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Abstract — Linear congruential generator has been 

widely applied to generate pseudo-random numbers 

successfully. This paper proposes a novel chaos-based 

image encryption scheme using affine modular maps, 

which are extensions of linear congruential generators, 

acting on the unit interval. A permutation process utilizes 

two affine modular maps to get two index order 

sequences for the shuffling of image pixel positions, 

while a diffusion process employs another two affine 

modular maps to yield two pseudo-random gray value 

sequences for a two-way diffusion of gray values. 
Experimental results are carried out with detailed analysis 

to demonstrate that the proposed image encryption 

scheme possesses large key space to frustrate brute-force 

attack efficiently and can resist statistical attack, 

differential attack, known-plaintext attack as well as 

chosen-plaintext attack thanks to the yielded gray value 

sequences in the diffusion process not only being 

sensitive to the control parameters and initial conditions 

of the considered chaotic maps, but also strongly 

depending on the plain-image processed. 

 

Index Terms — Affine modular maps, Chaotic system, 
Image encryption, Permutation, Diffusion  
 

I.  INTRODUCTION 

In recent years, the transmission of digital images over 

the Internet and wireless networks has been developed 

rapidly due to the fascinating developments in digital 

image processing and network communications. It is 

urgent to protect the communicated image information 

against illegal usage, especially for those requiring 

reliable, fast and robust secure systems to store and 
transmit, such as military image databases, confidential 

video conference, medical imaging system, online private 

photograph album, etc. Digital images possess some 

intrinsic features, such as bulk data capacity and high 

correlation among adjacent pixels. Therefore most 

conventional ciphers like DES (Data Encryption 

Standard), IDEA (International Data Encryption 

Algorithm), AES (Advanced Encryption Standard), etc. 

[1] are not suitable for practical digital image encryption 

due to the weakness of low-level efficiency while 

encrypting images. Fortunately, chaos-based image 

encryption algorithms have shown their superior 

performance [2-8]. Chaos has been introduced to 

cryptography thanks to its ergodicity, pseudo-randomness 

and sensitivity to initial conditions and control parameters, 

which are close to confusion and diffusion in 

cryptography. These properties make chaotic systems a 

potential choice for constructing cryptosystems. Chaos-
based image encryption schemes are usually composed of 

one permutation process and one diffusion process 

generally. The aim of permutation process is to reduce 

the high correlation among image pixels, while that of 

diffusion phase is to change pixel gray values 

sequentially by diffusion functions so that a tiny change 

for one pixel can spread out to almost all pixels in the 

whole image. A good permutation process should show 

good shuffling effect and a good diffusion process should 

cause great modification over the cipher-image even if 

only a minor change for one pixel in the plain-image.  

Since Matthews [9] firstly used a chaotic system to 
design a cryptographic algorithm in 1989, many chaos-

based digital image encryption schemes have been 

proposed in the literature. Among these encryption 

schemes, one-dimensional and two-dimensional chaotic 

systems, such as Logistic map, skew tent map, Arnold 

map, baker map and standard map, were applied widely 

owing to the advantage of simplicity [5-8,10-12]. 

However, some chaos-based image encryption algorithms 

are broken recently due to their small key spaces and 

weakly secure encryption mechanisms [13-19]. As we 

know, a good encryption scheme should be sensitive to 

cipher keys; the key space should be large enough to 
resist brute-force attack; the permutation and diffusion 

processes should possess good statistical properties to 

frustrate differential attack, entropy attack, known-

plaintext attack and chosen-plaintex attack, etc. To 

overcome the drawbacks such as small key space and 

weakly secure permutation and diffusion architecture in 

one and two dimensional chaotic systems, many 
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researchers turn to find some improved chaos-based 

cryptosystems with large key spaces and good diffusion 

mechanisms. For instance, piecewise nonlinear chaotic 

algorithm was proposed by Behnia et al. to enhance the 

security [20]; Zhang et al. recently proposed an image 

encryption method based on skew tent map and 

permutation-diffusion architecture [21]. This method 

generates a P-box with the same size of plain-image and 

shuffles the positions of image pixels totally; it uses 
different keystreams depending on plain-image in the 

diffusion process, so the method is much secure in the 

sense of preventing chosen-plaintext attack. Zhu et al. [22] 

proposed a new permutation method at the bit-level, 

which can confuse and diffuse the image at the same time. 

