
I. J. Computer Network and Information Security, 2012, 12, 1-17
Published Online November 2012 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2012.12.01

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 1-17

Software Activation Using Multithreading

Jianrui Zhang and Mark Stamp

San Jose State University, San Jose, California

stamp@cs.sjsu.edu

Abstract—Software activation is an anti-piracy

technology designed to verify that software products have

been legitimately licensed. Activation should be quick

and simple while simultaneously being secure and

protecting customer privacy. The most common form of

software activation is for the user to enter a legitimate

product serial number. However, software activation

based on serial numbers appears to be weak, since cracks

for many programs are readily available on the Internet.

Users can employ such cracks to bypass software

activation.
Serial number verification logic usually executes

sequentially in a single thread. Such an approach is

relatively easy to break since attackers can trace the code

to understand how the logic works. In this paper, we

develop a practical multi-threaded verification design.

Our results show that by proper use of multi-threading,

the amount of traceable code in a debugger can be

reduced to a low percentage of the total and the traceable

code in each run can differ as well. This makes it

significantly more difficult for an attacker to reverse

engineer the code as a means of bypassing a security

check. Finally, we attempt to quantify the increased effort

needed to break our verification logic.

Index Terms—Software security; activation; piracy;

reverse engineering; multithreading

I. INTRODUCTION

There are a vast number of software products available

for all kinds of needs. Among these, many are distributed

for free and/or as open source, while many require that

users pay. Many commercial software products provide

trial versions free of charge so that users can try out the

product before buying—some form of activation is

required to obtain the full version of the software. The

trial version usually has reduced functionality and/or
usage limits. However, the trial version binary usually

includes all of the code for the full version.

Most software products employ a serial number for

protection. Since the trial version has the same binary

code as the full version, it is possible to crack the trial

version and remove the limitations to obtain the full

version. In fact, software products are often cracked by

hackers who modify, or patch, the activation mechanism.

After breaking the activation mechanism, a motivated

hacker can create a key generator (or, simply, KeyGen) or

patches to distribute via the Internet so that other users

can easily obtain the full version of the code without

paying.

KeyGens or patches for many popular software

products are readily available [20,21]. As a result, in

many countries, software piracy is rampant. For example,

it is thought that a majority of computers in China run

pirated versions of Microsoft Windows. In fact, it was

reported that Windows 7 was cracked several months

before its official release [2]. Figure 1 shows the

estimated level of software piracy in various countries.

Our research focuses on developing an improved serial

number checking mechanism. The goal is to make the

hacker’s task more difficult. This paper is organized as

follows. Section 2 discusses several common techniques

employed in software activation while Section 3 focuses

on serial numbers as an activation mechanism. In Section

4 we discuss anti-reverse engineering techniques, and in

Section 5 we provide details on our software activation

design. Section 6 covers our testing setup and results.

Finally, Section 7 provides a conclusion and suggestions

for future work.

Figure 1. Level of Software Piracy [22]

II. SOFTWARE ACTIVATION

Software activation is used primarily as a way to

make users pay for the software they use; this is how

software companies make money to continue their

business. Today, consumers can try various software

packages before they decide which to buy. Software

2 Software Activation Using Multithreading

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 1-17

vendors attempt to make the trial version attractive

enough to entice consumers while setting some

significant limitation so that users will eventually feel

compelled to pay for the software. A strong software

activation mechanism would reduce piracy and thereby

help developers to get paid for the use of their software.

Next, we cover various kinds of protection that are

commonly used as part of software activation. Then we

briefly discuss different software activation methods.

2.1 Software protection mechanisms

Perhaps the simplest “protection” is a nag screen that

pops up each time the software is started and, for example,

reminds the user of the number of days that the software

has been used without paying, and provides registration

information. Such an approach relies on the slight

annoyance created by the nag screen as well as playing

on the user’s conscience. Apparently, many users are not

bothered by their conscience, since it is not uncommon to

find cracks that simply remove nag screens.

At the opposite extreme from a nag screen, the trial

version is sometimes a completely different program than

the full version. That is, the full functionality is not

available in the trial version, so there is no point in

directly hacking it. While this is the strongest possible

method of software “activation”, it does require the

developer to maintain two distinct copies of the code base.

In addition, this approach requires a second download

when the code is purchased, which might annoy some

users. This approach appears to be reserved primarily for

relatively expensive software.

Modern shareware often limits the number of days a

user can access the trial version of the product. The goal

is to make the software unusable after the time limit has

reached. If a user likes the particular software and uses it

for an important purpose, the user could purchase the

software and continue to use it. According to [3], this

type of protection is also fairly easy to break. For

example, CD Key Generator from Jedisware [23], utilizes

this kind of protection in its trial version and limits usage

to only five days. However, a moderately skilled attacker

could crack CD Key Generator in a few hours [4].

In the commercial realm, usage and time limits are not

common. Instead, expiration dates are more the usual

practice. In addition, an expiration date is often used on

beta products (such as the various beta versions of

Microsoft Windows) in an effort to coerce users to buy

the full version once it is released. One simple (and

surprisingly effective) way to break this kind of

protection is to reset the system clock to a time before the

expiration date.

It is common practice to provide users with a trial version

with reduced functionality, which is sometimes referred

to as “crippleware”. For example, the trial version of

Cyberlink’s PowerDVD [24] lets users play back DVD

movies for five minutes or less, while the full version has

no such restriction. In most cases, the executable for the

trial version is the same as that for the full version, which

makes it possible to break the protection and turn the trial

version into a fully functional version. In fact, it is

common practice for hackers to break such protection and

distribute the cracked versions on the Internet.

There are software products that use the presence of a

disk (containing some critical information) in the CD-

ROM drive to start the program. This method is mostly

used by the computer game industry and, in general, is

considered easy to crack [3]. As evidence of this, it is

possible to find cracks online for virtually all popular

game titles.

Encryption and hashing have potential roles to play in

software activation. An attacker cannot read encrypted

code, so encryption can foil disassembly. Of course, the

code must be decrypted before it can execute, which

makes it possible for an attacker to obtain the decrypted

code, but some additional work may be required. On the

other hand, hashing can be used as an integrity check—

the hashing does not obscure the code, but instead it is

used to detect modifications and thereby make patching

more difficult. When these cryptographic techniques are

used, the protection is usually applied only to security-

critical parts of the logic because these are the hot spots

for potential attacks.

There are many software products that employ more

than one of the techniques mentioned above. Different

protection methods used in combination can reinforce

each other and make cracking significantly more difficult.

We have more to say about this when we discuss our

design in Section 5, below.

2.2 Software activation mechanisms

Serial numbers are the most popular method for

activating software. That is, the user types in a serial

number obtained from the vendor, in effect, purchasing a

legitimate copy of the software. In some cases, a

username is also needed.

