
I. J. Computer Network and Information Security, 2012, 1, 31-37
Published Online February 2012 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijcnis.2012.01.04

CSRF Vulnerabilities and Defensive Techniques

Rupali D. Kombade, Dr. B.B. Meshram,
Veermata Jijabai Technological Institute, Matunga, Mumbai.

rupalikombade@gmail.com, bbmeshram@vjti.ac.in

Abstract- Web applications are now part of day to day
life due to their user friendly environment as well as
advancement of technology to provide internet
facilities, but these web applications brought lot of
threats with them and these threats are continuously
growing, one of the these threat is Cross Site Request
Forgery(CSRF). CSRF attack is immerged as serious
threat to web applications which based on the
vulnerabilities present in the normal request response
pattern of HTTP protocol. It is difficult to detect and
hence it is present in most of the existing web
applications. CSRF attack occurs when a malicious
web site causes a user’s web browser to perform an
unwanted action on a trusted site. It is listed in
OWASP’s top ten Web Application attacks list. In
this survey paper we will study CSRF attack, CSRF
vulnerabilities and its defensive measures. We have
compared various defense mechanisms to analyse the
best defense mechanism. This study will help us to
build strong and robust CSRF protection mechanism.

Index Terms- Web Application, Vulnerability,
Attacks, Defensive measures, Cross-Site Request
forgery.

I. INTRODUCTION

Use of internet tremendously increasing with technology,
it is now used for each possible function that can perform
online, web applications playing important role to
provide these functions. Web applications are become
part of life of human beings. Some of these are reducing
their efforts like (reservation systems, online banking
etc...) and some are entertaining and connecting them
socially (facebook, myspace etc...). But with all these
facilities they have also bring some problems i.e. web
application attacks. Web application attacks create
insecure environment for web application’s users. It can
be result in huge loss. Web applications are a major
target for hackers. According to the study, websites
experience an average of 27 attacks per hour or about
once every two minutes. However, 27 attacks per hour is
only an average. When sites come under automated
attack, the target can experience up to 25,000 attacks per
hour or 7 per second. [1] OWASP (open source web
application security project) has listed the top ten web
application attacks of 2010 as below. [2]

• Injection

• Cross site scripting

• Broken authentication and session management

• Insecure direct object reference

• Cross site request forgery

• Security misconfiguration

• Failure to restrict URL access

• Unvalidated redirects and forwards

• Insecure cryptographic storage

• Insufficient transport layer protection

In this paper we are concentrating on Cross Site Request
Forgery Attack (CSRF). This attack is less known to
developers, some considers it same as XSS and some
considers that XSS mitigation techniques will work for
this attack. But it is different from XSS and its mitigation
techniques need something extra efforts than XSS
defensive measures. CSRF attacks have been known as
“sleeping giant” of web-based vulnerabilities [3],
because many sites on the Internet fail to protect against
them and they have been largely ignored by the web
development and security communities. Cross-Site
Request Forgery Attacks are also known as Cross-Site
Reference Forgery, XSRF, session Riding and Confused
Deputy attacks. [4]

This survey paper is divided into following sections.
Section II describes how CSRF attack is carried out.
Section III describes various CSRF vulnerabilities
present in web applications; Section IV contains
available CSRF Mitigation techniques, section V
compares the CSRF mitigation techniques discussed in
section IV, section VI concludes this survey paper, and
then referenced material and author’s introductions are
listed.

II. OVERVIEW OF CSRF ATTACK

 CSRF is an attack which forces an end user to
execute unwanted actions on a web application, in which
he/she is currently authenticated [2]. It takes the
advantage of HTTP protocols functionality to send

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 1, 31-37

mailto:rupalikombade@gmail.com
mailto:bbmeshram@vjti.ac.in

32 CSRF Vulnerabilities and Defensive Techniques

session cookie for each request to server once user
authenticate successfully, which helps server to confirm
that the request is coming from authenticated user.
CSRF attacker first study the request pattern i.e. type of
request (GET request or POST request), parameters
names, type of parameters values etc.. Once studied the
request’s URL pattern deeply, he embed this URL in
html tags of web pages or emails. Then attacker forces
the authenticated user to execute this request. As user is
authenticated browser automatically sends session
cookie value with this request, server accepts this request
and execute it. Figure 1 shows the scenario of CSRF
attack.

