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Abstract: Malware is a threat to people in the cyber world. It steals personal information and harms computer systems. 

Various developers and information security specialists around the globe continuously work on strategies for detecting 

malware. From the last few years, machine learning has been investigated by many researchers for malware 

classification. The existing solutions require more computing resources and are not efficient for datasets with large 

numbers of samples. Using existing feature extractors for extracting features of images consumes more resources. This 

paper presents a Convolutional Neural Network model with pre-processing and augmentation techniques for the 

classification of malware gray-scale images. An investigation is conducted on the Malimg dataset, which contains 9339 

gray-scale images. The dataset created from binaries of malware belongs to 25 different families. To create a precise 

approach and considering the success of deep learning techniques for the classification of raising the volume of newly 

created malware, we proposed CNN and Hybrid CNN+SVM model. The CNN is used as an automatic feature extractor 

that uses less resource and time as compared to the existing methods. Proposed CNN model shows (98.03%) accuracy 

which is better than other existing CNN models namely VGG16 (96.96%), ResNet50 (97.11%) InceptionV3 (97.22%), 

Xception (97.56%). The execution time of the proposed CNN model is significantly reduced than other existing CNN 

models. The proposed CNN model is hybridized with a support vector machine. Instead of using Softmax as activation 

function, SVM performs the task of classifying the malware based on features extracted by the CNN model. The 

proposed fine-tuned model of CNN produces a well-selected features vector of 256 Neurons with the FC layer, which is 

input to SVM. Linear SVC kernel transforms the binary SVM classifier into multi-class SVM, which classifies the 

malware samples using the one-against-one method and delivers the accuracy of 99.59%. 

 

Index Terms: Malware classification, image classification, convolutional neural network, support vector machine. 

 

1.  Introduction 

Malicious code is a code that is a part of the software, system, or scripts, causing harm to the system. In the last 

few years, growth in Internet usage has grown significantly. With more Internet usage, there is a rise in criminal 

activities and hacking code injections. For doing such activities, criminals are using malicious codes to perform illegal 

activities on devices connected to the Internet. Creating malicious codes with online available automated tools is easy 

for attackers. According to Symantec's report of the year 2019, every month, on average, attackers inject malicious 

codes into 4800+ retailer's websites to get credit card details [1]. Malwarebyte's research [2] reported that malware 

attacks on Windows operating systems increased by 18% in the year 2019.  

Malicious codes are divided into several classes considering their working, namely virus, worms, logic bombs, 

trojans, keyloggers, and backdoors. These classes again further divided into different families of malware. FireEye [3] 

stated that in 2019, they discovered 500 new families of malicious code. With fast technological progress, malicious 

code analysis, detection, and classification malware became more critical from the computer and network security point 

of view. Performing newly arrived malware detection and classifying them to their respective families involves feature 

vectors that represent the essential features of malicious codes. There are two fundamental techniques for analyzing 

malware with the help of feature vectors, namely static analysis, and dynamic analysis. Static analysis examines the 

behavior of malicious code without executing them. The sequence of code or instructions is cross-checked to 

understand the purpose of it [4]. 

On the other hand, dynamic analysis involves the execution of the malware under strictly remote or virtual 

sandbox devices to understand the working of it [5].  Paper  [6]  shows  how  these  traditional  methods  fail  to  deliver 
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excellent classification results. Paper [7] proposed a new technique to classify malicious codes by visualizing the binary 

files. Samples of malicious code binary files are converted into malware gray-scale images with the help of 2D arrays 

[8]. Paper [9] showed different malware visualization techniques for malware classification, which are better than 

analysis techniques. Features of the image are a vital aspect of the image processing problem. Features hold essential 

information related to the image, which later helps in the classification to distinguish between the classes. Feature 

extraction is the process of representing image data in the form of a set of features for extracting the features of the 

image paper [8] used GIST descriptor. Paper [10] explained feature extraction and different techniques of it. Paper [11] 

showed that computing the features of the image with the help of various feature extractors like GIST, SURF, SIRF, 

and HOG requires more computational resources. When these extractors are applied to more massive datasets, they are 

less impactful, which causes misclassification. In the same paper, how CNN can be used as an automatic feature 

extractor and how it is better than using feature descriptors is presented. Paper [12] concluded that the feature computed 

by CNN is less prone to misclassification, which improves the overall results.  

