
I. J. Computer Network and Information Security, 2020, 1, 20-26
Published Online February 2020 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2020.01.03

Copyright © 2020 MECS I.J. Computer Network and Information Security, 2020, 1, 20-26

A Novel Android Security Framework to

Prevent Privilege Escalation Attacks

Ahamed K. H. Hussain
1
, Mohsen Kakavand

2
,

Mira Silval

3
, and Lingges Arulsamy

4

Department of Computing, Sunway University, Bandar Sunway, 47500, Malaysia

E-mail: 1khalid.hh.hussain@gmail.com, 2mohsenk@sunway.edu.my, 316095267@imail.sunway.edu.my,
4linggest90@gmail.com

Received: 10 November 2019; Accepted: 27 November 2019; Published: 08 February 2020

Abstract—Android is the most popular operating system

in the world, with numerous applications having been

developed for the platform since its inception, however, it

has its fair share of security issues. Despite security

precautions taken by developers and the system itself

when it comes to permission delegation for applications,

privilege escalation attacks are still possible up till

Android API level 25. Unfortunately, many existing

detection and prevention solutions fall short of the

standard necessary or are taxing in resources not found on

most Android devices. Proof is shown that a custom

created malicious application can elevate its privileges,

beyond the permissions it was given, in the existing

Android system. In this paper, a modification to the

existing Android framework is proposed, one that can

detect inter-component communication messages

between malicious apps attempting to elevate their

privileges and benign applications. Part of this framework

is the ability for the user to decide if permissions should

be elevated, allowing them some measure of control. The

results of the experimental evaluation demonstrate that

the solution proposed is effective in preventing privilege

escalation attacks on Android API level 24.

Index Terms—Android Security, Privilege Escalation,

Permission Escalation.

I. INTRODUCTION

Android is one of the most prevalent operating systems

on the planet and sees the highest pervasiveness amongst

mobile devices. With this widespread prevalence,

however, comes an abundance of security issues, one

being privilege escalation attacks. Privilege escalation

attacks on Android are a form of attack whereby a

nefarious application can utilize a legitimate, yet

vulnerable, application’s privileged permissions to

execute commands that it itself would be incapable of

doing so. While there are three forms of privilege

escalation attacks [1], there are only two real-world

solutions, dynamic or static. Dynamic solutions often

include adding to or modifying the existing Android

security framework so as to constantly be able to detect

privilege escalation attacks and block them as they are

being executed such as [2-5]. Static solutions, like those

employed in [6-7], meanwhile involve analysis of the

applications and systems at certain times and not

constantly; i.e it is not real-time protection.

A. Problem Statement

Unfortunately, while methods against privilege

escalation have been implemented from API level 26

onwards, devices employing API level 25 and below

compose the bulk of the Android market at 61.3 % and

are still susceptible to privilege escalation attacks.

Furthermore, due to the lack of knowledge about this

threat, most consumers do not implement the available

solutions; moreover, many of the solutions proposed so

far require a certain level of technical skill and

knowledge to implement, which are barriers that make it

hard for these solutions to be adopted.

B. Objectives

The goal of this work is to modify the existing Android

security framework to monitor situations where the Inter-

Component Communication messages between

applications are being exploited to achieve privilege

escalation. This solution will maintain the state of

applications as they run whilst overseeing ICCs in

between different applications similar to [8], unlike

existing static methods that cannot be run in real-time or

other dynamic methods that are costly in terms of

resources.

The objectives shall be achieved by making

modifications to the existing Android framework,

specifically the Activity Manager as well as creating two

new components, to inspect ICCs between applications.

The rest of this paper is in the following order: we

discuss related solutions proposed by other third parties

in section II. Section III details the components Android

applications and the requirements they need to function.

Section IV demonstrates current privilege escalation

vulnerabilities using modified applications. Section V

goes into detail about the proposed modifications we

make to the Android framework to prevent privilege

escalation. Section VI describes the experimental

evaluation of our modified Android framework. The main

conclusions are briefed in section VII.