Following example shows how CSRF attacker uses ‘img’
or ‘script’ tag to send request to server without
knowledge of user. Consider, the user logged in to his
email account and found email saying that ‘check jobs
matching to your profile’, If user open this email and
follow the link given there, in next tab jobs website page
will get open. If attacker also has email account in same
site as user and he know how ‘change password’
functionality works, he can put the corresponding action
URL in some HTML tag. Consider attacker has added
this URL in image tag as given below.

<img
src=www.examplemail.com/changepass. php?newpass=s
omevalue>

This will not affect the GUI of jobs website page and
URL embed in ‘src’ tag will get called as page will be
loaded. As user is already logged in, browser will
automatically send session id to server while sending this
request. Hence server will accept the request as valid
request. This way without knowledge of user the CSRF
attack is carried out.

User

Browser having multiple sites
opened

Users email account

Server (Authenticate
user based on
session token, and
accept request)

Job portal site

Browser sending
request to server
without checking
origin domain

Figure 1 CSRF Attack scenario

Server Client

GET/books/search.asp?q=wahh HTTP/1.1
Host: wahh-app.com (Initiate
communication)

(Accessing
wahh-app.com
book search
page)

HTTP/1.1 200 OK
Date: Sat, 19 May 2007 13:49:37 GMT
Set-Cookie:
tracking=0000tI8k7joMx44s2Uu85nSWC
Expires: thu, 01 Jan 1970 00:00:00 GMT
Content-Length: 24246 (server sets cookie)

GET/books/search.asp?q=wahh HTTP/1.1
Host: wahh-app.com
Cookie:
tracking=0000tI8k7joMx44s2Uu85nSWC
(Browser attaches cookie with every request)

Figure 2 Working of Http request and response

Effects of CSRF attacks may differ based on the
vulnerabilities exploited and privilege of the user
exploited. A successful CSRF exploit can compromise
end user data and operations when it targets a normal
user, for example transfer of amount from user account
to attacker account. If the targeted end user is the
administrator account, a CSRF attack can compromise
the entire web application. It’s not just your public Web
applications that are at risk, CSRF tactics can be used to
attack servers behind corporate firewalls. Following
image tag shows such example. [14]

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 1, 31-37

http://www.examplemail.com/changepass.php?newpass=somevalue
http://www.examplemail.com/changepass.php?newpass=somevalue

 CSRF Vulnerabilities and Defensive Techniques 33

<img
src="http://intranet/admin/purgedatabase?rowslike=%2A
&confirm=yes">

If the attacker knows enough to make a URL and can get
you to open a message, that's all it takes. Such effects of
CSRF can result in huge loss of web application’s user as
well as owner; that’s why it is very important to stop this
attack. CSRF can affects web devices same as web sites.
For Example in January 2008 attackers sent out e-mail
having request embedded in image tag having URI
192.168.1.1 which is the default IP address of web
enabled Linux based router, if web interface is
vulnerable to CSRF and authentication is also vulnerable
then on opening email image tag get loaded and shell
commands can be execute on router of email account
holder. [9] Following URL shows how shell command
can be executed on router.

http://192.168.1.1/cgi-bin/;reboot

CSRF vulnerabilities are present in so many existing
websites; some of these are described in [6]. Hence in
this paper we are studying CSRF vulnerabilities as well
as mitigation techniques which help us to build strong
and robust protection mechanism against CSRF.

III. CSRF VULNERABILITIES

Attackers are not required to do extra efforts to carry out
attack because the way web handles the web application
traffic between client and server allowing attacker to
carry out attacks. So many flaws are there which helps
attackers and make their job easy to satisfy their
requirement. In this section we will take review of such
vulnerabilities presents in web applications.

a. HTTP session handling mechanism
Number of website required user authentication while
accessing it, which is most important requirement to
carry out user specific tasks as well as to provide privacy
to user’s data and information. To simplify this
requirement HTTP protocol provides facility of session
and cookie, which allow web server to differentiate the
request coming from different users. Once user gets
authenticated, this session cookie information gets
passed in every request from server to client and vice
versa. Following code shows the format of HTTP request
and response; also figure 2 shows how web request and
response are carried out.