The main objective of the paper is to build an efficient malware classification model with the hybridization of 

machine learning algorithms. The challenges are avoiding image data imbalance, building the fine-tuned CNN model, 

replacing the activation function with suitable machine learning algorithms. During this research work, malware 

visualization and Convolutional neural network are used for automatic computation of features from the images. Paper 

[10, 11, 12] shows that when CNN is used as an automatic feature extractor, it gives better results for malware 

classification. To improve the results, machine learning algorithms are used in combination with CNN. Features 

computed by CNN are used as input to the Support vector machine algorithm. The replacement of the softmax 

activation function with SVM gives better results and minimal misclassification. The proposed CNN model is compared 

with CNN Architectures VGG16, ResNet50, InceptionV3, and Xception. 

The research work is organized into sections as the following: Section 2 presents the related work of malware 

classification. Section 3 presents the usage of different existing CNN architectures and analysis of it. Section 4 

represents the methodology used for building CNN and the hybrid CNN SVM model for malware classification. Section 

5 compares the performance of proposed CNN, and the hybrid CNN+SVM models with different CNN architectures. 

Section 6 is conclusions.  

2.  Related Works 

This section represents the related work for malware analysis and classification.  

Cybersecurity professionals and communities analyze malicious codes and software for various security purposes. 

They use this analyzed information to study the infections caused by malware and find solutions for that. This analysis 

helps to address the issues during further infections. Paper [13] proposed a malware detection system based on static 

analysis for android, which shows that the false positive rate of this method is more. Paper [14] performed malware 

classification based on Application Program Interfaces (API), which involves static analysis and stated that applying 

static analysis for the classification of malware is not working as expected. Static analysis methods have some 

limitations and can be easily penetrated by using Obfuscation techniques [6]. Paper [15] used dynamic analysis 

technique for classification of malware and stated that the method with machine learning models work well. The 

dynamic analysis technique requires more resources, which makes it challenging to compute features for large size 

datasets [11]. 

Paper [8] proposed a novel approach for classifying the malware with the help of images. The technique involves 

reading the malware binary files bits and converting them into decimal values. These decimal values are stored in a 2D 

array and then visualized as a gray-scale image. Using the GIST descriptor for feature computation is done. Then the 

images are classified with the help of the K-Nearest Neighbours algorithm (KNN). Paper [9] followed the different 

visualization techniques then applied in paper [8] and applied feature extraction. These extracted features are given to 

supervised learning algorithms like KNN and SVM. Paper [16] used feature extractor for extracting features from 

binary files, which are generated with the help of malware executable programs. These features are then used with 

machine learning classifier Naive Bayes.  

Deep learning is a subset of machine learning. These techniques are successful for many problems. Paper [17], is 

based on deep learning that applies to malware classification and proposed M-CNN architecture. Paper [18] applied a 

malware visualization technique with deep learning and Long-Short Term Memory (LSTM) for classifying malware. 

Paper [19] presented the architectural study of different CNN architectures and proposed IMCFN architecture based on 

CNN. Paper [20] proposed the Echo State Network (ESN) and Recurrent Neural Network (RNN) based approach for 

malware classification and stated ESN models are better than RNN. Paper [21] used a hybrid approach of Gated 

Recurrent Unit (GRU) and Support Vector Machine (SVM) to solve the malware classification problem using images. 

Paper [22] used CNN architecture ResNet50 for the classification of malware software in which transfer learning was 

used. 