 A Novel Android Security Framework to Prevent Privilege Escalation Attacks 21

Copyright © 2020 MECS I.J. Computer Network and Information Security, 2020, 1, 20-26

II. RELATED WORKS

In [8] the authors opted for a dynamic solution

involving a mixture of security mechanisms would be the

best defense in. The primary of those being a

modification of the existing Android security framework

that would analyze third-party applications and mediate

the intercomponent communication (ICC) between said

apps, along with a configurable policy system with

capability-based rule system for users to modify as well

as a corresponding risk mitigation mechanism for

reducing risks incurred by user-made policies. Lastly, a

sophisticated access decision cache is created to store

information about applications and their states and

security policies. The authors of this paper ultimately

tested it in an environment of 60 apps, 5 of them being

customized malicious apps. While the study was mostly

successful in blocking malicious actions, a number of

false positives were also reported as well as the blocking

of benign ICCs. However, the paper did not experiment

in an environment where malicious apps could work

together for collusion attacks and did not cover any other

communication methods apps could utilize, other than

ICC.

XManDroid [9] also creates a security framework that

extends Android’s existing monitoring mechanism to

detect and privilege escalation attacks at the application

level, based on a system centric policy, much like [8].

XManDroid would dynamically analyze the transitive

permission usage of applications, allowing for effective

detection of covert channels between system services and

content providers whilst minimizing the rate of false

positives, depending on the system policy, which can be

defective. However, this paper does not take into account

privilege escalation attacks at the kernel level, or

application level attacks that are controlled by the

underlying kernel. The study tested XManDroid against 7

scenarios involving a combination of 2 applications, one

of them being the vulnerable application, in certain

scenarios. XManDroid was able to detect and prevent all

attacks.

Quaintroid [10] utilized a quantitative approach

towards detecting and preventing privilege escalation

attacks. The authors utilized a variant of TaintDroid [11],

dubbed Quantdroid, as well as an additional service

called the Flowgraph which monitors the ICCs of apps on

the go. Unlike the previous studies, the authors of this

study touched upon collusion attacks. Ultimately, the

authors were able to utilize both the FlowGraph and

Quantdroid to detect privilege escalation in both collusion

attacks and unprotected interfaces, something neither of

the previous studies have been able to do.

Meanwhile, RoppDroid [12] provides a resource

virtualization framework to mitigate permission leak

threats caused by ICCs without ruining usability of the

app in question. This is done by dynamically virtualizing

specific resources, so as to mitigate privilege escalation

problems by considering the interactions of ICCs

amongst apps. Therefore, malicious apps can access only

virtualized resources in a sandbox as opposed to real

resources.

AppScalpel [13] is a privacy-preserving system to

prevent malicious utilization of sensitive data. The

authors utilized static analysis to extract contextual

information about data usage behaviors within

applications. Once these behaviors had been analyzed so

as to identify ones involving nefarious usage of sensitive

data, rule enforcers on each data-flow path would be

implemented. Care was taken to only block undesirable

usage of sensitive data and not to affect usability. Data

usage behavior was extracted using [9-10]. This behavior

was then analyzed by AppScalpel, which would

categorize said behaviors as either common or suspicious.

Suspicious behavior could optionally then be manually

identified. Rules about the applications involved would

then be generated and subsequently enforced. To evaluate

their solution, the authors utilized four datasets of

applications obtained from the Google Play Store,

MalGenome, Drein, and VirusShare, for a total of over

5766 applications. Due to being a static analysis method,

the authors agree that it consumes large amounts of time

and memory; the latter not being available in large

amounts on smartphones. As such, it is not suited for

real-time defense.

Another such static solution is ICCTA [9], which is a

taint analyzer that detects privacy leaks amongst the

components in an application. The authors describe how

the specificity of Android applications make them

statistically difficult to analyze. To overcome this

problem, the authors designed their tool with a two-step

approach; ICC links extraction and the taint flow analysis

for the ICCs. Link extraction refers to the steps the

authors incorporated to detect components that held

sensitive information, called sources, and components

that would access that information, called sinks;

furthermore, the link between these two components is

what will be deciphered, so as to be analyzed. Meanwhile,

taint flow analysis attempts to follow the flow of the

sensitive information across components, despite the

short-lived nature of some Android application

components. To evaluate their solution, the authors of

this paper utilized a dataset of 22 custom applications, the

MalGenome dataset of 1260 malware applications, and

15,000 applications from the Google Play Store.

Unfortunately, because this is a static solution; it cannot

prevent real-time dynamic privilege escalation.

Furthermore, this solution only tracks ICC leaks within

an application not across applications.