Liu and Wang [23] then improved the proposed scheme 

in [22] to encrypt color image, where the authors 

permuted the image at the bit-level by mixing all the bits 

in red, green and blue components. The chaotic map used 

in the permutation phase is PWLCM instead of Arnold 

cat map. Other improvements like applying hyper-chaotic 

differential systems, coupled map lattice system and 
multi chaotic systems have been investigated and applied 

to image encryption as well [24-26].  

In this paper, a novel image encryption scheme with an 

efficient permutation-diffusion structure is proposed. In 

both the permutation process and the diffusion process,  

chaotic maps are utilized. First, the permutation process 

employs two affine modular maps to generate two chaotic 

orbits { 0 1 }k kx y k      corresponding to initial 

conditions 
0 0x y  respectively; the  sequence 

{ 1 }kx k H W       ( H  and W  are the width and 

the height of the processed image respectively) and the   

sequence { 1 }ky k H W       are then sorted to 

yield two index order sequences applied to permute the 

image pixel positions totally. To improve the diffusion 

effect, a two-way diffusion process is presented, where 

another two affine modular maps are utilized to generate 
two pseudo-random gray value sequences. The two 

sequences are then used to modify the pixel gray values 

sequentially. The yielded gray value sequences are not 

only sensitive to the control parameters and initial 

conditions of the considered chaotic maps, but also 

strongly depend on the plain-image processed, therefore 

the proposed scheme can resist statistical attack, 

differential attack, known-plaintext attack as well as 

chosen-plaintext attack. The proposed image encryption 

scheme also possesses large key space, therefore 

efficiently frustrating brute-force attack.  

The rest of the paper is organized as follows. In 
Section II, affine modular map and its chaotic feature are 

introduced. Section III proposes a novel chaos-based 

image encryption scheme composed of one permutation 

process and one diffusion process. The security of the 

proposed scheme is evaluated via detailed analysis and 

experiments in Section IV. Finally, conclusions are drawn 

in Section V. 

 

II. THE AFFINE MODULAR MAP  

Linear congruential generator (LCG) has been used 

widely since Lehmer initially in 1951 proposed the 

original algorithm [27]. The linear congruential generator 

is based on the formula  

1  mod 0 1n nx a x c M n                             (1) 

where M  is the modulus usually chosen to be the largest 
prime number less than the computer’s word size and the 

multiplier a , the increment c  and the seed 
0x  are 

integer values between 1 and 1M  . The extended 

version of LCG acting on real numbers may be written as  

1 ( )  mod  1 0 1n
n n

x
x B x c n

a
                    (2) 

where the control parameters (0 0 5] [0 1)a c       and 

the state values 
1n nx x   belong to [0 1) . We shall call it 

affine modular map. As 0 0 5c a    , map (2) 

becomes the well-known regular Bernoulli shift map 

0 [0 1] [0 1]B      given by  

1 0 ( ) 2 mod 1

2 if [0 1 2)
      

2 1 if [1 2 1]

n n n

n n

n n

x B x x

x x

x x

  

   
 

    

                  (3) 

The Bernoulli shift map yields a simple example for an 

essentially nonlinear stretch-and-cut mechanism, as it 

typically generates deterministic chaos. Such basic 

mechanisms are also encountered in more realistic 

dynamical systems. A typical orbit of 
0x  derived from 

the dynamical system is 
0{ ( ) 0 1 }k

kx B x k     , 

which is shown in Fig. 1(a) for 

0 0 2709 0 311 0 761x a c        . Its waveform is 

quite irregular and indicates that the system is chaotic. 

The control parameter a c  and the initial condition 
0x  

can be regarded as cipher keys as the map is used to 

design image encryption schemes. The bifurcation 

diagrams of map (2) are shown in Fig. 1(b)-(c) for the 

parameters a  and c  respectively, where for each value 

of a  or c , 300 orbit points are plotted. There also exist 

some good dynamical features in affine modular maps, 

such as desirable auto-correlation and cross-correlation 

features. The iterated trajectory is used to calculate the 

correlation coefficients, which are shown in Figs. 1(d)-(e) 

respectively. The cross-correlation coefficients are 

calculated by the orbits of 
0 0 2709x    and 

0 0 3329y   .  
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(a) The chaotic orbit of 
0 0 2709x    

 

(b) Bifurcation diagram for 
nx  vs a  with fixed 0 2311c     

 

(c) Bifurcation diagram for 
nx  vs c  with fixed 0 301a     

 
(d) The auto-correlation 

 
 (e) The cross-correlation of two different orbits  

  
Figure 1. Orbit derived from the considered affine modular map with 

0 311 0 761a c      and the bifurcation diagrams. 