There are two common ways to distribute serial

numbers. The first option is to distribute the serial

number along with the media containing the installation

package. A second option is via email—after purchasing

the product (usually online), the vendor sends an email

confirmation to the user along with a serial number for

the product. Email distribution is commonly used for

 Software Activation Using Multithreading 3

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 1-17

shareware. In the next section, we discuss serial numbers

in more detail.

An activation file is sometimes used, although this

approach is not common. This method usually works in

conjunction with software distribution via a download. A

consumer purchases the software online at the vender’s

website, and the vendor sends an email to the user with

an activation file attached. After receiving the activation

file, typically, the user must save the activation file to

some specified location. When the software launches, it

checks for the existence of a valid activation file—if the

file is found, the software installs as a full version.

Activation files may contain information that is unique to

each user. For example, RarLab’s popular WinRAR [26]

uses an activation file.

Activation by hardware key is sometimes used, but it is

one of the least common methods in use today. This

approach requires the presence of some special hardware

device before the software will function [5]. This kind of

activation can be difficult to break since it is not easy to

determine what the hardware key does. For example,

code on the hardware device may be necessary for some

crucial calculation performed by the software. Without

access to the code on the hardware key, an attacker would

have to fill in gaps in the available code, which would

generally be a futile task. Even with access to the

hardware key, stitching together the pieces to create a

stand-alone functioning piece of code could be

challenging.

A hardware key could be a USB key or, ideally, a

smart card. For example, the Bank of China requires a

USB drive to activate its online banking software [7]. The

advantages of using a smart card include readily available

cryptography and tamper resistant hardware—any

communication with the smart card is cryptographically

secured and the smart card is able to lock or destroy the

data it contains if authentication repeatedly fails [6].

Pre-activation by the vendor is employed when

software products are bundled with a new computer. For

example, Microsoft’s Windows operating system is the

most widely pre-activated software.

For Microsoft Windows, activation information is

stored in the BIOS on the motherboard and the OS checks

the BIOS for the presence of this information. Microsoft

Windows is a popular target for attack, and hackers often

exploit this activation method.

Table 1 gives a comparison of various software

activation methods, including the pros and cons of each.
This information is essentially a summary of the

“lessons” in [3].

Table 1. Methods for Software Activation

Method Popularity Convenience Strength

Serial

Number

Very

popular

Convenient Relatively

weak

Activation

File

Used, but

not common

Somewhat

convenient

Relatively

weak

Hardware

Key

Not common

today

Not convenient Relatively

effective

Pre-

activation at

vendor

Popular for

OSs

Convenient Relatively

effective

III. SERIAL NUMBERS

Serial numbers are the most popular method of

activating software products. Serial numbers, which are

alphanumeric strings, are sometimes known as CD keys,

product keys or activation codes. Ideally, each legal copy

a software product should be activated by a unique serial

number, although this is often not the case, particularly

for shareware.

3.1 Checking serial numbers

Most software products only check the serial number

once, when it is initially entered. In this approach, after a

serial number is deemed valid, it will, in effect, be valid

forever. Dual checking is an attempt to improve on the

one-time checking mechanism. This method is used in

Adobe products, such as Photoshop, which requires users

to go online (or contact Adobe by phone) to obtain a

second activation code. The second activation code is

necessary to complete the activation process; see Figure 2.

Figure 2. Adobe Photoshop’s 2-layer Activation [25]

4 Software Activation Using Multithreading

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 1-17

By requiring users to contact the vendor, the vendor is

able to validate whether the first serial number is valid.

The vendor thus has a better chance of being able to keep

detect serial number fraud. Sometimes serial numbers are

checked repeatedly over time. Microsoft employs this

method in its Windows XP and later operating systems.

When users download critical updates, Microsoft will

check whether the current OS is a legal copy by using its

GenuineAdvantage software. Figure 3 shows Microsoft’s

GenuineAdvantage in action.

Figure 3. Online Software Validation

The advantage of repeated online software validation is

that it provides a vendor with multiple chances to detect

piracy. The downside of this approach is that a vendor

must entice users to repeatedly “check in” with the

vendor. For operating systems, this is plausible (updates,

patches, etc.), but for most software products, users

would have little incentive to do so.

3.2 Entering serial numbers

A common way to enter a serial number is during

installation. This method is usually used by software

without trial versions. Cracking such software may be

more difficult (since the attacker lacks context), but it is

doable.

Many software products allow users to enter a serial

number after installing the software. This makes life

somewhat easier for hackers, since they can usually zero

in on the important parts of the code.

Some software products have serial numbers built into

hardware keys. In this case, users do not see the serial

number at all. As discussed above, this makes it difficult

to break the software activation mechanism. However,

this method is not widely used today.

3.3 Generating serial numbers

There are many ways to generate and store serial

numbers. How this is done directly affects how easy or

difficult it is to break serial number checking mechanism.

If software developers do not have much experience in

this field, they may be better off using third party

products for protection. One company that provides such

service is LogicProtect; it claims to provide “clever

software activation, anti-piracy functionality and copy

protection for your software” [8]. LogicProject’s service

description says its service is able to provide both

activation and online verification [8]. This will make the

overall process more robust. In essence, LogicProtect

provides its service by letting developers integrate

LogicProtect’s DLL into their software. In its newest

release (version 7.0), it even includes web service APIs,

which make the online verification easier to implement.

In many cases, software companies prefer to develop

their own secret algorithm for generating and checking

serial numbers. The idea behind this practice is that the

“secret algorithm” is supposed to be difficult to break

because no one from the outside knows about it; however,

this idea contradicts Kirchhoff’s principle [9]. In fact, the

majority of serial number generation and checking

algorithms are broken by hackers. Once the part of the

code responsible for serial number generation is

identified, hackers can simply “rip” out such code and

use it to create a KeyGen for that software product [10].

Among different secret algorithms, use of hash functions

is one of the favorites.

Sometimes software developers use third party

software products to generate serial numbers and develop

their own code to verify the serial numbers. Jedisware

CD Key Generator is one software product that can

generate serial numbers of various lengths and formats

(such as use of hyphens, numbers only, and so on). The

full version of CD Key Generator allows users to save the

generated serial numbers in a file or in a few data

structures such as array or arraylist. Ironically, CD Key

Generator itself is not good at serial number checking—it

stores all 5000 valid serial numbers as an array of strings

in the software and simply compares against all stored

valid serial numbers to check for validity [4]. Clearly, it

is a bad idea to store valid serial numbers in source code,

since these will be obvious to anyone who reverse

engineers the exe.

3.4 KeyGen

 Software Activation Using Multithreading 5

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 1-17

A key generator, or KeyGen, is a hacker-developed

tool that is used to generate valid serial numbers for a

specific piece of software. Such a tool enables any user—

regardless of skill level—to create a valid serial number,

which can then be used to illegally activate the software.

A Google search is often all that is needed to find a

KeyGen for a particular software product.