III. ANDROID APPLICATION COMPONENTS &

REQUIREMENTS

Android applications are composed of four different

components: Activities, Services, Broadcast receivers and

Content providers. Furthermore, for most applications to

function they also make use of the following: Permissions,

Intents, and optionally, intent filters.

Activities represent the single display users see when

they have an application running and as such are the

primary way users can interact with an application.

22 A Novel Android Security Framework to Prevent Privilege Escalation Attacks

Copyright © 2020 MECS I.J. Computer Network and Information Security, 2020, 1, 20-26

Services allow applications to run in the background to

perform long-running processes that do not have a visual

interface, or Activity.

Broadcast receiver is a component that allows the

applications to respond to system-wide broadcasts from

either the system itself or from other applications, even

when the receiving application itself isn’t running.

A content provider is just that, it provides content or

data to other applications or the system when they query

for it, assuming they are allowed access to such data.

Another important feature needed for most applications

to function are their permissions, which are declared in

the Manifest file of the Android application. Some

components of the applications, such as services or

activities may not function properly or at all if not

granted these permissions.

Intents are types of Inter-Component Communication

messages that allow three of the four components

mentioned above, activities, services, and broadcast

receivers, to be activated by a separate application or

even the system. As such these Intent-based ICC

messages are the simplest way applications can

communicate with each other to start activities, pass

information, or to query for information. As a result, they

form the basic building block of privilege escalation

attacks. There are two types of intents: implicit intents

and explicit intents. Implicit intents do not name a

specific component or application, but instead declare an

action that needs to be executed. The Android system

then proceeds to query for components that can handle

the action and will ask the users input on the selection.

Meanwhile, explicit intents specify exactly which

component or application is needed to perform an action.

Generally explicit intents are only used to call

components within an application, but they can be used

by malicious applications to call unprotected benign

applications to execute actions. It should be noted that

explicit intents do not require the input of the user, who

remain oblivious that such an intent occurred.

Lastly, intent filters are used to declare what intents an

application can respond to. In the case of an implicit

intent, if an intent matches an intent filter in another

application, that application can be selected by the user to

perform the action specified by the application sending

the intent. However, in the case of explicit intents, intent

filters need not be declared; the action can be executed so

long as the initiating application can specify the name of

the component in the receiving application. Intent filters

are declared in the manifest file alongside the permissions.

IV. VULNERABILITY TESTING

The privilege escalation this study will be testing for is

between two different applications; one that is malicious

and one that is benign. The benign application is the

SendSMS application that comes with the Droidbench

test suite. The second, and malicious application, is a

custom variant of the SendSMS application that is called

Read_ID. It should be noted that the existing SendSMS

benign application was also slightly altered for this test.

The malicious Read_ID application is granted the ability

to read the phone IMEI number through the

READ_PHONE_STATE permission that is declared in

its manifest file. The SendSMS application is only given

the ability to send an SMS, with the relevant permission

declared in the manifest.

As seen by the data flow in Fig.1, when the user

interacts with the malicious Read_ID application, the

Read_ID application acquires the IMEI from the system

(1) but does not have the permission to send an SMS so it

is unable to do so as seen by (2). Instead it passes the

IMEI and a preprogrammed phone number as an explicit

intent in an ICC message to the SendSMS application (3).

The SendSMS application, upon receiving the intent

through an unprotected intent filter, automatically sends a

text message containing the IMEI to the preprogrammed

number (4).

Fig.1. Android Framework Modifications

V. MODIFICATION TO ANDROID FRAMEWORK

The proposed modifications to the Android Framework

will take place in Android’s middleware layer. To defend

against privilege escalation Android’s Activity Manager

will be modified to prevent privilege escalation by

applications that have not been granted the privileged

permission explicitly. The Activity Manager provides

information and interacts with, activities, services, and

the processes being run on the Android system.

Furthermore, a new component called a Resolver will be

introduced, along with a Decision cache to store

information.

The proposed framework regarding the modification of

the Android Framework and the order of steps that will

take place can be seen in Fig.2. The first thing the

Activity Manager should do is check if the ICC was

between two third-party applications (step 1), by utilizing

the checkComponentPermission() method. This

information is obtained through Android’s Package

Manager Service (step 2), a service that maintains

runtime information for each application, such as User ID

(UID), granted permissions, etc. If the ICC is found to be

between two third-party applications (step 3), the next

step to occur should be the invocation of a new module,

the Resolver (step 4).