 

III. THE IMAGE ENCRYPTION SCHEME BASED ON AFFINE 

MODULAR MAPS  

A. Permutation process 

In this subsection, we propose a permutation process to 

confuse plain-image totally. Thanks to the chaotic nature 

of affine modular map on the unit interval [0 1] , one can 

easily get the chaotic orbit { 0 1 }kx k     of 
0x  with 

given control parameters a c . We rearrange all the 
kx  

values of the orbit to get a new sequence 

{ 0 1 }k kx      according to the order from small to 

large. As a result, we then get an index order number for 

every 
kx . The index order number sequence can be 

applied to permute the image pixel positions and 

therefore can confuse the image to get a shuffled image. 
The permutation process is stated as follows.  

 

Pixel permutation scheme:  
Step 1. Set the values of the control parameters 

( 1 2)i ia c i    and the initial condition 
0 0x y .  

Step 2. Iterate the affine modular map with control 

parameters 
1 1a c  and initial condition 

0x  to get a 

truncated orbit of 
0x , say { 0 1 1}kx k H      . 

Same operations are performed to get a truncated orbit 

{ 0 1ky k    , 1}W   by iterating the affine modular 

map with control parameters 
2 2a c  and initial condition 

0y .  

Step 3. Sort 

 { 0 1}kx k H     ,{ 0 1}ky k W      

 to get two index order sequences { 0 1}kIx k H      

and { 0 1}kIy k W     .  

Step 4. Permute the pixel gray values matrix A  by 

Ix Iy  in the following way to get a shuffled image S : 
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( ) ( ) 0 1 0 1i jS i j A Ix Iy i H j W             

  

B. Diffusion process 

It is necessary that a secure encryption algorithm 

should have a good mechanism of diffusion. On one hand, 

the diffusion processing can render the permutation 

process non-invertible, which therefore strengthens the 

security. On the other hand, the diffusion processing can 

significantly change the statistical properties of the plain-

image by spreading the influence of each bit of the plain-
image all over the cipher-image. Though the permutation 

process has changed the pixel positions of the plain-

image, it can not change the histogram of the plain-image. 

The diffusion process will enhance the resistance to 

statistical attack and differential attack greatly, in which 

the histogram of the cipher-image is fairly uniform and is 

significantly different from that of the plain-image. The 

opponent can not find any useful clues between the plain-

image and the cipher-image and so can not break the 

cryptosystem even after they spend a lot of time and 

effort. A good diffusion process should also yield 

keystreams strongly related to plain-images. When 
encrypting different plain-images (even with the same 

cipher keys), the encryption scheme should generate 

different keystreams. The diffusion process is outlined as 

follows.  

 

Pixel gray value diffusion scheme:  
Step 1. Applying the permutation process to confuse 

the plain-image A  and get a shuffled image S . Set the 

values of the control parameters ( 3 4)i ia c i    and the 

initial condition 
0 0z w  for the affine modular maps in 

the diffusion process.  

Step 2. Let 0i  .  

Step 3. Apply the following quantization formula to 

yield one 8-bit pseudo-random gray value ( )d i :  

( ) floor( )id i L z   

where L  is the color level (for a 256 gray-scale image, 

256L  ), the “floor" operation on x  returns the largest 

value not greater than x .  

Step 4. Compute the pixel gray value in the cipher-

image by a two-point diffusion transmission:  

( 1) ( 1) [( ( ) ( ))mod ]C i i d i C i L               (4) 

where ( 1)i   is the gray value of the current operated 

pixel in the shuffled image which has been rearranged 

according to the order of row or column to a vector with 

length H W , ( )C i  is the previous output cipher-pixel 

gray value. The diffusion process is well defined as the 

initial condition (0)C  is provided. (0)C  can be set to 

be part of the keys in the diffusion process or can just 

take the value of (0)d  for simplicity.  

Step 5. Compute s  by 1 [ ( 1)mod 2]s C i    to 

get the next 
1iz 
 by iterating the affine modular map with 

control parameters 
3 3a c  on 

iz  for s  rounds, that is, 

1 ( )s

i iz B z  . This is the crucial step to generate a 

keystream depending on the plain-image since s  is 

related to ( 1)C i  , so is 
1iz 
. The encrypted image not 

only relates to the cipher keys, but also relates to the 

plain-image.  