There are two common ways to create a KeyGen:

1. Analyze and recreate the underlying algorithm

by studying the program disassembly.

2. “Rip” the assembly code from the disassembly

and use it directly.

Both of these methods require identifying the section

of code responsible for checking the serial number, but
the first method is far more labor intensive, since the

attacker must study of the code and reconstruct the

algorithm. In contrast, the second method only requires a

copy and paste of the disassembly and, generally, some

minor fixes to get the code to work. In some cases,

additional checks may be required (either in the code or

by contacting the vendor) which are independent of the

KeyGen.

IV. ANTI-REVERSING TECHNIQUES

In this section, we discuss various anti-reversing

techniques, including anti-tampering, anti-debugging, and

code obfuscation. We single out multithreading for more

discussion, since it will figure prominently in the

remainder of this paper.

4.1 Anti-tampering techniques

Developers can also employ techniques to make their

code more difficult to modify. Such anti-tampering

techniques can be used with or without code obfuscation.

Hashing a binary executable is one way to detect code

patching. One problem with this is that the hash value

must be available to do the check, which makes it subject

to attack.

Ideally, hashing should be applied to code after it is

loaded into memory. Such an approach could effectively

prevent hackers from using debuggers to modify code at

runtime in order to change execution flow. However,

hashing the executable after it has loaded is difficult to

implement in practice, particularly on machines that

employ address space layout randomization (ASLR).

4.2 Detecting a debugger

Hackers must use debuggers to successfully understand

the design of an activation mechanism and to determine

how to patch the code. Therefore, if we can make

debugging more difficult, we can make the attacker’s job

more difficult.

IsDebuggerPresent() is a system function in the

Microsoft development library. If a process is started by a

debugger, calling this function can detect the presence of

the debugger. However, if a debugger is attached to a

process after it is started, calls to this function return false.

The IsDebuggerPresent() function can be easily

identified by modern debuggers, as illustrated in Figure 4

using OllyDbg. Hackers can easily disable calls to this

function and bypass the check, as shown in Figure 5 and,

consequently, this method is not particularly effective.

Figure 4. Identifying IsDebuggerPresent()

6 Software Activation Using Multithreading

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 1-17

Figure 5. Bypassing IsDebuggerPresent()

Developers can write their own code to detect a

debugger at runtime. One such method is to check the run

time of a segment of code—if a debugger is used, the run

time will likely be much longer than if not. Developers

can use trial and error to determine the normal run time of

a block of code.

4.3 Code obfuscation

Developers can add in various well-designed assembly

codes to confuse disassemblers. However, our research

found that modern disassemblers are smart enough to

deal with this tactic. At best, only a few lines of

disassembled code can be confused, hence proving this

method of less value. In Figure 6, the boxed line of code

in red shows the only line of assembly code that got

messed up.

Insertion of junk code into meaningful code is intended

to confuse hackers. Junk code works by causing hackers

to spend more time studying useless code as well as

divert their attention from good code. Our research found

that when much junk code had been inserted, it may not

be possible to identify the good code from the bad. It

definitely took significantly much more time in hacking

efforts. Overall, this technique can be very effective. In

this section, we will discuss 3 kinds of junk code: junk

logic, metamorphic code, and recursion.

Junk logic is junk code added in the code section.

Common examples include adding useless instructions

and mixing them together with useful code. This provides

protection at the expense of run time. Depending on how

much junk code is inserted, run time overhead can be

significant.

Junk data refers to useless variables in source code. Its

purpose and use is more or less like junk logic, except it

may not have considerable overhead in run time.

Metamorphic code is another possible protection

technique. A metamorphic engine mutates code while

maintaining the original function [18]. While this

technique was invented by virus writers, it can be applied

as a means to protect code by making reverse engineering

more challenging.

Recursion is another useful obfuscation technique.

Recursive function calls are good for significantly

increasing the stack size because many parameters and

return addresses will be placed onto the stack in the

process. This can effectively disrupt a hacker’s view of

information stored on the stack. One downside with this

technique is recursive functions are usually short in

length of code and hence can be easily spotted and

understood. If the recursion does not do anything useful,

hackers can simply disable them.

 Software Activation Using Multithreading 7

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 1-17

Figure 6. Confusing a Disassembler

String obfuscation can be used to hide certain types of

important information. Simple encryption techniques,

such as XOR or one time padding, can accomplish this

purpose. One problem with simple encryption is that a

hacker can get information out of the cipher text based on

its length. To make string obfuscation more effective,

developers should to use a different length for the

encrypted strings compared to the original ones. Another

problem with this technique is that hackers are not

usually interested in the strings themselves; rather, they

want to know how and where the strings are used.

Checking mechanisms often display messages to users

after they input serial numbers to indicate success or

failure; these messages often give out the location of

checking mechanism. Given that hackers are more

interested in identifying locations of checking mechanism,

they can trace system function calls related to outputting

messages, such as “print” or “Messagebox.show()”

instead of focusing on trying to work out the obfuscation

method. In this regard, string obfuscation may not

provide much benefit for our purpose. Figure 7 gives an

example of a debugger identifying system function called

“fopen” and using it to find out string “readme.txt” as file

name from EAX register.

8 Software Activation Using Multithreading

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 1-17

Figure 7. Obfuscated String in Clear Text

An opaque predicate is a comparison whose outcome is

either always true or always false and known to the

developer at development but not program at run time.

Using opaque predicates increases the number of

branches of code hackers need to trace, which can be very

time consuming. Sometimes opaque predicates may

actually be useless as they can be easy to spot; for

example, if opaque predicates make use of floating point

calculation in an algorithm that only uses integer

calculation (or non-floating point calculation in general,

as often is the case for serial number checking), hackers

would know what code to skip. In contrast, using opaque

predicates in places where they should not be found may

lead to a revelation of important logic. After tracing code

a few times, hackers can realize their existence base on

execution flow as well.

Control flow obfuscation refers to code executing in

strange order or, at least, appears as a strange order. This

is usually accomplished by using many “jumps.” In

essence, this is used to break locality of code.

Psychologically, people would think code blocks next or

close to each other are related and often are executed

sequentially. Once locality is broken, hackers can feel

lost when they have to jump through different places in

order to trace code. Figure 8 shows how complex control

flow can be by adding a considerable amount of junk

code into one subroutine.

Windows events are directly related to graphical user

interface, commonly known as GUI. Here we use

windows events to obfuscate the execution flow, more or

less like using multithreading. Windows events are raised

by users through interaction with a GUI and processed by

an interface thread (sometimes known as an event thread).

Developers can take advantage of this by handling

multiple events in the code so that execution will jump

from one place to another sporadically making hackers

feel lost. Events, such as mouse movements, will be

triggered many times, which can certainly annoy hackers.

Figure 8. Subroutine Flowchart

 Software Activation Using Multithreading 9

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 1-17

4.4 Multithreading

The original purpose of having a multithreaded

application is to parallelize some of the logic and have

the threads execute concurrently to increase overall

efficiency. Here we use multithreading to increase

difficulty of debugging.