HTTP request

GET /books/search.asp?q=wahh HTTP/1.1
Accept: image/gif, image/xxbitmap, image/jpeg, image/pjpeg,
application/xshockwaveflash, application/vnd.msexcel,
application/vnd.mspowerpoint, application/msword, */*
Referer: http://wahh-app.com/books/default.asp

Accept-Language: en-gb,en-us;q=0.5
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT
5.1)
Host: wahh-app.com
Cookie:
JSESSIONID=0000tI8rk7joMx44S2Uu85nSWc_:vsnlc502

HTTP response

HTTP/1.1 200 OK
Date: Sat, 19 May 2007 13:49:37 GMT
Server: IBM_HTTP_SERVER/1.3.26.2 Apache/1.3.26 (Unix)
Set-Cookie: tracking=tI8rk7joMx44S2Uu85nSWc
Pragma: no-cache
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: text/html;charset=ISO-8859-1
Content-Language: en-US
Content-Length: 24246
<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01
Transitional//EN”>
<html lang=”en”>
<head>
<meta http-equiv=”Content-Type” content=”text/html;
charset=iso-8859-1”>
...

 So whenever server gets request having valid session
information it executes that request without bothering the
origin of the request. Hence when CSRF attacker sends
request to sever through browser by embedding it in
exploited site, it executes on server successfully and no
one can detect that request has come from other domain
and it is invalid.

b. HTML tags
CSRF attackers embed the request they want to execute
in HTML tags due to which attack become invisible and
while loading particular page (with page, it loads the all
elements present on page), request gets executed. Also
sometime it is embedded into the tags where it will get
execute only if user click on that tag’s user interface like
‘href tag’. In this case attacker forces the user to click on
such tags by showing text which attracts user e.g. “50%
discount on jwelleries” etc. There are so many tags
present in HTML which can send request to server, but
each and every tag is made for particular type of request
like for image file, JavaScript file etc.. HTML does not
check the tag source property contains the valid URL or
not, and CSRF attackers take advantage of this
vulnerability. Table1shows the list of HTML tags that
can be used by attacker to carry out CSRF. We have
already seen example of exploiting HTML tag to carry
out CSRF attack in section II.

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 1, 31-37

http://192.168.1.1/cgi-bin/;reboot
http://192.168.1.1/cgi-bin/;reboot

34 CSRF Vulnerabilities and Defensive Techniques

Table1- Various html tags used to carry out CSRF attack

HTML tag Exploited format of HTML tag

body
<body { background:
url(‘attack_request’)}>
<body onload=”attack_request”>

img

input <input type = “image” src =
“ attack_request” alt = “Submit” />

link <link rel = “stylesheet” type = “text/css”
href = “attack_request” />

script <script type = “text/javascript” src
=“attack_request” > </script>

table <table background = “attack_request” >

td <td background = “attack_request”>

th <th background = “attack_request”>

iframe <iframe src=”attack_request”>

 This problem might be even worse, since in
integrated mail/browser environments simply displaying
an email message containing the image would result in
the execution of the request to the web application with
the associated browser cookie. [2] And in case if anyone
put check on the ‘src’ field of tag to contain valid URL
specific to particular tag then this may be obfuscated
further, by referencing seemingly valid image URLs
such as

<{element}
onload=javascript:document.myform.submitO >

<img src=”h ttps:// [attackers url]/picture.gif” width=”0”
height=”0”>

Where [attacker] is a site controlled by the attacker and
by utilizing a redirect mechanism on
http://[attacker]/picture.gif to http://[third party]/action.

c. Browser’s view Source option
There are various different ways by which attacker get
knowledge of functionality used by web application,
which helps attacker to generate valid request. Attacker
can himself log on the website and check the whole
functionality, also information about working of forms
on the web pages can be easily available by facility
provided by web browser using option ‘View Source’,
Which shows all the information of the fields present on
forms, validation for each field can be accessed by using
JavaScript files and much more information attacker can

collect. If web application using extra session variable on
each request to protect application from CSRF and if that
session information is saved in hidden field, using view
source option attacker can get the logic used to generate
this session field unless until it is not strongly generated
random token.

d. GET and POST method of form submission
Information in the form fields sends to the server by
using two methods GET and POST, where GET method
generate a request which contain all the information
itself in request and it is also visible to the user, so
attacker can make use of this easily available information
to generate valid request. It was suggested that to use
POST instead of GET method to stop this vulnerability.
But POST method is also not helped to protect web
applications from CSRF attack. Once attacker get all
form fields he can embed these fields into his web page,
which he is going to force the victim to open and can put
the JavaScript function which allow form to submit on
onload event. Following example describe this scenario.