 A Novel Android Security Framework to Prevent Privilege Escalation Attacks 23

Copyright © 2020 MECS I.J. Computer Network and Information Security, 2020, 1, 20-26

The Resolver upon being activated proceeds to

compare the two applications involved in the Inter-

Component Communication intent message as well as

their designated permissions. When identifying that the

two applications are different, it then invokes a new

component called UserInputConfirm, which presents the

user of the device an alert box that gives them the option

to allow or deny the Inter-Component Communication

intent message. Upon receiving the user’s choice, the

UserInputConfirm module then relays that choice back to

the Resolver, which then either allows the Activity

Manager to grant or deny the connection.

Fig.2. Android Framework Modifications

A. Activity Manager Modifications

One of the most important modules in the Android

Framework is the Activity Manager. The Activity

Manager is responsible for interacting with activities,

services, and other processes. Key amongst its

responsibilities is mediating ICC interactions between

applications. To ensure that on this version of Android

that privilege escalation can be minimized, one of the

functions in the Activity Manager, specifically the

checkComponentPermission() function is modified.

The checkComponentPermission() function is called

by the Android System when a third-party application

initiates a connection with another application via an ICC

that involves the use of a permission. As of Android API

level 24, the checkComponentPermission() function will

merely check if only one of the applications has the

permission that is being accessed. To make this check, it

accepts the following data when it is called: the

permission required, the UID of the calling application,

and the UID of the application owning the permission. In

the scenario above, the nefarious application is the calling

application and the benign application is the application

owning the permission. However, it should be noted that

it does not check to compare if both applications have the

permission being accessed.

As a result, changes made to the

checkComponentPermission() method include an IF

statement that compares the IDs of the applications that

initiated the checkComponentPermission() method. Due

to how the checkComponentPermission() method is

structured when it comes to decision making, the custom

IF statement had to be placed first, becoming the first

virtual barrier check. The checkComponentPermission()

then goes on to create a new instance of the Decision

Maker method from the custom Resolver class. As it

creates the new instance, it also passes along the variables

involved, i.e: the permission required, the UID of the

calling application, and the UID of the application

owning the permission. At this point it effectively hands

over the decision process to the Resolver class and will

execute what the Resolver.DM() method returns.

B. Resolver

The custom Resolver class is a custom class created to

do very simple comparisons between the two applications

involved in the Inter-Component Communication

message. It was placed in the same directory, or package,

as the Activity Manager for easier referencing when it

came to coding. To ensure the custom Resolver class was

able to communicate with the other classes involved, the

android.app and android.content.pm packages had to be

imported, with the former containing system classes and

methods such as the Activity Manager and the latter

pointing towards classes and methods associated with the

Package Manager service. One of the methods in the

Resolver class is the Decision Maker method.

The first thing the Decision Maker method does is

acquire the package names for the UIDs it has. It does

this by invoking the getPackagesForUid() method in the

Package Manager. The getPackagesForUid method is an

abstract method that retrieves the names of all packages

that are associated with a particular UID. In most cases,

this will be a single package name, the package that has

been assigned that UID. In this instance it invokes it

twice, first as getPackagesForUid(1) and then as

getPackagesForUid(2). The package names are returned

as strings that are then stored in the u1package or

u2package global variables.

The reason Android does not solely work off of UIDs

is due to the fact that UIDs are assigned to

applications/packages when they are installed; when

those applications/packages are uninstalled, the UIDs are

freed up to be used by other applications/packages that

may get installed. Thus, UIDs can be seen as an abstract

pointer to the applications/packages, which is actually

used by the Android system, such as the Package

Manager Service, to contain information related to

permissions, installation dates, etc.

The next step executed in the Decision Maker method

is to verify whether the applications involved in the Inter-

Component Communication message possess the

permission stored in the global variable p1. To do this,

24 A Novel Android Security Framework to Prevent Privilege Escalation Attacks

Copyright © 2020 MECS I.J. Computer Network and Information Security, 2020, 1, 20-26

the Decision Maker invokes the checkPermission()

method in the Package manager. The checkPermission()

method is an abstract method that accepts two string

values, the permission name and the package name. It

returns an integer value upon execution. It invokes the

method twice, first as checkPermission(p1, u1package)

and then again as checkPermission(p1, u2package),

checking the same permission across the two different

packages, which correlate to the two applications

involved in the ICC. This information about the two

different packages were retrieved in the previous step by

the getPackagesForUid() method. The results of the

checkPermission() method; an integer value that indicates

whether the application has the permission or not, is then

stored in the global variables u1permission and

u2permission respectively.