It is inherently difficult to debug a multithreaded

program even if its developers have the source code due

to a variety of reasons, such as data synchronization and

so on. The difficulty arises from the fact that only an

operating system has control over when and which thread

runs, but not the application itself and hence not the

developers either. In addition, debug mode and release

mode may yield different results for the same piece of

code. For example, if the developers did not initially

synchronize data correctly, the release mode may yield

incorrect results whereas nothing may seem wrong in

debug mode because the debug mode may force

synchronization as it has to display the result to the

viewer.

For our purpose, we can use multiple threads to do the

work concurrently so that hackers cannot easily single

step through code to find out how the logic works, since

validation may have been completed elsewhere. Table 2

gives our view on the relative effectiveness of various

anti-reversing techniques.

Table 2. Comparison of Effectiveness of Different Anti-

Reversing Techniques

Method Relative

Effectiveness

Pro Con

Junk code Strong Makes

code hard

to trace

Performance

Recursion Weak Makes

stack

large

Performance

Hashing Moderate Can detect

changes to

code

Performance

String

obfuscation

Weak Hard to

find

critical

logic

Easily

detected

Opaque

predicate

Weak More

branches

to follow

Performance

Control

flow

obfuscation

Strong Breaks up

proximity

Code

complexity

Multiple

validation

logic

Moderate Reduce

single

point

failure

Code

complexity

Multi-

threading

Strong Very

difficult to

trace code

Major code

complexity

Window

events

Moderate Hide

sequential

execution

Performance

V. PROPOSED DESIGN

This section will propose a new design, along with

testing results of the new design. Then we discuss the

techniques used in our proposed new design.

5.1 Design Considerations

In this section, we will outline several techniques

considered but excluded from the new design. One way

to use hardware keys is to use the hardware device to

perform part of the computation; similarly, we can do

part of computation online, such as using web services. In
this approach, the installed local copy does not have full

functionality. The server side can check for proper

licensing before completing requested computation. This

way, activation mechanism is nearly hack-proof because

hackers can’t trace (step through) the checking logic

located on server side; however, such activation

mechanism is way too complicated to implement, not to

mention significant overhead and slowness, which

renders this method impractical in most applications.

Encrypting executable is a strong anti-disassembling

method. But this is extremely difficult to implement in

practice, especially with new security features built into
current operating systems (OS). Storing an encryption

key safely is another issue.

It is nearly impossible to do reverse engineering work

without a debugger, so disabling them (in one way or

another) seems to be an attractive choice. But in practice,

it is very difficult, if possible at all, to disable use of a

debugger. The core issue here revolves around the

inability to determine presence of a debugger effectively

and accurately, partially due to new hardware architecture

and new OS security features.

5.2 Design

Instead of requiring a user type in a program serial

number from a keyboard, a license file will be used. The

license file should be generated by the software vendor,

10 Software Activation Using Multithreading

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 1-17

and distributed to users via email; users should then save

the license file in a proper place on their hard drives.

The license file should be encrypted using a strong

encryption algorithm, such as Advanced Encryption

Standard (AES), with an/a encryption/decryption key

derived from a password, one that is only known to the

vendor and user (each user will decide their own

password during registration process). In this design, the

format of the license file is XML, and contains
information such as username, the hash value of

program’s binary, a serial number, and necessary

validation information. Other information, such as trial

expiration date, can be also included if necessary.

The hash value of the program’s binary is intended to

deter modification of the program by attackers. A Hashed

Message Authentication Code (HMAC) algorithm is used

to calculate the hash value with a key derived from the

user’s password.

The reason for using a license file, instead of manual

user input, is to make it more difficult to locate the

corresponding code responsible for validation. With
breakpoints smartly set in a debugger, an attacker may be

able to quickly find out roughly the beginning and end of

a code region of interest, and then concentrate on that

particular area. This is possible if the debugger is able to

jump to that section of the code in question when it

executes. In contrast, it is difficult to discover when the

code of interest executes if it does not require user

interaction; additionally, hackers would have to trace

code from the very beginning to find out where code of

interest is located.

Using multiple threads to do work for serial number

checking is the core idea in this design. The entire serial
number verification process is divided into many small

pieces (functions), and each piece will be run using a

separate thread. Any dependency among threads can be

resolved by “WaitHandle.” On a high level design, the

verification can be divided into 4 parts: verifying the

program binary’s hash value, and 3 verification logics for

checking the serial number. Each of these 4 logic blocks

is further divided.

There are a few reasons why multithreaded processing

is chosen here over a single threaded version. First, it

breaks the sequential execution flow. Even if code is

broken into many pieces, the execution flow is not
changed (disrupted); a hacker can still easily trace the

execution to understand in which order the code is run.

Once the order is known, code can be analyzed more

effectively. In essence, breaking-up code and running it

in a sequential order, at most, makes code tracing a bit

annoying, having to jump from one place to another.

Having many jumps can break attacker’s sense of locality,

but with analytic tools, code can be easily understood by

drawing a flow chart. In contrast, using multiple threads

running concurrently will fundamentally change the

execution order, which makes code much more difficult

to trace.
Second, multithreading is very debugger-unfriendly.

Even with source code, a multi-threaded application can

be very difficult to debug [19]. Timing is absolutely one

of the most important factors when debugging a multi-

threaded application. A bug observed in normal run may

not be reproducible in debug run simply because the

timing is different. Also, a debugger is not able to trace

two threads at the same time, in the sense that one cannot

single step through more than one section of disassembly

at the same time, even if the debugger is aware of

existence of other threads.

Third, it is out of anyone’s control when and which
thread runs; this is only determined by the operating

system’s (OS) task scheduler. Because of this, different

runs of the same code on the same debugger may yield

different execution sequence, depending on which thread

the debugger is able to gain control over.

Using multiple validation logic has an obvious

advantage because it may prevent a single point failure.

Our design employs 4 validation logics with 2 of them

being able to correct each other if an inconsistent result is

detected. While this method is not foolproof, it certainly

should work against attackers, as attackers will have to

spend much more time locating existence of these logics
and then breaking them. At the beginning of program,

only 2 of the 4 logics are executed, and the other 2 are

delayed according to our new design. This way, attackers

may not discover the other logics even if they follow the

execution flow from the start.

In our design, certain GUIs are disabled by default, and

their corresponding event handlers are not registered with

the event. This is used to prevent unauthorized use of

some special functions, such as full functions not found

in trial versions. GUIs are properly enabled and event

handlers properly registered if, and only if, all validation

logics determine the program is a legitimate full version
(not a hacked version). They are routinely turned off and

on again to prevent an attacker from enabling them at a

program’s start by modifying the binary code.