As the above approaches involve image texture feature extraction using different feature extractors techniques 

which require resources as well as time for computation. From the analysis of the existing methods available for 

malware, classification has its limitations like static analysis based methods are prone  to  obfuscation  techniques. 
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Dynamic analysis is incapable of handling large datasets. Deep and Machine learning-based techniques achieved more 

accuracy but fell short when it comes to the misclassification rate. In the proposed method, A CNN model is used to 

compute the features of an image automatically with the help of multiple layers of the network. Taking inspiration from 

the above research work, proposed an approach to classify malware with deep learning and combined it with machine 

learning. This hybrid method delivers more accurate results and enhances it with the help of the ML algorithm. 

Proposed a fine-tuned CNN model that takes pre-processed images as input and computes features. In hybridization, the 

last layer of CNN is replaced by machine learning algorithms to enhance the results. 

While working on the CNN model and considering the above research methodologies, handling over-fitting of the 

CNN model is more important. Achieving higher accuracy for classification is essential, but examining whether the 

model is overfitting is necessary too. Keeping these problems in mind, for this research work from the method of using 

Image Visualization and Deep learning are used [14]. The ability of CNN of automatic feature extraction is used in the 

proposed method. Classifying these features with the Softmax activation function works well or not is examined during 

our research by replacing it with machine learning algorithms and evaluating the performance of the hybridization. 

3.  Analysis of existing CNN Architectures for Malware Classification 

This section presents an analysis of malware classification using existing CNN models. It gives a method of 

converting malware binary to the image, which is proposed by [8] and fine-tuned architectures of CNN. 

CNN is widely used for problems based on computer vision like fast fashion guided clothing [24], safety harness 

detection [25], image reconstruction problems like HDR [26], and CT image reconstruction [27], color recognition 

problems like vehicle [28], and tongue [29] color recognition and image classification problems like indoor-outdoor 

images [30], and city-landscape images classification [31]. 

If CNN [32] is compared with a neural network, then the difference is that CNN layers are organized in such a way 

that each layer takes an input in the form of 3-Dimension. Neurons of CNN layers are not connected to every other 

neuron-like NN. The final output layer is converted into the vector, which contains probability scores for the 

classification. CNN includes a variety of layers that can be stacked like convolutional layers, pooling layers, dropout 

layers [32]. Paper [33] explained the working and math behind the Convolutional layers working. Convolution Layer 

takes the input in the form of height, width, and depth on which different filters are applied. These filters help to extract 

feature maps from the image. Parameters present in this layer are mostly user-specific. The Pooling Layer looks similar 

to the convolution layer. However, these layers perform the task of pooling values from filters, which might be 

Minimum Pooling, Average Pooling, or Maximum Pooling. This pooling of values helps in reducing the dimensionality 

of the network. Dropout layers take the portion weights from all the weights learned by the network and iteratively learn 

from them [33]. 

3.1.  Converting malware binaries into images 

In the last few years, researchers formulated the malware classification problem as an image classification problem 

[50]. Binary texture feature extraction is prone to binary obfuscation techniques that can be handled by converting 

binaries into gray-scale images [7]. Gray-scale images contain two colors, black and white, which help to capture 

details from the image regions. The process of converting malware files into images involves binary to decimal 

conversions of the binary bits and then storing these decimal values into a 2D array. Each value of this array is 

considered as the pixel value of an image [8]. Fig.1. Shows the malware binaries into the images conversion process. 

 

 

Fig.1. Malware binaries to the gray-scale image conversion process [8] 

3.2.  CNN Architectures VGG16, ResNet50, InceptionV3 and Xception  

Paper [19] presented different architectures of CNN for malware detection and classification problems. Paper [22] 

shows the results of different CNN architectures for malware classification problems.  

