _ ps -uef

ORB

Others Sceripts

#Ls –iltra (Long listing file systems along with inode ordinary &

directory UFS)

#who –b system boot 2014-12-16 11:22 Last boot of the Unix Machine

We have to test these scripts on a Unix machine on

command mode on heterogeneous hardware & software

for fine tuning & benchmarking purpose to evaluate the

operating system performance (Processor, memory, space

& time complexity). Accordingly the test result, we can

able to validate the operating system components as

described in below. (Refers to Table. 4-5)

7.4. Deployment (Implementation)

Theoretical practice on fine tuning, performance

analysis & benchmarking

We have to explore new invitations to compare various

types of real time UNIX operating system parameters like

processor, memory, file system, kernel on identical

scripting language or virtual programming of Java or C++

verification & validation of standard application product

like B2B, B2C, M2M, & P2P. The relative performance

of the systems on identical tasks is more important to us

than the absolute best performance that could be achieved

for any individual system through system specific fine

tuning and performance analysis. For comparison

purpose ,we have only one or more source code available

for testing of Processor, Memory & Kernel parameters,

56 Role of Scripting Language on Unix Operating System for Risk Assessment

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 47-59

our benchmarking methodology is the black box

approach available in sequential & as well as a randomize

way to determine our objective. We are usually

attempting to explain curious & interesting results

through continuous testing and benchmarking rather than

detections of Memory (space), CPU & Kernel, time code

etc.

7.4.1. Practical Approach for Risk

We have to verify, audit & analysis the real time

operating system integrity, high availability, reliability,

scalability of scripting programming languages on

heterogeneous operating system platforms and we have to

study the behaviours of the subsystem of the operating

system like: Shell, File, Kernel, Processor, Memory &

Encryption key as per business requirement & availability

of technology. We can apply some review method for an

internal UNIX operating system for our benchmarking

purpose to mitigate the risk factor. This benchmarking

method can be applied in traditional as well as Web based

application which is going to be facilitated to the

performance analysis, benchmarking, fault tolerance and

risk management over a complex real time operating

system.

7.4.2. Experimental Practices of Benchmarking:

Under SUN SOLARS UNIX

Table 6. Brief Summary of Verification & Analysis

SN

ACTION PLAN

(SUBJECT-

INPUT)

DESCRIPTIONS
RISK ANALYSIS

(OBJECT-OUTPUT)

01 Iostat (free)
Input /output

statistics

CPU & Device Utilization, HA availability, Reliability & integrity of Processor.

PRIMARY RISK ASSESSMENT

02 Pmstat
Processors

statistics
Global Statistics among all the processors & users : PRIMARY RISK ASSESSMENT

03 Vmstat

virtual memory

statistics

[MEMORY

ACTIVITIES]

Statistics of all the processor runable, block, swap, free buffer, input/output block devices,

CPU detail, system, user, idle, waiting stage. HA availability, Reliability & integrity of

Memory.

PRIMARY RISK ASSESSMENT

04
Sar, w, uptime,

top
system activities

Activities report on:no of users in last 5-10-15 minutes of OS detail. PRIMARY RISK

ASSESSMENT

05 ps –ef | grep top
ACTIVITIES OF

PROCESSOR

The suspious processor or orphan/dead one. [space & time complexity issue]

SECONDARY RISK ASSESSMENT

06 lsof l more
FILE SYSTEM

ACTIVITIES
list of open files system which is very high risk. SECONDARY RISK ASSESSMENT

07
/etc/system

KERNEL

SYSTEM

ACTIVITIES

Can be update the kernel

PRIMARY RISK ASSESSMENT

08 Ls –alitr Veify UFS ACM Read, Write, Execute ACM

7.4.3. Result Analysis (Event Management)

The subjects and objects can able to mapping, integrate,

communicate, synchronize and optimize through real

time operating system. This SPL tool, script, commands,

programming utilities and application will be more

measurable, accountable, actionable for fine tuning,

performance, fault tolerance, throughput, benchmarking

and risk assessment of any application over a real time

unix platform (HPUX, SUN SOLARIS, AIX, LINUX).

We have to further analysis & investigate the problem

size and the machine size based on the proposed

prevention matrix table (Refer Table. 3, 4, 5 & 6), then

we can decide the programming and application (PHP,

PERL, RUBY, ANT, JAVA/C++), that can be run on the

heterogeneous RTOS UNIX based operating system in a

background process. We have to further analysis to detect

our problem (dmesg & /var/adm/message) the logs of

scripting program application issue as well as space

utilization, performance of RAM & Cache etc. (space &

time complexity). Meanwhile, we can use the various

system commands and scripts for further review and

analysis of the many more UNIX based real time

operating system. There are some practical approach is

highlighted as follows.