Step 6. Let 1i i   and return to Step 3 until i  

reaches H W .  

The above diffusion process implies that it can not 

influence the pixels before the tampered pixel with a gray 
value change. As a remedy, we here add a reverse 

diffusion process as a supplement to the above diffusion 

process. Another affine modular map with control 

parameters 
4 4a c  is used here.  

Step 7. Iterate the following affine modular map to 

produce another pseudo-random gray value sequence  

1

1

( )

( 1) floor( ) 0 1 1

k k

k

w B w

k L w k H W





 

          
 

Step 8. Execute the reverse diffusion process:  

( ) ( 1) [( ( ) ( ))mod ]

           2 1

D i D i C i i L

i H W

    

     
         (5) 

where ( ) 1 2D i i H W       are the final encrypted 

vector consisting of the encrypted image pixel gray-scale 

values. The value of ( 1)D H W   should be provided 

to cipher out the sequence ( ) 1 2D i i H W      . 

( 1)D H W   can handled in the same way as (0)C .  

The complete diffusion process is composed of Step 1 to 

Step 8.  

The permutation process and the diffusion process 

form the proposed image encryption scheme. The original 

image Lena is encrypted and the result is shown in Fig. 

2(b). We choose the plain-image Lena sized 256 256 . 

Fig. 2 shows the encryption  results. The cipher keys are  

1 2 1 2

0 0

3 4

3 4 0 0

0 23 0 37 0 31 0 81

0 2709 0 7507,

0 3216 0 3902

0 73 0 67 0 7627 0 3607

a a c c

x y

a a

c c z w

           

    

     

           

 
(a) 
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(b) 

 

(c) 

 
(d) 

Figure 2. The encryption results. (a) plain-image, (b) cipher-image 

(c) Histogram of original image, (d) Histogram of encrypted image 

 

IV. SECURITY ANALYSIS  

According to the basic principle of cryptology [1], a 

good encryption scheme requires sensitivity to cipher 

keys, i.e., the cipher-text should have close correlation 

with the keys. An ideal encryption scheme should have a 

large key space to make brute-force attack infeasible; it 
should also well resist various kinds of attacks like 

statistical attack, differential attack, etc. In this section, 

some security analysis has been performed on the 

proposed image encryption scheme, including the most 

important ones like key space analysis, statistical analysis, 

and differential analysis. All the analysis shows that the 

proposed image encryption scheme is highly secure. 

A. Key space analysis 

A good image encryption scheme needs to contain 
sufficiently large key space for compensating the 

degradation dynamics in PC. It should be sensitive to 

cipher keys as well, and thus can effectively prevent 

invaders decrypting original data even after they invest 

large amounts of time and resources. The analysis results 

regarding the sensitivity and the key space are 

summarized as follows. Since the permutation process is 

irrelevant to the diffusion process, the key space consists 

of the cipher keys in both processes. Therefore, the 

control parameters ( 1 4)i ia c i     and the initial 

condition 
0 0 0 0x y z w    constitute the cipher keys. The 

sensitive tests with respect to all cipher keys have been 

carried out. To verify the sensitivity of key parameter K , 

the original plain-image ( ( ))H WI I i j    is encrypted 

with K p K p      and K p    

respectively while keeping the other key parameters 

unchange. The corresponding encrypted images are 

denoted by 
1 2 3I I I   respectively. The sensitivity 

coefficient to the parameter K  is denoted by the 

following formula [6]:  

1 2

1 3

1
( ) [ ( ( ) ( ))

2

            ( ( ) ( ))] 100

s s

i j

s

P K N I i j I i j
H W

N I i j I i j %



   
 

    


       (6) 

where  

1
( )

0
s

x y
N x y

x y

  
  

  
 

and   is the perturbing value. ( )sP K  implies the 

sensitivity to the perturbation of parameter K . The 

greater of ( )sP K , the more sensitive for the parameter 

K . Table 1 shows the results of the sensitivity test where 
the initial key values are set to be the 

following(
1 2 6N N N   ):  

Permutation process: 

0 0 1 2

1 2

0 2709 0 7507 0 23 0 37

0 31 0 81

x y a a

c c

           

     
 

Diffusion process: 

0 0 3

4 3 4

0 7627 0 3607 0 3216

0 3902 0 73 0 67

z w a

a c c

        

        
 

The variations   of the considered parameters are 

shown in below:  
16 15

0 1 2 1 2 010 10x a a c c y          

16

0 0 3 4 3 4 10z w a a c c         
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We apply the proposed image encryption scheme one 

round with only perturbing one cipher key K  with the 

corresponding variation value while fixing other 

parameters.  