OnIdle is an event issued by the OS when a program is

in an idle state; it allows for idle time processing of low

priority tasks. When a program needs user interaction,

this event will be issued very frequently, as the user is

very slow compared to the hardware. When the program

does not have a user focus (not being the topmost

application), this event may not be issued since this entire

program may not receive any CPU time. This new design

utilizes the abovementioned feature of OnIdle as an anti-
debugger technique and will use this event to process

certain important tasks, such as synchronizing

encryption/decryption keys and serial number checking.

Serial number checking takes advantage of an idle

event being run very frequently, whereas key

synchronization takes advantage of an idle event and can

only run when a program has user focus. In the latter case,

crypto keys may not be synchronized if the OnIdle

function does not run, such as when the debugger

windows are on top of the program’s window.

With certain functions that require paying for a full

version license, their results will be encrypted and then
decrypted with key pairs. One key is calculated in

advance at license issue time and stored in the license,

while the other is derived from a serial number checking

 Software Activation Using Multithreading 11

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 1-17

process. If everything goes right, these two keys are

identical; therefore, encrypting the result then decrypting

it should not change the result. If keys do not match, the

correct result will be altered in the decryption process,

yielding an incorrect final result for output.

This method adds protection against unauthorized use

of a full version feature when not properly licensed, but it

may carry significant overhead due to crypto-operations.

Since we believe multi-threaded checking is more
effective than a single threaded version in terms of anti-

reversing in theory, this design will run extra threads to

complicate the situation more. And these extra threads

will be used in combination with deadlocks.

Deadlock refers to a situation in which 2 or more

threads each holding some resources while waiting to

acquire more which are held by other threads; because no

thread is able to obtain all required resources to proceed,

all of them will sit idle and blocked. A classic example of

deadlock caused by cycle is illustrated in Figure 11.

Deadlock can work well against stepping through code

in a debugger. When stepping through instructions in a
debugger, one cannot move to the next instruction until

the current one finishes. For example, if one tries to step

over a function call that takes a long time to finish, the

instruction right after the function call cannot be executed

until the call returns. In this case, execution is temporarily

blocked. If that function never returns, such as running an

infinite loop, then the next instruction will be blocked

indefinitely. In this new design, we will purposely create

a deadlock situation with extra junk threads (threads that

do not execute any useful work). When a debugger picks

such a thread for a user to step through, it is expected that

the progress will be blocked indefinitely. This technique
attempts to divert an attacker from stepping through those

threads that do work of real interest.

In our design, certain operations are delayed to hide its

relationship with other operations. For example, one

important use of this is exiting the program when

checking fails to pass. Certain system calls can be easily

identified by debuggers by tracing these backwards

sequentially, an attacker may discover where checking is

performed. By delaying a certain execution and running it

in another thread, we can effectively break an attacker’s

sense of code locality, making backwards tracing

pointless. Using this technique, we can shift comparisons
away from checking logic, forcing an attacker to trace

more code.

Obfuscated code is more difficult to understand,

because one has to distinguish between the useful and

useless code. This is often accomplished by inserting junk

code and shifting code blocks around it. In this project,

we hope to apply this technique to scramble code, but it is

not easy to find a good polymorphic engine to accomplish

this task. Xenocode’s PostBuild [17] has built-in code

obfuscator; we will use it without analysis of its

effectiveness.

Figure 12 below shows the flow and dependency of
blocks responsible for verifying the integrity of a

program’s binary by hashing. If modification is detected,

the program will terminate itself.

ReadLicenseFile StartupProgramIntegrityCheck

ExtractDataFromLicense VerifyProgramIntegrity

KillProgram_IntegrityCheck

mreLicenseRead

mreLicenseData

mreComputeProgramHashStartup

mreProgramIntegrityCheck

Figure 9. Block Diagram for Integrity Check

Figure 13 shows the flow and dependency of blocks

responsible for verifying the serial number at program

startup. If verification is passed, GUI and corresponding

handlers are enabled.

ReadLicenseFile

ExtractDataFromLicense

VeriftyVC1

StartupProgram

IntegrityCheck

CalculateVC1

Startup

EnableGUI
RegisterGUI

Handler

mreLicenseData

mreLicenseData

mreVC1Check

mreComputeProgram

HashStartup

mreEnable

GUI

mreGUI

Handler

mreLicenseRead

Figure 10. First Module

Figure 14 shows the flow and dependency of using a

secondary module to verify a checking result obtained at

program startup. If secondary checking demonstrates a

different result than the startup checking, overall

verification is deemed failed. In this case, the program

will terminate.

ReadLicenseFile

ExtractDataFromLicense

mreLicenseRead

CalculateVC2mreLicenseData

VerifyVC1ByVC2

mreVC2Check

Figure 11. Second Module Verifies First Module

12 Software Activation Using Multithreading

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 1-17

Figure 15 shows a flowchart of utilizing a timer to

activate the 3
rd

 verification module, whose result will be

compared to that of the secondary module. If a difference

is detected, overall verification is deemed failed, GUI

will be disabled and handlers will be deregistered, and the

program will terminate.

Timer

OnTimer_GUI OnTimer_Handler OnTimer_CheckVC1ByVC2

EnableGUI RegisterGUIHandler
CalcuateVC2

VeryVC1ByVC2

Figure 12. Third Module Checks Second Module

VI. TESTING AND RESULTS

6.1 Testing Setup and Metric

A demo program was written in C#, then converted to

native x86 binary using XenoCode’s PostBuild, without

any obfuscation applied. Microsoft Visual Studio
(MSVS)’s built-in debugger will be used alongside a

source code to set expectations; this would not be the real

world scenario. Tests were repeated using OllyDbg and

IDA Pro. These tests was the main testing. A program

can be set to run in a specific mode (single threaded

versus multi-threaded), and a number of junk threads can

be specified.

Tests were be divided into 3 parts. Part one was the

correctness of implementation. Tests in part one included

testing for correct thread count, as well as the correct

behavior of some functions. Part two was on comparing a

single threaded version against a multi-threaded version.

Testing in part two determined whether using multiple

threads for checking has advantages over a single
threaded version. Part three examined whether junk

threads will make attacking more difficult.

In our testing, we used number of lines of disassembly

that can be stepped through as the main metric. In a

single threaded version, one should be able to step

through all relevant code in order to analyze it, whereas

in a multi-threaded version we expect only some of the

code can be traced. If an attacker cannot trace and

analyze all the relevant code, there is little chance the

attacker can successfully break the software security.

Also, extra effort needed to implement the multi-

threaded version will be considered and compared to the
single threaded version.

Finally, XenoCode’s obfuscator was simply evaluated,

by comparing how much of the disassembled code are

different.

6.2 Test Results

In testing our implementation, we paid particular

attention to the correctness of threads. Table 3 below

summarizes results of different test runs as they relate to

thread issues.

Table 3. Demo Program’s Thread Count in Various Running Modes

Thread Mode

Number of

Junk

Threads

Observation

Single threaded N/A Program runs on 9 threads minimum (GC + GUI + Timers + asynchronous

event firing, and so on). Max was 12 as reported by WTM.