Where {element} = HTML element

<form name="myform" method="POST" action="
{vulnerable site}">
<input name="variablel" value="attackl" >
<input name="variable2" value="attack2" >
<input name="variable3" value="attack3" >
</form>

Here we can see that form is submitting directly on
onload event, without knowledge of user.

e. Input Validation Error
CSRF can be divided into two forms stored and reflected
[4], Stored CSRF is when the attacker gets the CSRF to
be executed within the domain of the targeted websites,
while the reflected CSRF is when the attack is triggered
from a different domain. In case of Stored CSRF we can
give example of social networking site where user can
add a post which contain malicious request which can
perform some malicious action on that site. In this case
attacker uses the vulnerabilities present in input
validation functionality. While processing input data
submitted by user, its format should be well specified
and well checked. If this validation functionality is weak,
it can allow attackers malicious content to get into the
system, which will help them to carry out CSRF.

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 1, 31-37

 CSRF Vulnerabilities and Defensive Techniques 35

f. Handling of data through Javascript
Javascript is also used to transfer the data in application
using AJAX. AJAX uses XMLhttpRequest to
communicate to action to server and server returns
lightweight response containing data in JSON format.
This returned response is then processed and used by
client. Such use of Javascript make possible for
malicious website to exploit same origin policy handling
of javascript and gain access to data generated by other
website. Malicious site can perform this using two ways,
overriding the default array constructor and by
implementing a suitable callback function. [10]
 Number of times the data return by XMLhttprequest
contains a serialized array, malicious website can
override the default constructor for this array or object to
gain access to the data. This can be done by retrieving
script tag’s target and executing it. Such vulnerability
was discovered within GMAIL functionality by Jeremiah
Grossman in 2006. Sometime javascript does not only
return data but also invokes callback function on
returned data. For example:

showContacts(
[
[‘Jeff’, ‘1741024918’, ‘ginger@microsoft.com’],
[‘C Gillingham’, ‘3885193114’,
‘c2004@symantec.com’],
[‘Mike Kemp’, ‘8041148671’,
‘fkwitt@layerone.com’],
[‘Wade A’, ‘5078782513’,
kingofbeef@ngssoftware.com’]]);

This can be exploited by simply implementing the
showcontacts function and include the target script. [13]
For example:

<script>
function showContacts(a) {
alert(a);
}
</script>
<script
src=”http://wahhapp.com/private/contacts.json?callb
ack=showContacts”></script>

IV. CSRF DEFENSIVE MECHANISM

As CSRF become popular various defensive measures
against it were suggested, but none of these is able to
defence against CSRF completely. But these helps to
minimised the risk of CSRF up to certain extent. In this
section we are going to review such defensive measures
which will help us to build more robust technique to
mitigate CSRF.

a. Checking Referer Header

HTTP request contain different parameters, one of these
parameters contain the URL of site from which request
originates, that parameter name is ‘Referer’. This
parameter can be used by browser to check requests
domain on client side before forwarding request to server.
So web developers check Referer header to protect
applications from CSRF. This can be applied in case of
critical operation like password change, amount transfer,
purchasing items and changing user privileges etc. This
will allow only same domain request to execute.

b. Custom Header
Custom headers, those prefixed with X-, are sent to the
client together with the default HTTP header. One
important property of these headers is that they cannot be
sent cross domain [9]. With the help of custom headers
we can identify that the request has come from same
domain, as browser prevent to send custom header from
one site to another. To use this mechanism web
application must issue all state modifying requests using
XMLHttpRequest and attach the custom header. The
state modifying request having no custom header will
considered as invalid request. [10] For example request
with custom header will look like as below:

GET /auth/update_profile.cgi?email=victim@social.site
HTTP/1.1
Host: social.site
X-CSRF: 1

Here X-CSRF represents that this request consist of
custom header and it also confirm that the request has
come from same domain. Browser should not forward
custom header between domains. But vulnerability arise
due to exception to security rules, in this case Plug-ins
like Flash or Silverlight might allow request to include
any number or type of headers regardless of the origin
and destination of the request.[9] This vulnerability
could expose users to CSRF even with application of
custom header.