A.  VGG16 

VGG16 architecture is presented by K. Simonyan [34] for solving the problem of the ILSVRC-2012 dataset 

challenge of large scale visual recognition. The model contains five convolutional layers, five max-pooling layers, three 

fully-connected layers, a dense layer of 4096 neurons (softmax) in total 16-layers. The VGG16 model is investigated to 

solve different problems such as plankton classification [35], lung nodules classification [36], and plant image 

classification [37]. In our implementation for the input, an image of size 224*224 is given to the model, and the output 

layer has 160 neurons that are used for classification with a softmax activation function. The total number of parameters 

trained during the experimentation is 18,357,544.
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B.  ResNet50 

Kaiming He [38] presented this architecture in 2015 for image recognition problems. It is 50 layers deeper with 

residual blocks, which shifts the input over the identity connection. The ResNet50 model is investigated to solve 

different issues such as disease classification [39], fault diagnosis [40], and malaria cell classification [41]. It takes a 

resolution of 224*224 size as input. During our research work, an input image of 200*200 is given to the model. For the 

output layer, 2048 neurons used with softmax activation function are used because of limited computation resources. 

The total number of parameters trained during the experimentation is 23,690,162. 

C.  InceptionV3 

This architecture is presented by C Szegedy [42] in 2016, in which applying the Residual block in network 

improves the result is shown. This architecture contains 48 convolution layers in the network. It takes 224*224 size of 

the image as input. InceptionV3 model is investigated to solve different problems such as flower classification [43], 

traffic sign classification [44], skin cancer classification [45]. The critical part of this model is the factorization of 

convolutions, which reduces the number of parameter computations. This architecture is fine-tuned during research for 

our problem for input; 128*128 images are given, and for the output layer, 2048 neurons used for classification with a 

softmax activation function. The total number of parameters trained during the experimentation is 21,905,234. 

D.  Xception 

This architecture is presented by François Chollet [46] in 2016 in which uses of depthwise separable convolutions 

are stated. The Xception model is investigated to solve different problems such as software fault injection and 

monitoring in processor functional units [47], audio event detection, and tagging [48]. This model takes the input of size 

224*224. This architecture is referred to as an improvement over inception-v3 architecture. Both of these architectures 

have the same number of parameters. However, in the Xception model, the parameters are used more effectively. We 

used this model with the input image size of 128*128, and for the output layer, 2048 neurons used for classification 

with a softmax activation function because of limited computing resources. The total number of parameters trained 

during the experimentation is 20,963,930. 

4.  Methodology 

This section represents the methodology of proposed CNN and Hybrid CNN+SVM. In the proposed architecture of 

CNN, pre-processing and data augmentation techniques are utilized by analyzing their impact in the research work [19] 

for boosting the results. 

4.1.  Preprocessing 

Preprocessing the images is necessary to remove impurities and noise. Samples of images present in the dataset do 

not have the same size, so resizing of the images is essential. During this experimental work resizing of images is done 

on different sizes like 32, 64, 128, and 256. 

4.2.  Data augmentation 

Data augmentation is a technique used when the dataset is not large enough. The Malimg dataset for malware 

classification consists of 9339 samples of 25 different families, and the distribution of samples in these 25 families is 

completely imbalanced. Data imbalance and data augmentation methods are used at the time of input data given to the 

CNN model to handle this problem. This technique creates a new dataset artificially from the given dataset. Image data 

augmentation creates a dataset by performing transformations of the given input image dataset. Transformations like 

rotation, shear, zoom, horizontal or vertical flip, and adjusting brightness levels of the images. 

Keras provides a deep learning library ImageDataGenerator, which is used during experimental work to perform 

augmentation of the dataset by observing the improvement in the paper [7]. Parameters applied to the transformed 

dataset are presented in Table 1. 