 Table 1. Results regarding the sensitivity to cipher keys. 

K   
0x  

0y  
1a   

2a   
1c   

2c    

( )sP K   0.9961  0.9963  0.9961  0.9961  0.9960  0.9959   

K   
0z  

0w  
3a   

4a   
3c   

4c    

( )sP K   0.9959  0.9959  0.9963  0.9963  0.9959  0.9963   

 

The results in Table 1 imply that the control parameters 

( 1 4)i ia c i     and the initial conditions 

0 0 0 0x y z w    are all strongly sensitive. It also implies 

from the results that the key space is more than 
19110 , 

which is large enough to make brute-force attack 

infeasible. The sensitivity tests can also be demonstrated 

visually, for example, see Figs. 3-4. In Fig. 3, the 

encrypted image with the key 
1 0 23a    has 99.60% of 

difference from the encrypted image with the key 
16

1 0 23 10a    ; the image encrypted by the key 

0 0 3607y    has 99.67% of difference from the image 

encrypted by the key 
16

0 0 3607 10y    . Fig. 4 

shows that the image encrypted by 

3 00 3216 0 3607a y      is not correctly decrypted 

by using the perturbed key 
16

3 0 3216 10a    , 

0 0 3607y   . The same conclusion holds with the keys 

 
3 0 3216a   ,  

16

0 0 3607 10y    .  

 
(a) plain-image Lena 

 

 

(b) Encrypted image with 
1 00 23 0 3607a y      

 

 

(c) Encrypted image with
16

1 00 23 10 0 3607a y       

 

 
 (d) Difference image between (b) and (c)  
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(e) Encrypted image with 
16

1 00 23 0 3607 10a y        

 

 
(f) Difference image between (b) and (e)  

Figure 3. Key sensitive test: result 1. 

 

 
(a) Decrypted image with 

16

3 00 3216 10 0 3607a y       

 

 

 (b) Decrypted image with 
16

3 00 3216 0 3607 10a y         

Figure 4. Key sensitive test: result 2. 

B. Statistical analysis 

Shannon pointed out in his masterpiece [28] the 

possibility to solve many kinds of ciphers by statistical 

analysis. Therefore, passing the statistical analysis on 

cipher-image is of crucial importance for a cryptosystem. 

Indeed, an ideal cryptosystem should be highly robust 

against any statistical attack. In order to prove the 
security of the proposed encryption scheme, the 

following statistical tests are performed.  

(i) Histogram. Encrypt the image Lena with one round, 

and then plot the histograms of plain-image and cipher-

image as shown in Figs. 2(c)-(d), respectively. Fig. 2(d) 

shows that the histogram of the cipher-image is fairly 

uniform and significantly different from the histogram of 

the original image and hence it does not provide any 

useful information for the opponents to perform any 

effective statistical analysis attack on the encrypted image.  

(ii) Correlation of adjacent pixels. To test the 

correlation between two adjacent pixels, the following 
performances are carried out. First, we select 6000 pairs 

of two adjacent pixels randomly from an image and then 

calculate the correlation coefficient of the selected pairs 

using the following formulae:  

Cr 
( )

( ) ( )

cov x y

D x D y



, 

( )cov x y  1

1

( ( ))( ( ))
T

i iT

i

x E x y E y


    

( )E x  21 1

1 1

( ) ( ( ))
T T

i iT T

i i

x D x x E x
 

      

where x y  are the gray-scale values of two adjacent 

pixels in the image and T  is the total pairs of pixels 
randomly selected from the image. The correlations of 

two adjacent pixels in the plain-image and in the cipher-

image are shown in the Table 2.   
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Table 2. Correlation coefficients of two adjacent pixels in two images. 

  Plain-image    Cipher-image   

Horizontal  0.9435 0.0128  

Vertical  0.9680 0.0098  

Diagonal  0.9157  0.0215  

 

The correlation distribution of two horizontally 

adjacent pixels in the plain-image and that in the cipher-
image is shown in Fig. 5.  

 
(a) 

  
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5. Correlations of two adjacent pixels in the plain-image and in 

the cipher-image: (a), (c), (e) are for the plain-image; (b), (d), (f) are for 

the cipher-image. 