c. Client side tool with white listing
As we know there are so many websites which need
cross domain operation to perform, in such cases
‘Referer’ mechanism cannot be used. Hence it was
suggested to use a tool which maintains white listing of
websites having cross domain operations. This
implement a client-side defence measure that previews
the HTML code before each page load and detects
potential CSRF attack. The detector would first find all
form tags and check the “action” attribute of the “form”
tags for deep linking. If such forms are found, the CSRF
detector will prompt the user ‘if they want to add the
pairing of the URL of the website the code is located on
and the URL of the form action to a white list'. IF user
will add that URL to whitelist then whitelist get updated

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 1, 31-37

36 CSRF Vulnerabilities and Defensive Techniques

and this updated whitelist will be used further. This tool
can be installed as an extension to browser. [5]

d. Limiting the lifetime of authentication cookies:
CSRF attacks can be minimised by limiting the lifetime
of cookies to a short period of time. If user will open the
other website and started surfing on it, it will cause
cookies of previous site to expire and after a short period
of time and user have to login again for any action he
want to perform. If the attacker will try to send any
HTTP request, he will not successful as server rejects the
request, because it will not get session information due to
cookies expiration. [6]

e. Anti CSRF
It is a library developed in C# for ASP.NET developers
to guard themselves from CSRF attacks. It is HTTP
module which can be added to web application to protect
application against CSRF. This module itself takes care
of token generation and checking it on every page of web
site, assuming it inherits from System.Web.Page and
contains ASP.NET form [11].
 This library need to be added as a reference to web
application and related settings has to be done in web
configuration file. Normal way of adding CSRF token to
the ASP.NET application is to use ViewState in
combination with ViewStateUserKey. This requires
ViewState to be enabled and as well as session to be
enabled because sessionid will be used as a unique key to
identify user. AntiCSRF module works without these
requirement and hence provide more independent
environment. AntiCSRF requires Cookies to be enabled
on Users browser and cookies used on browser get
cleared when browser will get closed. It uses hidden field
to carry out CSRF token. [12]

f. CSRF detector
Cross Site Request Forgery (CSRF) can be carried out
using XSS attacks and maximum protection mechanism
suggested against CSRF are depend on cross origin
policies and that also not completely protects web
applications from CSRF. CSRF detector detects CSRF
attacks with the notion of visibility and content checking
of suspected requests. The idea is to intercept a suspected
request containing parameters and values and relate them
with one of the visible forms present in an open window.
If there is an exact match, the suspected request is
modified to make it benign, then it is launched to the
remote website to identify the content type, this content
type is then matched with the expected content type. Any
mismatch between request attribute values or content
type results in a warning. [7] This approach does not rely
on cross-origin policy or server side program states.
Moreover, it does not require storing URLs or tokens to
be matched at a later stage for attack detection. This can

be implemented as a Firefox plug-in. Once it detected the
CSRF attack we can stop that request or blacklist that
particular site if it is cross site request. Hence this
detector will be useful to prevent CSRF attack.

V. COMPARISION

As we have discussed various defensive mechanisms
against CSRF in previous section, we will see which is
more useful. Very first we have seen is checking Referer
header, this method will help in very few cases because
most of the sites don’t use Referer header for security
purpose. This mechanism is useful for reflected CSRF
only i.e. CSRF carried out from other domains; this
drawback is applicable to white listing defensive
measure also. Custom header is also used to detect only
reflected CSRF as well as its required to use
XMLHTTPrequest each time we need to protect system
from CSRF, which make protection mechanism
dependent on particular technology. Whereas CSRF
detector allows us to detect both reflected and stored
CSRF attacks. Limiting the lifetime of Authenticated
cookies is needed to be implemented on server side, i.e.
application developer can implement this mechanism
into their application. This method can minimize the
CSRF attacks but cannot provide complete protection.
CSRF Guard is technique provided by OWASP which
need to implement with application code and it can well
protect the system. AntiCSRF working same as CSRF
Guard and it is specifically used for ASP.NET
applications. Both these implementations are vulnerable
to session hijacking attacks and social engineering
through different ways to capture the session token [8]
and both of these are technology specific. In case of
CSRF detector, it checks content type of response with
expected content type of request to decide suspiciousness
of request. This may produce wrong result as some
servers may return incorrect content type or some may
have not sending content type at all.