Table 1. Image data augmentation setting for the dataset 

Method Settings Method Settings 

Rotation Range 0.1 Rescale 1/255 

Width Shift 0.1 Shear Range 0.1 

Height Shift 0.1 Zoom Range 0.1 

Horizontal Flip True Fill Mode Nearest 

 

Fig.2. Shows the transformation of the image after applying parameters from Table 1.  
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Fig.2. Malware samples after data augmentation 

4.3.  Proposed CNN architecture  

CNN requires input in the form of 3-Dimensions Height, width, and depth. In particular, the input image of 

32x32x1 is given to the CNN model for processing, followed by three convolution layers with filters 50, 70, 70, 

respectively. Each convolution layer is followed by LeakyReLU and Max Pooling layers, which reduce the input 

signals. Flatten layer normalizes the input into 256 neurons of the FC layer, which will later get classified with 25 

neurons using the softmax activation function. 

 

1. Input = 32 x 32 x 1 

2. Convolutional Layer 1 = Filters = 50, Kernel = 5, 5, Padding = Same 

3. LeakyReLU Layer 1 = Alpha = 0.1 

4. Max Pooling Layer 1 = Pool Size = 2, 2 Padding = Same 

5. Convolutional Layer 2 = Filters 70, Kernel = 3, 3 , Padding = Same 

6. LeakyReLU Layer 2 = Alpha = 0.1 

7. Max Pooling Layer 2 = Pool Size = 2, 2 Padding = Same 

8. Convolutional Layer 3 = Filters = 70, Kernel = 3, 3 , Padding = Same 

9. LeakyReLU Layer 3 = Alpha = 0.1 

10. Max Pooling Layer 3 = Pool Size = 2, 2 Padding = Same 

11. Flatten Layer 

12. Dense Layer 1 = 256 Neurons 

13. Dense Layer 2 = 25 Neurons of Output Classes 

 

While proposing this architecture, every layer of this model is configured as per the dataset samples. Usage of 

LeakyReLU activation function is to make the model to train faster than other existing architectures. It also makes the 

slope of negative values smaller as compared to ReLU used in existing models. Proper analysis of parameters is done 

and selected only those parameters which are delivering good results. Table 2. Shows the parameters used for training 

this model. The parameters which are irrelevant for training are skipped from unnecessary training, which impacts the 

results. Similarities related to architecture are possible, but architecture developed for one problem cant suite for all 

problems, proper tuning and parameter selection is also essential. Applying techniques like Image data augmentation 

and data preprocessing before training the data helped us to get good results.   

4.4.  Hybrid CNN (CNN + SVM) 

The proposed model uses CNN with machine learning algorithms as an intelligent system that classifies malware 

images efficiently to the respective classes. Papers [18, 23, 50] hybrid CNN works better than CNN.  This paper [23] 

presents a hybrid CNN model with SVM to reduce the computational requirements and accuracy. Instead of using 

traditional softmax activation function for classifying malware and cross-entropy function for computation of loss in the 

proposed model, the second FC layer is replaced by the SVM algorithm. In this paper, the results computed for the L2-

SVM method. Fig.3. Shows the architectural diagram of the proposed model where the experiments performed. 



 Malware Classification with Improved Convolutional Neural Network Model 35 

Copyright © 2020 MECS                                                I.J. Computer Network and Information Security, 2020, 6, 30-43 

 

Fig.3. The Proposed hybrid CNN+L2-SVM model. 

SVM is a supervised machine learning algorithm [51]. It uses the principle of finding hyperplanes into an N-

dimensional sample space. These hyperplanes with more margin help to classify the samples correctly. The hyperplane 

is a line or boundary that separates data samples into distinct classes. SVM works on marginal boundaries, hyperplanes 

with maximum margins are selected. The data points which are near to these hyperplanes are called support vectors. 