 How is behaving the real time UNIX server along

with its sub components, when we are running on

the same scripting on different processor, memory

& encryption key on the same programming &

application or reverse way?

 The uptime, vmstat, top, free, iostat, vmstat and

pmstat commands will be given the full detail

output statistics of users, file system, processor

and memory on real time operating system. The

primary defect & risk can be analysis of right time

and right way on any real time Unix machine.

 How far are the real time operating system

components (hardware, software, application,

network bandwidth & related sub devices)

maintaining the risk (High, Medium & Low) for

real time system? The who, user, login, netstat-

 Role of Scripting Language on Unix Operating System for Risk Assessment 57

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 47-59

ntpul scripts will be given the output statistics of

network (TCP/UDP) bandwidth and related

components on any platform. The primary

problem, defect, error, fault & risk can be

analytically on everywhere and every time in

around the clock (24 x 7).

 The top management can able to adopt DSS on IT

infrastructure, which is best script will be a suite

for our recent business & technology like

pervasive and anti-fragile technology for web and

mobile application.

 The dmesg & /var/adm/message scripts will be

given the output statistics of hardware and

software problem of real time event management

system including date and time stamp on real time

unix machine.

 How is the system behaving, when millions of

users accessing the same piece of data &

information in around the clock (high availability,

scalability and reliability of scripting commands).

 We can only analysis & review practically based

on theoretical idea. But, we have to review and

justify the system behaviour of space & time

complexity based on machine size and problem

sizes(Refer Table 4 &).

 On behalf of the /etc/system script, we can update

and improve the kernel capability as per business

requirement and that can be helped with our

machine size and problem sizes analysis (Refer

Table 3, 4 & 5).

In this way, we can improve the performance,

benchmarking, fault tolerance and risk assessment

at a time to utilizing the best scripting

programming language, which is help to our

resources, business, technology and society in

around the globe.

7.4.4. Why we need Fine Tuning & Benchmarking?

We have to make arrangement the specific fine tuning,

performance analysis & fault tolerance, which is

satisfying to our present as well as future BCP & DRP.

The top management desired to keep the uptime machine

for high availability, reliability & scalability for all the

time and every time.

VIII. ADVANTAGE

 Optimizing the programming codification &

complexity.

 Improve the certainty, unification, simplification,

normalization & ordered.

 Optimizing the hardware, Network, software,

application resources as per business requirement.

 Optimizing the Application, USERS, CPU,

Memory (SPACE), Cost & Time.

 Highly secure, readable, writable, reliable,

scalable and high availability.

 Codification is faster, easier & scalable.

 Best practice of ROI, TCO, ROA, TQM for

BCP/DRP & support to top management for

dynamic DSS.

IX. BENEFITS FOR UNIX SYSTEM PROGRAMMER

The Unix system programming definitely improved the

high availability, scalability, security and portability of

hardware, software, application and network.

The faster development through the increased number

of standard interfaces with other programming languages

as per ISO CMM standard.

Many more innovations are possible due to the

optimized the cost & time for porting applications on

heterogeneous platform.

X. CONCLUSION

The risk analysis and optimization are the two parts of

the same coin. The risk analysis, investigation and

optimization are great protections on hardware, software,

operating system and programming languages, when

applications have been written and are working

efficiently &correctly. The best design decisions and best

practices in scripting application design and

implementation provide a sort of pre-optimization by

eliminating many of the source coding issues that might

have required optimization. We can minimize the CPU &

Memory (space-time) load to achieve the minimum cost

and time to run our business in the right way and right

time in around the globe.

Nowadays, increasingly sophisticated deployments

introduce additional complexity tools in the system, on

complex infrastructure and application interaction. The

real time operating system and hardware selection are the

best practices for fine tuning, performance analysis,

benchmarking & monitoring can help to maximize

application performance today and high availability,

reliability, scalability, extenbility for tomorrow.

The RTOS like UNIX systems have always pioneered

the high-performance networking, distributed

applications and distributed storage managements that are

the underlying of robust, high-performance N-tier web

and mobile applications. However, the optimizations

within N-tier applications themselves can make

substantial contributions to the performance of those

(PERL, JAVA, PHP, RUBY C++) applications in

addition to making them easier to understand, more

maintainable and more available, scalable & reliable for

internet programming (IOT).