(iii) Information entropy analysis. The entropy is the 

most outstanding feature of randomness. The entropy 

( )H m  of a message source m  can be measured by  

1

0

( ) ( ) log( ( ))
L

i i

i

H m p m p m




   

where L  is the total number of symbols m , ( )ip m  

represents the probability of occurrence of symbol 
im  

and log denotes the base 2 logarithm so that the entropy is 

expressed in bits. For a random source emitting 256 

symbols, its entropy is ( ) 8H m   bits. For the 

encrypted image of Lena, the corresponding entropy is 

7.9965 bits. This means that the cipher-image is close to a 

random source and the proposed algorithm is secure 

against the entropy attack. 
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C. Differential attack 

In general, attacker may make a slight change (e.g., 

modify only one pixel) of the plain-image to find out 

some meaningful relationships between the plain-image 

and the cipher-image. If one minor change in the plain- 

image will cause a significant change in the cipher-image, 

then the encryption scheme will resist the differential 

attack efficiently. To test the influence of only one-pixel 

change in the plain-image over the whole cipher-image, 

two common measures are used: number of pixels change 

rate (NPCR) and unified average changing intensity 

(UACI). They are defined as  

( )
NPCR 100

i j
D i j

%
W H




  



 

1 2| ( ) ( ) |1
UACI [ ] 100

255i j

C i j C i j
%

W H 

  
 


  

where 
1 2C C  are the two cipher-images corresponding 

to two plain-images with only one pixel difference, W  

and H  are the width and height of the processed image, 

D  is a bipolar array with the same size as image 
1C . 

( )D i j  is determined as: if 
1 2( ) ( )C i j C i j   , then 

( ) 0D i j  , otherwise ( ) 1D i j  .  

NPCR measures the percentage of different pixels 

numbers between the two cipher-images whose plain-
images only have one-pixel difference. UACI measures 

the average intensity of differences between the two 

cipher-images. To resist difference attacks, the values of 

NPCR and UACI should be large enough. The test of the 

plain-image is the “all-zero" image. We randomly select 

10 pixels and change the gray values with a difference of 

1, for example, we replace the gray value 0 of the pixel at 

position (29,142) by 1, and get the NPCR=99.6933%, 

UACI=31.1672%. The numerical results are shown in 

Table 3. The mean values of the ten NPCR and UACI 

values are 99.8232% and 37.6615% respectively. We 

observe from Table 3 that the two measure values are 
exceptionally good undergoing only one round of 

encryption.  

 Table 3. Results of NPCR and UACI tests of Lena.  

Position  (29,142) (18,64) (195,103) (80,91) (210,65)  

NPCR(%)  99.6933  99.9344  99.8444  99.7574  99.6994   

UACI(%)  31.1672  48.0636  44.6477  30.6300  29.2835   

Position  (40,27) (111,105) (62,129) (199,8) (2,76)  

NPCR(%)  99.8810  99.8779  99.8138  99.7879  99.9420   

UACI(%)  45.3833  28.2749  41.9523  29.6468  47.5657   

D. Resistance to known-plaintext and chosen-plaintext 

attacks 

In the diffusion process, a feedback from the cipher-

image is employed to change the number of iterations of 

the generalized multi-sawtooth map. In Step 3, ( )d i  

depends on the value of 
iy  which is related to the plain-

image, implying that the keystream depends on the 

processed image. When different plain-images are 

encrypted, the corresponding keystreams are not the same. 

The attacker cannot obtain useful information by 

encrypting some special images since the resultant 

information is related to those chosen-images. Therefore, 

the attacks proposed in Refs. [16,17,19] become 

ineffective on this new scheme. The proposed scheme can 

desirably resist known-plaintext attack and chosen-

plaintext attack. 
 

 

 

V. CONCLUSIONS  

An efficient image encryption scheme based on affine 

modular maps is proposed in the paper. The proposed 

scheme can shuffle the plain-image efficiently in the 

permutation process. An effective two-way diffusion 

process is also presented to change the gray values of the 

whole image pixels. Security analysis including key 

space analysis, statistical attack analysis and differential 

attack analysis are performed numerically and visually. 
All the experimental results show that the proposed 

encryption scheme is secure thanks to its large key space, 

its highly sensitivity to the cipher keys and plain-images. 

The proposed encryption scheme is easy to manipulate 

and can be applied to any images with unequal width and 

height as well. All these satisfactory properties make the 

proposed scheme a potential candidate for encryption of 

multimedia data such as images, audios and even videos. 
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