The position of the hyperplane depends on these support vector points. SVM is capable of solving binary classification 

problems. Paper [52] shows different methods on multi-class SVM, in which stated that the one-against-one method 

works better than one-against-all methods. The SVM kernel functions help transform input data into the required format; 

that's why in our research work LinearSVC is used based on the one-against-one method. According to paper [52], a 

one-against-one approach is more suitable for Multi-class problems. This approach creates binary classifiers based on 

the number of classes present in the problem using the following eq.(1) 

 

𝑛𝑢𝑚_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ×
 (𝑛𝑢𝑚_𝑐𝑙𝑎𝑠𝑠𝑒𝑠−1)

2
                                                                  (1) 

 

In this problem, number of classes = 25  then 25* (25 - 1) / 2 = 300  binary classifiers are created. While taking the 

prediction decisions, “max wins” [53] algorithm is used in which each classifier votes to its predicted class, and at the 

final stage, most votes obtained class is considered as a predicted class. When two classes got the same number of votes, 

then the class which has the smallest index value will get selected.    

L2-SVM is a Soft-margin support vector machine that uses the sum of squared slack variables as compared to L1-

SVM as per paper [54]. The optimization function working described in [23] for L2-SVM is as follows.  
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𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑥𝑖 · 𝑤 + 𝑏) ≥ 1 − 𝜉𝑖          𝑓𝑜𝑟 𝑖 = 1,2, . . . . , 𝑚                                          (3) 

 

where, w = n-dimensional weight vector, b = bias value or term, i = Slack variable, C = penalty parameter. 

The first term of equation (2) tries to minimize the margin, whereas the second term handles the misclassification. 

Penalty parameter 'C' seeks the balance between these two. In the proposed methodology, L2-SVM works on extracted 

features vectors from CNN. The feature vectors are then classified for better accuracy.  

5.  Experimental Details, Results, and Discussion 

This section represents the experimental details, results, and discussion of the proposed CNN approach. The 

experimental analysis is carried out by using the Python programming language for the implementation. Keras library is 

used to implement the CNN model. For executing the programs, Nvidia GeForce 940M 2GB GPU for training and Intel 

Core i5-4500 processor with 8 GB RAM is used. For resource-intensive tests, the Google Colab platform is used. 

5.1.  Dataset 

The dataset used for experimental work is the Malimg dataset [55]. This dataset is generated from malware binary 

(.asm) files. These binaries are converted into an 8-bit vector and then transformed into the [0, 255] range where '0' is 

black, and '255' is white. A total of 9339 samples are present in this dataset. The dataset comprises 25 malware families 

(classes) with a varying number of samples per family and is available for download [55]. Fig.4 shows the details of the 

dataset with the family name and number of samples.
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Fig.4. Dataset description 

5.2.  Results and Discussion 

In this paper, to evaluate the performance of the models following evaluation metrics are considered. Researchers 

most commonly use these measures for assessing performance [19].  

Precision: It is the ratio of true positive samples of the class to the sum of true positive and false positive samples 

of the predictions [56]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                                                                           (4) 

 

Recall: It is the ratio of labeled data samples to the correctly predicted samples [56]. 
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𝐹𝑁𝑅 =
𝐹𝑁
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                                                                            (11) 

 

𝐹𝐷𝑅 =
𝐹𝑃

𝑇𝑃+𝐹𝑃
                                                                            (12) 

 

F1 Score:  It is the average weighted values of precision and recall [56]. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
                                                             (13) 

 

Accuracy: It is the ratio of true positive samples of all classes to the sum of all samples present in the confusion 

matrix [56]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                   (14) 

 

For applying the CNN approaches, the dataset is partitioned into different split ratios, like 60%-40%, 70%-30%, 

80%-20%, and 90%-10% for training and testing. Images from the dataset are resized into the fixed-size like 32x32x1 

to handle the problem of variable size images. Table 2 shows the CNN model parameters.  
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Table 2. CNN Model parameters 

Input Image Size 32x32x1 

Batch Size 64 

Epochs 1000 

Optimizer Adam 

Learning Rate 0.001 

Total Parameters 370,441 

Trainable Parameters 364,016 

Non-Trainable Parameters 6425 

FC Layer Features 256 

 

Data augmentation is performed to handle the imbalance between the dataset. Table 3 shows the results of 

proposed CNN with and without data augmentation. The data augmentation technique is built to create heterogeneity of 

the available data. Data augmentation helps in training large neural networks without collecting new data. That helped 

in our experimental work to improve the accuracy of the proposed CNN model. 