Multi threaded 0 WTM reported a max of 12 threads running at the same time. Thread

count gradually falls to 9 according Windows Task Manager (WTM),

which is the similar to single threaded mode. This makes sense too since

when checking is done, most extra threads are terminated. Theoretically,
the program should launch 10 individual threads, but it appears that they

do not all run at the same time.

Multithreaded 5 WTM reported a max of 17 threads running at the same time; it falls to 14

after a while. Total count is 17 because of 5 junk threads.

Multi threaded 10 WTM reported a max of 22 threads running at the same time; it falls to 19

after a while. Total count is 22 because of 10 junk threads.

Multithreaded 15 WTM reported a max of 27 threads running at the same time; it falls to 24

after a while. Total count is 27 because of 15 junk threads.

The thread counts in the Table 3 are consistent,

assuming 9 threads are needed to run the application on
average after checking is completed. Running code in
debuggers has the same count as running it without
debuggers; therefore, implementation of threading is
correct.

Our demo software was tested with Microsoft Visual
Studio. The tests shown in Table 4 are done with MSVS’s

debugger with source code. The reason for using this
testing environment is so that we can set breakpoints
correctly and track which function is being executed. In
other words, this is for the purpose of convenience and to
set our expectation when debugging in other
environments; without such convenience, debugging can
only be substantially more difficult (this should be the

 Software Activation Using Multithreading 13

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 1-17

best testing scenario possible). Table 4 summarizes testing results in various scenarios.

Table 4. Testing Scenarios Using MSVS Debugger

Test
Case

Number

Observation

1 Single Threaded, no junk thread, break on all relevant functions. Unable to proceed to other

functions because Idle function runs continuously and this is the function captured debugger’s

attention all the time. GUI is launched, but unable to interact with it because Idle is constantly
running.

2 Single Threaded, no junk thread, break on all relevant functions except Idle. Without Idle

interfering, GUI is launched, and can be interacted with normally. Checking is done sequentially in

the right order as specified. All parts of code can be traced.

A frequent timer event can severely disrupt debugger process, as relevant functions run all the time.
All handlers of timer event can be debugged, as long as breakpoints are set for them. Present of

timer did not affect debugging code relevant checking functions, because they do not take effect

until initial checking is done.

3 Single Threaded, no junk thread, break on all relevant function, but Idle added in later. As long as
the first breakpoint for checking is reached before setting the breakpoint of Idle, checking can be

traced as in case 2 above, but timer events cannot be traced due to constant running of Idle.

4 Multi Threaded, 0 junk threads, break on all relevant functions. Observation is identical to case 1

above, which matches expectation

5 Multi Threaded, 0 junk threads, break on all relevant functions except Idle. The first function can be

partially traced, a few other functions can be traced partially at random (non-deterministic about how

much of a function can be traced). Timer events can interfere with normal tracing

6 Multi Threaded, 0 junk threads, break on all relevant function, but Idle added in later. Result similar

to case 5, except Idle will disrupt code execution more severely compared to case 5 above. In

essence, checking is executed interleavingly with Idle.

7 Multi Threaded, 2 junk threads (minimum needed to create deadlock), break on all relevant

functions. Deadlock situation is successfully created. After deadlock, only Idle can be traced, no

checking can be traced.

8 Multi Threaded, 2 junk threads, break on all relevant functions except Idle. Deadlock situation

created, but checking can be traced like in case 5 above.

9 Multi Threaded, 2 junk threads, break on all relevant function, but Idle added in later. If added too
soon, then like case 7 above; if added late enough, then like case 8 above.

Additional tests were performed with more junk

threads (with numbers being 5, 10, and 15) in the same

setup as test case 7, 8, and 9 in Table 4, and the same
results were obtained correspondingly. In this case, more

threads being deadlocked added no extra benefits. In fact,

the presence of a deadlock added no more difficulty

compared to just being multithreaded in this particular

testing environment. This is due to the fact that

Microsoft’s debugger (with source code) can smartly

execute code in an interleaving manner, allowing the

execution to change from one thread to another, although

it is out of the user’s control which thread is executed and

when.

Single breakpoint was also tried out in testing. In

multithreaded case, it is definitely worse than setting
breakpoints on all relevant functions (functions cannot be

traced without setting breakpoints at them in this case). In

a single threaded case, depending on where the single

breakpoint is set, it is possible to trace all code relevant to

checking.

With MSVS in single threaded mode, line counts are

the same for setting a breakpoint at only the start and at

all functions except Idle; but if a breakpoint was set at

Idle, line count dropped significantly. The reason is an

Idle event was issued many times by the OS to the

application, hence triggering the Idle event handler to run

many times.
When running the same program in multi-threaded

mode, the line counts stay the same across all runs at 40

and 30, for setting breakpoints at all functions including

Idle and at start only respectively. When breakpoints are

set at all functions excluding Idle, line counts varies

significantly across runs, ranging from 40 to over 140,

with an average being 73.35.

When junk threads are used and breakpoints set at all

functions except Idle, line counts vary significant. Here

we distinguish between useful lines (lines of code of

threads doing useful work) and junk lines (lines of code

from junk threads doing nothing useful). Numbers of junk
threads tested were 2, 5, 10, 15, 20, and 25. When

number of junk threads increases, lines of junk code

increase and lines of useful code decreases overall.

The average for the various tests discussed above are

plotted on the same graph in Figure 16. According to our

test, when using multi-threading mode without junk

threads, an average line count is about 73, compared to

113 in the single threaded mode. When junk threads are

used, line counts for useful lines drop significantly even

14 Software Activation Using Multithreading

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 1-17

if only 2 junk threads were used. As more junk threads

are used, useful line counts drop even more. In contrast,

junk line counts increase steadily at a slower pace as

more junk threads are introduced.

Figure 13. Average Line Counts of Useful and Junk Instructions

Figure 17 demonstrates a percentage count for the

average number of traceable, useful instruction. As

shown, only about 20% to 30% of useful instructions can

be traced when junk threads are used, as opposed to about

75% when none are used. When 25 junk threads are used,

traceable useful code drops to about 14%. From an

attacker’s perspective, the lower the percentage, the less

useful code he can trace, which in turn means more

difficult for the attacker to understand the code when it

comes to reverse engineering.

Figure 14. Traceable Useful Instructions

Next, we provide test results obtained using both

OllyDbg [29] and IDA Pro [28]. First, tests were run with

OllyDbg using the same pattern as with MSVS, with the

exception that breakpoints were not set in the same way.

Also, a different counting scheme is used. All of

instruction counts were based on the calculation of

addresses in blocks selected as relevant. Some of the

codes were included in counts not executed by the

debugger. They were only considered a rough estimate.
Counts are likely to include a large number of

instructions that are not relevant to checking; but rather,

they are part of windows API libraries, such as the code

executed initially to start the program or GUI libraries.