VI. CONCLUSION

In this survey paper we discussed CSRF vulnerabilities
which will help to understand CSRF attack scenario and
causes behind it. Also we discussed various CSRF
defensive techniques suggested yet. In section V we
compared all the techniques we discussed as per their
ability to protect web application against CSRF attacks.
As per analysis it is found that CSRF guard and CSRF
detector are most powerful techniques but still cannot
provide full protection, they can only minimise the
CSRF attacks. Hence complete protection against CSRF
is not available and our discussed techniques need more
improvement so that they can completely protect the
application. Robust and strong protection mechanism
against CSRF is needed to protect the web applications.

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 1, 31-37

 CSRF Vulnerabilities and Defensive Techniques 37

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 1, 31-37

REFERENCES

[1]. Imperva’s Web application Attack Report July 2011
Edition #1, www.imperva.com

[2]. OWASP. https://www.owasp.org/index.php/CSRF,
Cross-Site Request Forgery, Testing for CSRF
(OWASP-SM-005)

[3]. Grossman, “Cross Site Request Forgery ‘The Sleeping

Giant of Website Vulnerabilities’”, in RSA
Conference, San Francisco, April 2008.

[4]. Xiaoli Lin, Pavol Zavarsky, Ron Ruhl, Dale Lindskog,
“Threat Modeling for CSRF Attacks”, International
Conference on Computational Science and Engineering,
2009

[5]. Tatiana Alexenko, Mark Jenne, Suman Deb Roy,

Wenjun Zeng , “Cross-Site Request Forgery: Attack
and Defense”, IEEE CCNC 2010

[6]. Mohd. Shadab Siddiqui, Deepanker Verma, “Cross Site

Request Forgery: A common web application
weakness”, 2011 IEEE

[7]. Hossain Shahriar and Mohammad Zulkernine “Client-
Side Detection of Cross-Site Request Forgery
Attacks”, 21st International Symposium on Software
Reliability Engineering, 2010 IEEE

[8]. Boyan Chen, Pavol Zavarsky, Ron Ruhl and Dale

Lindskog, “A Study of the Effectiveness of CSRF
Guard”, 2011 IEEE

[9]. “Seven Deadliest Web Application Attacks”, Mike

Sharma.

[10]. Adam Barth, Collin Jackson, John C. Mitchell
”Robust Defenses for Cross-Site Request Forgery”,
CCS’08, October 27–31, 2008, Alexandria, Virginia,
USA.

[11]. http://anticsrf.codeplex.com/ AntiCSRF - A Cross Site
Request Forgery (CSRF) module for ASP.NET

[12]. http://netappsec.blogspot.in/2011/05/anti-csrf-

viewstate.html “Anti-CSRF & ViewState”

[13]. “The Web Application Hackers Handbook”,
discovering and exploiting security flaw”, Dafydd
Stuttard, Marcus Pinto

[14]. Peter W “Cross Site Request Forgeries” –
http://www.tux.org/~peterw/csrf.txt

Dr. B. B. Meshram is working as Professor in Computer
Technology Dept., VJTI, Matunga, Mumbai, INDIA. He
is Ph.D. in Computer Engineering and has published
international journal is 25, National journal is 1,
international conference is 70 and national conference 39
papers to his credit. He has taught various subjects such
as Object Oriented Software Engg., Network Security,
Advanced Databases, Advanced Computer Network
(TCP/IP), Data warehouse and Data mining, etc at Post
Graduate Level. He has guided several projects at

graduate and post graduate level. He is the life member
of CSI and Institute of Engineers, etc.

Rupali Kombade received her B.E. Degree in Computer
Engineering from RTM Nagpur university. She has
worked as PHP and .NET Web developer. She is
pursuing M.Tech degree in Network Infrastructure
Management System from VJTI, Matunga, Mumbai,
INDIA. Her research interest includes web development,
web security, web application attacks and its defense.

https://www.owasp.org/index.php/CSRF

	[12]. http://netappsec.blogspot.in/2011/05/anti-csrf-viewstate.html “Anti-CSRF & ViewState”
	[13]. “The Web Application Hackers Handbook”, discovering and exploiting security flaw”, Dafydd Stuttard, Marcus Pinto