This analysis and optimization approach helps to the

any organization the complete more effectively in local,

national and international markets at any time and any

place around the clock as follows:

Minimizing costs, risk and maximize profits, DSS,

ROA, ROI, TQM & TCO.

The top management can find the solution of

maximizing the utilization of Man, Machine, Material,

Market, Money & Method (M^5) to solving multiple

58 Role of Scripting Language on Unix Operating System for Risk Assessment

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 47-59

problems at the right time with optimal cost to utilizing

overall resources more effectively in a timely manner.

REFERENCES

[1] A.K. Gupta, Management Information System. New Delhi,

India: S Chand Publishing, 2012.

[2] Andrew and Richard, UNIX Network Programming. New

Delhi: Person Education India, 2011.

[3] Andrew Tang, "A guide to system penetration Testing,"

System & Network Security, August, 2014.

[4] Adam Hoover (2010). System Programming with C &

Unix, Delhi: Pearson India.

[5] Andrew, Bill; Richard (2011). UNIX Network

Programming. New Delhi India, PHI.

[6] Adrian Waller (2014). Editorial: Special issue on Identity

Protection and Management, Journal of information

security and application, Vol.19.

[7] Andrew Tang (2014). A guide to penetration Testing,

Network Security.

[8] Andrian Devis (2011). What Is Critical to Your

Infrastructure?," Information security, Volume 8, Issue 5,

Pages 18–21.

[9] Balagurusamy, E.B. (2010). Object Oriented

Programming C++. New Delhi, India: Tata McGraw Hill.

[10] Balagurusamy, E.B. (2007). Programming in Java. New

Delhi, India: Tata McGraw Hill.

[11] Byrons Gottfried.(2009). Programming with C. New

Delhi, India: Tata McGraw Hill

[12] Colin Ritche (2006) Operating System in Unix & Window,

New Delhi India, BPB Publication.

[13] Ching-Hsien Hsu (2014). Real-time embedded software

for multi-core platforms, Journal of Systems Architecture,

Vol. 60, 245–246.

[14] Diogo A. B. Fernandes, "Security issues in cloud

environments: a survey," International Journal of

Information Security, Springer. 13:113–170, 2014.

[15] Debasis, Jana (2010). C++ & Object Oriented

Programming. Delhi: Pearson India.

[16] EKTA WALIA (2002) Operating Concept New Delhi

India, Khanna Book Publishing

[17] Franklyn & David. (2008). Design Concept in

Programming Languages. Delhi:PHI.

[18] Finne, T. (2000). Information Systems Risk Management:

Key Concepts and Business Processes. Computers &

Security, 19(3), 234–242. doi:10.1016/S0167-

4048(00)88612-5.

[19] Forte, D. (2009). Security audits in mixed environments,

Network Security, 3(3), 17-19.

[20] G. Posta and A. Kaganb, "Computer security and

operating system updates,"Information and Software

Technology, Vol. 45, pp. 461– 467, January 2003.

[21] Godofredo, Julio, "System performance evaluation by

combining RTC and VHDL simulation: A case study on

NICs," Journal of Systems Architecture, Vol. 59, 1277–

1298, 2013.

[22] Herbert, Scheldt. (2010). The Complete Java Reference.

New Delhi, India: Tata McGraw Hill.

[23] Hwang, Kai. (2008). Advance Computer Architecture.

New Delhi, India: Tata McGraw Hill.

[24] Richard (2010) Unix Network Programming New Delhi

India, PHI

[25] Jan Camenisch and Maria (2014). Concepts and languages

for privacy preserving attribute-based authentication,"

Journal Of Information Security And Applications, 19,

25-44.

[26] Khalid, A. (2008). Programming Guide to Java. Delhi,

India: Pearson India.2008.

[27] KVN Sunitha & N. Kalyani (2008). Programming in Unix

& Computer Design. Hyderabad: BSP Publication.

[28] Kumar Saurabh (2008). Unix Programming New Delhi

India Wiley India.

[29] Kumar N Rao Java Programming Dream Tech New Delhi

2009.

[30] Maurice J. Bach (2012). The Design of Unix Operating

System New Delhi India.

[31] Mathew NichoShafaq (2014). Identifying Vulnerabilities

of Advanced Persistent Threats: An Organizational

Perspective," International Journal of Information

Security and Privacy,8(1), 1-18.

[32] Martin Johns, "Script-templates for the Content Security

Policy," Journal of information security & application, 19,

209-223, 2014.