The Decision Maker then goes to check if the nefarious

application has the permission or not in an If statement.

When the condition of the If statement is met (nefarious

application does not have the permission that belongs to

the benign application), a new custom activity called

UserInputConfirm is started.

C. User Input

The UserInputConfrim activity is a simple popup

dialog box that asks the user to confirm whether or not to

allow the nefarious application to access the permission

used by the benign application. For the purpose of this

project, the message asked is hardcoded to represent the

nefarious and benign applications that will be tested;

furthermore, the activity class is located in the same

package as the Resolver for easier referencing.

The Android class used to build this popup is the

AlertDialog class. Users are presented an alert box that

provides the user with options of allowing the nefarious

application to use the permissions of the benign

application. If the user chooses to not allow the nefarious

application to access the permissions of the benign

application, then the UserInputActivity will return the

integer value -1 to the Decision Maker and close.

Similarly, if the user chooses to allow the nefarious

application to access the permissions of the benign

application, the activity will return the integer value 0 to

the Decision Maker and then close.

The Decision Maker, upon receiving the value the user

has chosen proceeds to store it in the global variable

“decision”. After storing the decision, the Decision

Maker then delves further into a nested If statement, that

compares the value in the “decision” variable with either

-1 or 0. If the value is equal to -1, it indicates that the user

has chosen not to grant permissions to the nefarious

application and the as such the Decision Maker will

return the Package Manager method

PERMISSION_DENIED to the Activity Manager, which

will proceed to terminate the Inter-Component

Communication message between the two applications.

However, if the user has chosen to grant the permission to

the nefarious application, the Decision Maker will instead

return the Package Manager method

PERMISSION_GRANTED to the Activity Manager,

which will in turn allow the Inter-Component

Communication message to proceed.

VI. EXPERIMENTAL & DISCUSSION

Upon completion of the modifications to the Android

Framework, a fresh system image containing the changes

made within the framework was built on the Ubuntu

virtual machine and then flashed to an emulator as a new

Android Virtual Device (AVD) based on a Nexus 6P.

This AVD was then loaded with 50 of the top most

downloaded applications from the Google Play Store as

well as a custom malicious application called Read_ID

and a custom benign application called Send_SMS. For

this project the type of Inter-Component Communication

functions that was tested was explicit intents. The

malicious application will attempt to send the benign

application malicious ICC messages containing the

Device ID, which will then be sent as an SMS.

The solution proposed in this paper is expected to

prevent the malicious ICC message between applications ,

ensuring that the subsequent SMS is not sent.

A. Functional Effectiveness

Due to the modifications made to the Android

framework, the user is now presented with an alert dialog

box, as seen in Fig.3, asking the user if they would like to

allow the malicious application to utilize the permissions

of the benign application via the Inter-Component

Communication message.

Fig.3. Alert dialog box notifying user of privilege escalation

 A Novel Android Security Framework to Prevent Privilege Escalation Attacks 25

Copyright © 2020 MECS I.J. Computer Network and Information Security, 2020, 1, 20-26

The user can then proceed to either choose to allow

access, upon which the ICC message will be successful

and a text message will be sent to the preprogrammed

number or they could choose to decline the ICC message;

upon which no message will be sent and the attempt at

privilege escalation via the Inter-Component

Communication message will be prevented. Furthermore,

the alert dialog should bring attention to the user of the

nefarious application on the system, which should lead to

its removal.

As a result, in this new environment, the modifications

to the Android Framework successfully prevented the

malicious Inter-Component Communication messages

from being sent; assuming the user chose to decline

giving the malicious application access to the permissions

of the benign application. This can be seen by the lack of

a text message containing the device ID being sent.

therefore, it is safe to assume that the modifications to the

Android Framework successfully prevented privilege

escalation attacks from occurring on the Android

platform, at least in the case of the dataset used.