Table 3. Impact of using Data Augmentation 

Without Data Augmentation With Data Augmentation 

Training Testing Training Testing 

95.49 96.88 98.72 98.03 

 

Results obtained with different CNN architectures and the proposed model using the softmax activation function 

are presented. All models are trained for 1000 epochs using Adam optimizer. Results are calculated with 10-Folds 

cross-validation, and the accuracies given below are average accuracies of the 10-folds. Time calculation is done based 

on the hardware allocated by Google's colab at that moment and may vary on more powerful hardware. 

 

 

Fig.5. Accuracy of the proposed CNN model  

The proposed CNN model is compared with VGG16, ResNet50, InceptionV3, and Xception. All the tests are 

performed with the help of Google's Colab, but in some cases, RAM of 32GB is not sufficient to handle. Table 4 

presents the results of selected models with a 60-40 split ratio. The proposed CNN model shows better accuracy as 

compared to other models. The average execution time taken by the proposed CNN model is significantly better than 

other models.



38 Malware Classification with Improved Convolutional Neural Network Model  

Copyright © 2020 MECS                                                I.J. Computer Network and Information Security, 2020, 6, 30-43 

 
Fig.6. Loss of proposed CNN model 

Table 4. Comparison of different CNN models. 

 Proposed CNN VGG16 ResNet50 InceptionV3 Xception 

Accuracy (in %) 98.03 96.96 97.11 97.22 97.56 

Average execution time 

(Hours) 
1 1.10 19.89 9.7 7.5 

 

The CNN model used for this image classification problem is trained using the Softmax activation function and 

SVM algorithm. Replacing the Softmax FC layer of 256 neurons with an ML algorithm improves the results. It does the 

accurate classification of malware samples with very little misclassification. 

Table 5 shows the comparison of results for L2-SVM and softmax CNN models for malware classification. The 

accuracy of CNN+L2-SVM is more as compared to CNN+Softmax.  

Table 5. Comparison of CNN using Softmax and replacing it with ML algorithms 

CNN + Softmax (%) CNN + L2-SVM (%) 

98.03 99.59 

 

Table 6 shows the result analysis by applying different split ratios. The split ratio indicates the Training and 

Testing ratio of the dataset. The results of 60-40% are considered during the research. 

Table 7 shows the different statistical measures used for analyzing the performance of the proposed CNN+L2-

SVM model. In which the obtained values are very less that prove the model is performing more accurately. 

Table 6. Results of Hybrid CNN+L2-SVM 

Split Ratios (%) Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

60-40 99.59 99.22 99.04 99.12 

70-30 99.53 98.98 98.78 98.87 

80-20 99.51 98.85 98.77 98.80 

90-10 99.78 99.16 99.16 99.16 

Table 7. Statistical measures used for performance analysis 

False Positive Rate(FPR) False Negative Rate(FNR) 
False Discovery 

Rate(FDR) 
Negative Prediction 

Value(NPV) 

0.0001 0.0095 0.0077 0.9998 

 

Table 8 shows the cross-validation results which are used for obtained results analysis. For analysis, we used 

different values of cross folds. We tested up to the value of K=25. 

Fig.7 shows the normalized confusion matrix, in which rows represent actual classes and columns, prediction 

classes. Diagonal elements show the degree of correct classification, whereas off-diagonal elements show the degree of 

incorrect classification. The percentage of the correctly classified sample is shown where 1 represents the malware 

samples belonging to that particular class and is 100% correctly classified according to the true labels present in the 

dataset. From this figure misclassification rate of malware samples can be determined where samples from only six 

families are incorrectly classified. However, the ratio of misclassified samples is very low.
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Table 8. Cross-validation results using different K-values 