[33] Marimuthu Karuppiah and R. Saravanan, "A secure

remote user mutual authentication scheme using smart

cards," Journal Of Information Security And Application,

Vol.19, 282-294, 2014.

[34] Nassima Kamel and Jean-Louis Lanet (2013). Risks

induced by Web applications on smart cards, Journal of

Information Security & Application, 18, 148-156.

[35] O’ Reilly. (1995). Essential of system administration. O’

Reilly Media. USA

[36] Paul Love & Paul Weinstein (2005). Beginning Unix,

New Delhi India, Wiley India.

[37] Pressman. (2001). Software engineering. New Delhi, India:

Tata McGraw Hill.

[38] Poorna Chandra, Sarang.(2009). Object Oriented

Programming with C. Delhi, India: PHI.

[39] Ravichandran, D.(2009). Programming with C++. New

Delhi, India: Tata McGraw Hill.

[40] Robert, Lafore. (2002). Object Oriented Programming in

C++. New Delhi: Person India.

[41] Shon, H. (2002). Security mgmt practices. New Delhi,

India: Wiley Publishing Inc.

[42] Stephane Paul, Raphae and Vignon-Davillier, "Unifying

traditional risk assessment approaches with attack trees,"

Journal of information security & application, Vol. 19,

165-181, 2014.

[43] Seyed.H. Roosta.(2004). Foundation of Programming

Languages Design & Implementation. Delhi: Cengage

2004.

[44] Shujun Li, Konra Rieckand Alan Woodward, "Special

issue on threat detection, analysis and defense," Journal

Of Information Security and Application Vol. 19, 163-

164, 2014.

[45] Srimanta Pal .(2011). System Programming “ Delhi:

Oxford University Press.

[46] Sumitabh, Das. (2009). UNIX system V UNIX concept &

application. Delhi, India: Tata McGraw Hill.

[47] Sun-Microsystems. (2002). UNIX Sun Solaris system

administration. USA,

[48] Stalling, William. (2006). Cryptography and network

security. New Delhi, India: Person India.

[49] Stalling. (2009). Operating System Internals & Design

Principle. New Delhi, India: Person India.

[50] Stephen Prata (1986). Advanced Unix Prammer Guide,

New Delhi India, BPB Publication.

[51] Tanenbaum. (2010). Operating System Design And

Implementation. New Delhi, India: Person Education

India (PHI).

[52] Tanenbaum. (2009). Computer Network. New Delhi, India:

Person Education India (PHI).

[53] Tiago and Antônio Augusto (2014). A meta-programmed

C++ framework for hardware/software component

 Role of Scripting Language on Unix Operating System for Risk Assessment 59

Copyright © 2018 MECS I.J. Computer Network and Information Security, 2018, 9, 47-59

integration and communication," Journal of Systems

Architecture Vol. 60, 816–827.

[54] Weber, Ron. (2002). Information system control & audit.

New Delhi, India: Person Education India (PHI).

[55] Younis A. Younis, Kashif Kifayat and Madjid Merabti,

"An access control model for cloud computing,"Journal

Of Information Security And Application.Vol.19, 45-60,

2014.

Authors’ Profile

Prof. (Dr.) Padma Lochan Pradhan,
received his M Sc (Physics with Electronics)

from Sambalpur University in 1983, M Tech

in Computer Science in 2012 from

Berhampuer University & Ph D in Computer

Science & Engineering in 2017 from SOA

University Bhubaneswar, India. He is interested in Big Data,

Data Science, System security, cryptography, operating system,

system programming & Risk mgmt. He has 18 year experience

in IT industries & 14 years in academic & research in various

capacities in IBM, Sun Micro system, Thomson scientific (ISI)

in USA and Indian Telephone Industries etc. At present he is

working as a Professor in Information Technology Dept.

TGPCET under RTM Nagpur University, India.

Apart from this, Dr. Pradhan completed Diploma in Business

Administration in 1997; Certified UNIX Sun Solaris in 2002

from Sun Microsystems USA & Certified Information System

Auditor from ISACA USA. He published twenty four research

papers in internationaljournal on access control mechanism,

operating system security & risk mgmt.

How to cite this paper: Padma Lochan Pradhan,"Role of Scripting Language on Unix Operating System for Risk

Assessment", International Journal of Computer Network and Information Security(IJCNIS), Vol.10, No.9, pp.47-59,

2018.DOI: 10.5815/ijcnis.2018.09.05