B. Performance Evaluation

Activities and interactions between the two

applications were first tested and benchmarked without

the modifications to the Android Framework. These

benchmarks of time it takes for the ICC messages to

being sent were recorded and then compared to a

benchmark taken after the implementation of the solution.

Due to the testing environment being an emulator; the

time cost between sending the malicious intent and the

benign application’s receiving the intent was measured

five times to get an average.

As we are measuring the time it takes for the intent to

be received, for the post-solution test we are allowing the

malicious ICC instead of blocking it. Furthermore, both

application processes had to be killed via the force-stop

option in the system settings to ensure a fair environment.

These time costs are presented in Table 1, where the

performance overhead post-solution is measured at 331.8

milliseconds, compared to the pre-solution value of 219.6

milliseconds, for a difference of 112.2 milliseconds, on

average. As can be seen, the increase in the performance

overhead is negligible and should not be noticeable to the

user. However, the greatest variance that may affect this

statistic when it comes to the post-solution system is the

response time of the user when selecting if they should

allow the ICC message through or if they should deny it.

Table 1. Performance Evaluation of ICC cost times

System
Average

Time (ms)

Min

Time

(ms)

Max

Time

(ms)

Android API 24 Pre-

Solution
219.6 187 268

Android API 24 Post-

Solution
331.8 267 373

C. Limitations

Currently, the solution proposed in this paper can help

resolve explicit Inter-Component Communication

messages between applications; however, it cannot

provide a defense against collusion attacks, which

involve more than one nefarious application working in

conjunction to enable privilege escalation. Another issue

that can crop up is when malicious application can set its

UID to the UID of the benign application; which is

possible by malicious applications altering settings in the

Package Manager Service. Lastly, this solution is only

viable if the malicious program does not have root access;

as root access applications will be able to bypass many of

the defenses and in some cases, disable those defenses.

VII. CONCLUSIONS & FUTURE WORK

Android privilege escalation attacks are some of the

easiest attacks to perform both due in part to app

developers who do not have the necessary security

knowledge to prevent their apps from being utilized as

confused deputies, as well as the fact that most users are

also not technologically adept. However, the most glaring

cause of Android privilege escalation attacks up till API

level 25 is the existing Android security framework that

allows for this type of attack.

In an aim to take the burden off both parties, this

project modified and added to the existing Android

security framework via changes made using the Android

Open Source Project. This project successfully mitigated

privilege escalation attacks by monitoring inter-

component communication between applications on API

level 24 and resolved instances of perceived privilege

escalation that triggered the mechanism built into the

framework, with help from the user.

However, since this project has a specific scope, future

work should also look at ways of mitigating privilege

escalation attacks that are based on collusion. This can be

done by analyzing the flow of data between multiple

applications as opposed to just two. Furthermore, a policy

should be implemented that can be used so that the

system can make smart decisions about whether allowing

certain inter-component communication messages

through or not, instead of having to rely on the user.

Another feature that could be added is informing the

users exactly which permissions are trying to be obtained

by the nefarious application.

REFERENCES

[1] Z. Fang, W. Han, and Y. Li, “Permission based Android

security: Issues and countermeasures,” Computers and

Security, vol. 43. Elsevier Ltd, pp. 205–218, 2014.

[2] R. H. Niazi, J. A. Shamsi, T. Waseem, and M. M. Khan,

“Signature-based detection of privilege-escalation attacks

on Android,” in Proceedings - 2015 Conference on

Information Assurance and Cyber Security, CIACS 2015,

2016, pp. 44–49.

[3] Y. Park, C. Lee, J. Kim, S.-J. Cho, and J. Choi, “An

Android Security Extension to Protect Personal

Information against Illegal Accesses and Privilege

Escalation Attacks,” J. Internet Serv. Inf. Secur., vol. 2, pp.

29–42, 2012.

[4] H. T. Lee, D. Kim, M. Park, and S. J. Cho, “Protecting

data on android platform against privilege escalation

26 A Novel Android Security Framework to Prevent Privilege Escalation Attacks

Copyright © 2020 MECS I.J. Computer Network and Information Security, 2020, 1, 20-26

attack,” Int. J. Comput. Math., vol. 93, no. 2, pp. 401–414,

Feb. 2016.

[5] B. Kong, Y. Li, and L.-P. Ma, “PtmxGuard: An Improved

Method for Android Kernel to Prevent Privilege

Escalation Attack,” ITM Web Conf., vol. 12, p. 05010, Sep.