High number of line counts is due to the inability to

clearly identify relevant code correctly from disassembly.

Because of the inability to identify code, no breakpoint is

set in testing. An average result from the single threaded

case will be called “total”. When counting an instruction

in a multi-threaded mode, a different approach is used.
We will try to identify code that cannot be traced based

on the thread table provided by OllyDbg, and subtract

them away from the “total”; the resulting number will be

regarded as the count for that particular test run. In theory,

this number also represents the maximum amount of code

an attacker can trace.

In single threaded mode, it seems like code can run

normally; therefore, it should be theoretically possible to

trace the code execution as long as breakpoints are

smartly and properly set after correctly identifying

relevant code sections in disassembly. Even though

checking is done in a single thread, system still has other
threads running in the background, such as the Idle event.

In a multithread mode, things get much more

complicated:

 OllyDbg seems to capture the first available

thread and executes that one in the foreground

(making it available to step through). In this case,

it appears to be always the same thread in our

tests. Also, it appears like the thread captured by

debugger is the runtime’s GUI thread, which

launches other checking threads. Once checking

threads are launched, this captured thread pauses.

Depending on how fast we step through this

captured GUI thread, we may or may not see

other threads because they can finish. In cases

where we can jump into other threads, we cannot

tell which checking thread (or even the Idle

thread) we jump into.

 Repeated runs yield different results in our test

runs. This can get even worse if we randomize

the start order of checking threads.

 From running code in OllyDbg in multithreaded

mode, we were unable to (or cannot easily)

determine relationships among various threads

(such as which depends on which).

 Setting breakpoints is an extremely difficult task

in multithreaded mode, because one thread may

block another. If we want to trace one thread, we

must set a breakpoint for it. But if that thread

runs in the background and it blocks the one

running in the foreground (the one we are

currently stepping through), then we will be in a

deadlock like situation since the foreground

 Software Activation Using Multithreading 15

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 1-17

thread cannot proceed until the blocking thread

finishes, which it cannot because of the

breakpoint. If breakpoints are not properly used

in a particular run, we cannot even bring up the

GUI of the program (which happened quite

often as we cannot set the breakpoints right).

With no breakpoints set, we can get to the GUI

of the program.

 While OllyDbg may take us to the code

representing the thread (by double click on the

thread), it is only possible when the thread has

not finished execution. This may require one to

work very fast.

Base on the results of test runs, it is clear that different

execution paths are taken at different runs; therefore,

resulting in a different count each time. Due to this fact, it

is more difficult for an attacker to reverse engineer from

the disassembly because he would get a different view of

code each time he tries.
Testing with IDA Pro yielded similar results in single

threaded mode as OllyDbg, although result is slightly

different from that obtained from OllyDbg. This is due to

inability to clearly identify code in the counting process.

Overall, code seems to run OK in debugger, meaning it

can be effectively traced and analyzed in theory.

In a multithread mode, things get much more complicated

(even worse than OllyDbg):

 This time, we cannot even enter the password

into the program, since it is launched in another

thread. This is very devastating because without

it, nothing else will run properly. IDA Pro

clearly did not capture this thread in the

foreground. This is going to be the end of it even

if other code can run. We did not notice this

before in OllyDbg since it got into a deadlock

trap.

 IDA Pro, like OllyDbg seems to capture the first

available thread it can and executes that one in

the foreground (making it available to step

through). In this case, it is appears to be always

the same thread in our tests. But this thread it

captured seems to run in an endless loop; it is

perhaps the message processing thread from the

runtime, or the Idle event thread. Even though it

is able to show the different threads in a thread

window, it cannot jump to any of them, not even

to their location in disassembly.

 Again, we cannot determine relationships among

various threads running code in IDA Pro in

multithreaded mode, just like in OllyDbg,

because we cannot step through them.

In the case of IDA Pro, we are not able to obtain a

meaningful count of instructions in multi-threaded mode,

because we cannot identify code corresponding to

different threads. Testing with OllyDbg, these

observations are obtained with junk threads added on top

of other checking threads:

If junk threads are launched before checking threads,

we were never able to get the program run correctly, as

we got into the deadlock trap. No matter how many junk
threads we used, the result was always the time, therefore,

it is unclear whether number of junk threads matter

because timing is another important factor. This is likely

due to junk threads are launched before the useful

checking threads (in a sequential order). When junk

threads are launched first, they are the only threads

around (in addition to system threads), and OllyDbg

seems to capture one such thread (probably because

checking threads are not even launched yet) and shows it

in the foreground, and then wait indefinitely. In this case,

two junk threads appears to be sufficient for our purpose.

If junk threads are launched after checking threads, the
situation becomes more or less like the regular

multithreaded case discussed earlier, except it is deadlock

causing trouble instead of breakpoints (or actually can be

both of them at the same time if breakpoints are set).

Assuming each thread, either junk or useful, has equal

chance of being captured by OllyDbg and put to

foreground, more junk thread should work to our benefits

statistically in theory. Figure 18 shows the results

obtained when various number of junk threads are used.

In short, simple testing result on this can be generalized

as the more junk threads the better.

Figure 15. Useful Thread Selected

We are unable to repeat tests with IDA Pro, because

we cannot identify code corresponding to threads.

Because of this, we would tend to say from an attacker’s

prospective OllyDbg appears better than IDA Pro for

purpose of reversing code.

To implement this new design using multiple threads,

extra effort is needed. Extra efforts are summarized in

Table 5.

16 Software Activation Using Multithreading

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 1-17

Table 5. Effort Needed to Implement Proposed Design

Work Development Effort

Dividing workload from single function

into multiple smaller functions

This requires minimum effort, only a little extra time is required

(about 30 minutes for this demo). This step is simple overall. Time is

mostly spent on coding than analysis.

Ensuring dependencies among multiple

threads are not changed

This requires some significant effort; about 2 extra hours are used.

Time is mostly spent on analysis. In C#, about 40 lines of extra code

are added for this purpose.

Coding the multiple threads This requires minimum effort assuming one is familiar with the

threading library in use. In this demo, about 10 minutes were needed

for this part of coding. In C#, about 30 lines of extra code are added

for this purpose.

Coding junk threads and deadlocks This requires minimum effort. In this demo, about 5 minutes were

needed for coding, and about 20 lines of code are written.

Other work related to multithreading Coding timer function requires minimum effort, properly launching

application in multithreaded mode also requires only little effort.

In summary, the extra effort in coding is not too

difficult assuming one is already familiar with the library

related to multithreading. On the other hand, making sure

the design works properly requires more work in the
analysis phase. In the demo, total effort is not more than 4

hours and approximately 100 extra lines of code; this is

not much overall given the positive outcome.

Code obfuscation is also part of the new design;

incorporation of it would make disassembled code more

difficult to trace and force attackers to waste time by

studying junk codes. In this project, XenoCode’s built-in

obfuscator was used primarily for this purpose.