K=3 K=5 K=7 K=10 K=25 

99.50% 99.47% 99.55% 99.65% 99.57% 

 

 
Fig.7. CNN+L2-SVM normalized confusion matrix 

 

Fig.8. CNN+L2-SVM confusion matrix of test image sample distribution 
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Fig. 8 explains the test sample distribution from the test dataset. Diagonal elements show the degree of correct 

classified image samples. In contrast, off-diagonal elements show the degree of incorrect classified image samples. The 

diagonal numbers of correctly classified samples present in the dataset. The off-diagonal numbers show the incorrectly 

classified samples. From this image, we can see that hardly one or two images are incorrectly classified. 

We compared the results of the proposed model with other studies. Table 8 presents a comparison of the results. 

The proposed model shows significant performance improvement. 

Table 9. Results comparison 

Reference 
Visualization 

Method 
Technique Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Nataraj et al.[7] Gray-scale KNN 97.18 - - - 

Songqing Yue[60] Gray-scale 
Vgg-

verydeep-19 
97.32 - - - 

S. Yajamanam et al.[57] Gray-scale GIST+CNN 98 - - - 

N. Bhodia et al.[58] Gray-scale ResNet 94.8 - - - 

Zhihua Cui[59] Gray-scale GIST+SVM 92.2 92.5 91.4 - 

Zhihua Cui[59] Gray-scale GIST+KNN 91.9 92.1 91.7 - 

Zhihua Cui[59] Gray-scale GLCM+SVM 93.2 93.4 93 - 

Zhihua Cui[59] Gray-scale GLCM+KNN 92.5 92.7 92.3 - 

Zhihua Cui[59] Gray-scale IDA+DRBA 94.5 94.6 94.5 - 

Zhihua Cui[59] Gray-scale NSGA-II 97.6 97.6 88.4 - 

D. Vasan[19] Color IMCFN 98.82 98.85 98.81 98.75 

Proposed approach Gray-scale 
CNN+L2- 

SVM 
99.59 99.22 99.04 99.12 

6.  Conclusions 

Malware is most commonly used for performing attacks by cyber attackers. To control the attackers from 

performing attacks, stealing the information, and harming computer systems, security specialists and antimalware 

software companies are constantly working on identifying new methods. In this research work, the deep learning-based 

approach for malware classification is presented. Different researcher's methods for Malware classification were studied 

based on the Malimg dataset, which has 9339 samples of malware of 25 malware families. On this dataset, Considering 

the computational resources and time requirements existing CNN models, we proposed the CNN model by combining 

Data pre-processing and augmentation techniques and obtained results (98.03%) which are far better than different 

existing architectures of CNN such as VGG16 (96.96%), InceptionV3 (97.22%), Xception (97.56%), and ResNet50 

(97.11%).  The proposed CNN model requires less time (1hr) as compared to different architectures of CNN in Table 4. 

VGG16 (1.10hr), InceptionV3(9.7hrs), Xception (7.5hrs), and ResNet50 (19hrs). The hybridization technique is used 

for performing the task of classification. The Softmax activation function of the proposed CNN model is replaced with 

the Support Vector Machine and proposed hybrid CNN+L2-SVM model and obtained accuracy (99.59%). The 

proposed hybrid model of CNN+L2-SVM gives a 1.56% accuracy boost than the Softmax activation function and 

performs well in terms of misclassification of malware samples (see table 5). The proposed CNN+L2-SVM 

performance is compared with well-known models (see table 9). The proposed model achieves more accurate results 

with minimal rate of misclassification in less time and computational resources. The reason behind getting good results 

is a combination of several techniques like handling data imbalance, pre-processing and scaling of images, fine-tuning 

of the CNN model, using multi-class SVM, and proper replacement of SVM with Softmax. L2-SVM uses squared slack 

variables than L1-SVM, which helped us to get generalized results.  

CNN models can further be improved with fine-tuning, and other machine learning algorithms to minimize the 

execution time. 
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