2017.

[6] X. Zhong, F. Zeng, Z. Cheng, N. Xie, X. Qin, and S. Guo,

“Privilege Escalation Detecting in Android Applications,”

in Proceedings - 2017 3rd International Conference on

Big Data Computing and Communications, BigCom 2017,

2017, pp. 39–44.

[7] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek,

“COVERT: Compositional Analysis of Android Inter-App

Permission Leakage,” IEEE Trans. Softw. Eng., vol. 41,

no. 9, pp. 866–886, 2015.

[8] Y. Xu, G. Wang, J. Ren, and Y. Zhang, “An adaptive and

configurable protection framework against android

privilege escalation threats,” Futur. Gener. Comput. Syst.,

vol. 92, pp. 210–224, Mar. 2018.

[9] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.

Sadeghi, “Xmandroid: A new android evolution to

mitigate privilege escalation attacks,” Tech. Univ.

Darmstadt, Tech. Rep. TR-2011-04, pp. 1–18, 2011.

[10] T. Markmann, D. Gessner, and D. Westhoff, “QuantDroid:

Quantitative approach towards mitigating privilege

escalation on Android,” in IEEE International Conference

on Communications, 2013, pp. 2144–2149.

[11] W. Enck et al., “Taint droid: An information flow tracking

system for real-time privacy monitoring on smartphones,”

Commun. ACM, vol. 57, no. 3, pp. 99–106, Mar. 2014.

[12] T. Dai, X. Li, B. Hassanshahi, R. H. C. Yap, and Z. Liang,

“ROPPDROID: Robust permission re-delegation

prevention in Android inter-component communication,”

Comput. Secur., vol. 68, pp. 98–111, 2017.

[13] Z. Meng, Y. Xiong, W. Huang, L. Qin, X. Jin, and H. Yan,

“AppScalpel: Combining static analysis and outlier

detection to identify and prune undesirable usage of

sensitive data in Android applications,” Neurocomputing,

vol. 341, pp. 10–25, 2019.

[14] L. Li et al., “IccTA: Detecting inter-component privacy

leaks in android apps,” Proc. - Int. Conf. Softw. Eng., vol.

1, pp. 280–291, 2015.

[15] S. Arzt et al., “FLOWDROID: Precise context, flow, field,

object-sensitive and lifecycle-aware taint analysis for

Android apps,” ACM SIGPLAN Not., vol. 49, no. 6, pp.

259–269, 2014.

Authors’ Profiles

AHAMED K. H. HUSSAIN is currently

pursuing a BSc (Hons) Information

Technology (Computer Networking &

Security) at Sunway University’s

Department of Computing & Information

Systems, in Malaysia, where he is also a

student researcher. His research interests

include computer, network, and mobile security.

MOHSEN KAKAVAND received his Ph.D.

degree in intelligent computing from the

University Putra Malaysia (UPM), Malaysia

in 2017. He is currently a Lecturer with the

Department of Computing and Information

Systems, Faculty of Science and Technology,

Sunway University in Malaysia. His research

interests include aspects of data mining, intelligent computing,

machine learning, intrusion detection systems (IDSs), and

cybersecurity.

MIRA SILWAL is currently pursing dual

degree in BSc (Hons) Information

Technology (Computer Networking and

Security) from Sunway University and

Lancaster University. She is a prolific IT

enthusiast whose research interests includes

the aspects of data mining, machine learning,

intrusion detection systems (IDSs) and cybersecurity.

LINGGES ARULSAMY is currently

pursuing dual degree in BSc (Hons)

Information Technology (Computer

Networking and Security) from Sunway

university and Lancaster university. He is an

active researcher in the area of Artificial

Intelligence, Crypto-Ransomware Anomaly

Classification, Image Transfiguration using Horizontal Feature

Simplification, Encryption Through Pangram, Smart Light

Using Electromagnetic Wave and Cybersecurity.

How to cite this paper: Ahamed K. H. Hussain, Mohsen

Kakavand, Mira Silval, Lingges Arulsamy, "A Novel Android

Security Framework to Prevent Privilege Escalation Attacks",

International Journal of Computer Network and Information

Security(IJCNIS), Vol.12, No.1, pp.20-26, 2020. DOI:

10.5815/ijcnis.2020.01.03