Obfuscation is achieved by inserting junk code into

binary code. Without detailed analysis of its effects, the

result seems good if the highest level of obfuscation is

used. We plotted the effects of obfuscation of all 4 levels
against the original source code, as shown in Figure 19.

In Figure 19, each vertical bar is a comparison between

the obfuscated code and the unobfuscated code. Areas

colored in red represents a difference in code, whereas

areas colored in white represents the same code. There

are 4 levels of obfuscation provided by XenoCode, level

1 being the lightest obfuscation and level 4 being the

heaviest obfuscation. The results in Figure 19 from left to

right correspond to level 1 to level 4. As can be seen in

the figure, there is very little white area at level 4,

suggesting good obfuscation.

VII. CONCLUSIONS AND FUTURE WORK

Our proposed design uses multiple threads and

multiple validation modules for verifying serial numbers.

After careful analysis of test results, running code in a

multithreaded manner for checking serial numbers has

clear advantages over the single threaded option. In

particular, the following appear to be effective for our

purpose:

1. Accepting user input in a thread other than the

checking threads.

2. Running Idle event handler.

3. Use of junk thread and deadlock, especially

launching them before useful ones.

4. Checking serial number in multiple threads.

Our method achieved the primary goal of this work. It

proves cracking a serial number validation can be made

more difficult if multiple threads are used instead of a

single thread since it reduces the amount of traceable

code. Also, overall extra efforts needed to implement the

new design are small compared to that of the entire

software development cycle, making this method

practical to use.

We studied how multiple threads can make dynamic

analysis of disassembly in debuggers more difficult to

perform. Future research can be expanded to include how

difficult it can be to extract code to create KeyGens from
a multithreaded checking mechanism, especially when

code is obfuscated by third party tools. Also, the effects

of a running timer (especially those with short time

intervals) could be studied further to understand its

impact on debugging code. In addition, one could use

third party tools to try to analyze interaction between

threads to see if thread dependency can be found; and if

so, can the dependency be understood. One could also try

to use threads purposely running in an infinite loop

instead of deadlocks to find out which method is better

for our purpose. Finally, one can try to implement our

new design in another programming language to see if
our method still holds against attack.

REFERENCES

[1] activatesoft.net, “Product Activation Overview”,

http://www.activatesoft.net/activation_overview.asp

[2] Chris Davies, “Windows 7 cracked after Lenovo

OEM key leaks”,

http://www.slashgear.com/windows-7-cracked-after-

lenovo-oem-key-leaks-2950684/

[3] ORC, “How to Crack”,

http://www.mindspring.com/~win32ch/howtocrk.zip

[4] Jianrui Zhang & Shengyu Li, “CS265 Project 2
Report”, 05/11/2009

[5] MLC Technologies, “Hardware Key Activation”,

http://www.mcl-

collection.com/support/licensing/hardware_key.php

http://www.activatesoft.net/activation_overview.asp
http://www.slashgear.com/windows-7-cracked-after-lenovo-oem-key-leaks-2950684/
http://www.slashgear.com/windows-7-cracked-after-lenovo-oem-key-leaks-2950684/
http://www.mcl-collection.com/support/licensing/hardware_key.php
http://www.mcl-collection.com/support/licensing/hardware_key.php

 Software Activation Using Multithreading 17

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 1-17

[6] Schlumberger, “Cyberflex Access Cards

Programmer’s Guide”, Jan 2004

[7] Bank of China, “Security Mechanism (Cooperate

Service)”,

http://www.bankofchina.com/en/custserv/bocnet/200

812/t20081212_144526.html

[8] Logic Protect,

http://www.logicprotect.com/index.asp

[9] Mark Stamp, Information Security: Principles and
Practices, Wiley 2006

[10] Mark Stamp, lecture notes on “Software Breaking”,

Fall 2009

[11] Wikipedia,

http://en.wikipedia.org/wiki/Product_activation

[12] Martin Cowley, “Frontend Plush”, http://frontend-

plus.software.informer.com/

[13] Eric Lafortune, “ProGuard”,

http://proguard.sourceforge.net/

[14] Christian Collberg, “SandMark”,

http://sandmark.cs.arizona.edu/

[15] Scott Oaks, “Java Security”, Published by O’Reilly,
2001

[16] Borland, JBuilder 2007 Documentation

[17] XenoCode, http://www.xenocode.com/

[18] Wikipedia,

http://en.wikipedia.org/wiki/Polymorphic_code

[19] Shameen Akhter & Jason Roberts, “Multi-Core

Programming: Increasing Performance through

Software Multi-threading”

[20] BestSerials, http://www.bestserials.com/

[21] CrackLoader, http://www.crackloader.com/

[22] Australian Institute of Criminology,

http://www.aic.gov.au/
[23] Jedisware, http://www.jedisware.com/

[24] Cyberlink,

http://www.cyberlink.com/products/powerdvd/overvi

ew_en_US.html

[25] Chinmaan,

http://i179.photobucket.com/albums/w306/chinmaan/

activation.jpg

[26] RabLab, http://www.rarlab.com/

[27] Avast, http://www.avast.com/free-antivirus-

download

[28] IDA Pro, http://www.hex-rays.com/idapro/

[29] OllyDbg, http://www.ollydbg.de/

Mark Stamp has worked in the field of information

security for more than 20 years. Following academic

work in cryptography, he spent seven years as a

cryptanalyst with the National Security Agency, followed

by two years developing a digital rights management

product for a Silicon Valley startup company. For the

past ten years, Dr. Stamp has been with the Computer

Science at San Jose State University, where he teaches

courses in information security. He has published

numerous research articles and is the author of two
textbooks, Information Security: Principles and Practice,

2nd edition (Wiley 2011) and Applied Cryptanalysis:

Breaking Ciphers in the Real Word (Wiley 2007).

Jianrui (Louis) Zhang graduated from University of

California, Berkeley with a BS degree in Electrical

Engineering and Computer Science. Following

graduation, he worked at Xignite, a startup company that

provides financial data using web service technology.

Louis then obtained a master's degree in Computer

Science from San Jose State University, doing

researching in software security. He is now working in

the research department at Gilead Sciences, developing
scientific software.

http://www.bestserials.com/
http://www.crackloader.com/
http://www.aic.gov.au/
http://www.jedisware.com/
http://www.cyberlink.com/products/powerdvd/overview_en_US.html
http://www.cyberlink.com/products/powerdvd/overview_en_US.html
http://i179.photobucket.com/albums/w306/chinmaan/activation.jpg
http://i179.photobucket.com/albums/w306/chinmaan/activation.jpg
http://www.rarlab.com/
http://www.avast.com/free-antivirus-download
http://www.avast.com/free-antivirus-download
http://www.hex-rays.com/idapro/
http://www.ollydbg.de/

