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Abstract — Linux systems use Encrypting File System 

(EFS) for providing confidentiality and integrity services 

to files stored on disk in a secure, efficient and 

transparent manner. Distributed encrypting file system 
should also provide support for secure remote access, 

multiuser file sharing, possible use by non-privileged 

users, portability, incremental backups etc. Existing 

kernel-space EFS designed at file system level provides 

all necessary features, but they are not portable and 

cannot be mounted by non-privileged users. Existing 

user-space EFS have performance limitations and does 

not provide support for file sharing. 

Through this paper, modifications in the design and 

implementation of two existing user-space EFS, for 

performance gain and file sharing support, has been 

presented. Performance gain has been achieved in both 
the proposed approaches using fast and modern ciphers. 

File sharing support in proposed approaches has been 

provided with Public Key Infrastructure (PKI) integration 

using GnuPG PKI module and Linux Pluggable 

Authentication Module (PAM) framework. 

Cryptographic metadata is being stored as extended 

attributes in file‘s Access Control List (ACL) to make file 

sharing task easier and seamless to the end user.   

 
Index Terms — Encrypting File System (EFS), File 

System in User-space (FUSE), Network File System 

(NFS), Public-Key Infrastructure (PKI), Access Control 
List (ACL), Pluggable Authentication Module (PAM) 

 

I. INTRODUCTION 

While considering file system security, several aspects 

should be taken into account such as authentication, 

authorization, access control, confidentiality and integrity. 

Linux systems provides authentication, authorization and 

access control services using Pluggable Authentication 

Module (PAM) [1] ; policy language that defines file 

owner and group, along with the owner/group/world  

read/write/execute attributes of the file; Posix Access 

Control Lists (ACL‘s) [2] that provides more stringent 
access control on a per-file basis etc. For confidentiality 

and integrity services, Encrypting File System (EFS) 

have to be used that provides file encryption/decryption 

along with integrity mechanisms, in a secure, efficient 

and transparent manner to the user. Distributed 

encrypting file system should also provide secure remote 

access over Network File System (NFS), file sharing 

among multiple users, possible use by non-privileged 

users, portability, incremental backups etc. 

Encryption services by encrypting file systems can be 
placed at file system level or device layer level. In device 

layer systems like dmCrypt [3] and cryptsetup [4], 

encryption/decryption takes place at device layer in 

kernel-space, using Linux kernel device mapper 

infrastructure that provides a generic way to create virtual 

layers of block devices. These systems perform 

encryption with a single key on entire block device, so 

file sharing is not possible among multiple users. They 

are also not convenient for incremental back-ups, cannot 

be mounted by non-privileged users and cannot be used 

remotely over NFS.  

At file system level, EFS can be implemented either in 
user-space or in kernel-space. eCryptfs [5] is the most 

popular kernel-space EFS, integrated with the Linux 

kernel since 2.6.19. It uses stackable file system interface 

approach [6] to introduce a layer of encryption that can fit 

over any underlying file system. eCryptfs has been 

implemented using File System Translator (FiST) [7], a 

tool that can be used to develop stackable file systems 

using template code. eCryptfs is more efficient than 

existing user-space encrypting file systems, discussed 

subsequently. It performs encryption on a per-file basis 

and provides support for file sharing among multiple 

users using Public Key Infrastructure (PKI) support. It 
also provides support for file integrity using keyed hashes.  

It can be used remotely on top of networked file systems. 

The limitations of eCryptfs are that, it cannot be ported 

across different platforms and do not provide any options 

for non-privileged users to mount a file system.  

Existing user-space EFS like CFS [8] and EncFS [9] 

are implemented using NFS approach and File System in 

User-space (FUSE) [10] respectively. CFS is 

implemented entirely in user-space as a modified NFS 

server. A userspace daemon, cfsd, acts as a pseudo-NFS 

server, and NFS client in the kernel makes RPC calls to 

the daemon. The CFS daemon performs transparent 
encryption/decryption of file contents during write and 

read operations.CFS can be mounted by any user on the 

system and does not require any modifications to the 

kernel so can be easily portable. CFS is capable of acting 

as a remote NFS server, so it can be accessed remotely 

without requiring an additional NFS mount. The 

limitation of CFS is its poor performance due to frequent 
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context switches and data copies between user-space and 

kernel-space. Also, it uses DES algorithm for file 

encryption/ decryption, which further degrades its 

performance. EncFS [9] is another popular user-space 

EFS for Linux, written using FUSE library. FUSE has 

been integrated into the Linux kernel tree and provides a 

good way to write virtual file systems. FUSE exports all 

file system calls within the kernel to the user-space 

through a simple application programming interface (API) 
by connecting to a daemon that is running in the user-

space. In EncFS, this user-space daemon has been 

modified to perform transparent encryption and 

decryption of file contents during write and read system 

calls respectively. EncFS is portable as FUSE has ports 

available for other major operating systems. EncFS also 

has provisions to permit non-privileged users to mount 

the file system. FUSE provides an efficient userspace-

kernel interface, so performance of EncFS is somewhat 

better than CFS. EncFS can be used remotely, mounted 

on top of NFS. It also provides support for file integrity 

using keyed hashes. Both CFS and EncFS perform 
encryption with a single key on entire directory, so 

sharing of files is not possible among different users.  

As mentioned above, performance, file sharing, 

portability and availability to non-privileged users, all 

cannot be achieved together. Existing user-space EFS 

have performance limitations and does not provide 

support for file sharing; and kernel-space EFS are not 

portable and cannot be mounted by non-privileged users.  

Through this work, design and implementation of user-

space EFS using two approaches: one based on CFS and 

another based on EncFS, with performance improvements 

and file sharing support, has been presented. In modified 
CFS approach, Blowfish algorithm has been used instead 

of DES for improving performance. Blowfish gives high 

performance that DES, Triple DES and AES ciphers [11]. 

In modified EncFS approach, XTS (XEX-based Tweaked 

codebook mode with ciphertext Stealing) mode of the 

AES algorithm [12, 13] has been used for performance 

gain. EncFS uses CBC (Cipher Block Chaining) mode for 

file encryption with keyed hashes, like HMAC, for file 

integrity.  In modified EncFS, XTS-AES itself provides 

more protection than CBC-AES against unauthorized 

manipulation of the encrypted data, thus curtails the need 

for separate integrity mechanism [14, 15]. Thus, XTS-
AES mode is suitable choice for encrypting data stored 

on hard disks where there is not additional space for an 

integrity field. It also provides random access to 

encrypted data. It can also be implemented as parallel 

algorithm. Parallel implementation of XTS-AES 

algorithm is 90 % more efficient than the serial algorithm 

[16]. 

In both the proposed approaches, file sharing support is 

being provided by PKI integration and performing 

encryption on a per-file basis with storing cryptographic 

metadata as extended attributes in file‘s ACL. 

The rest of this paper is organized as follows. Section 
II presents the modified CFS and modified EncFS 

architectures with PKI integration for file sharing support. 

Section III and section IV explains the cryptographic 

operations taking place in modified CFS and EncFS 

respectively. Section V describes the implementation of 

proposed designs. Section VI provides performance 

comparison of both proposed approaches with existing 

user-space and kernel-space encrypting file systems. 

Section VII concludes the paper with identified future 

work. 

 

II. MODIFIED ARCHITECTURES OF CFS AND ENCFS 

Modification made in the existing architectures of CFS 

and EncFS, for providing support for file sharing, have 

been shown as dotted portions in Fig. 1 and Fig. 2, 

respectively. Existing CFS and EncFS perform 

encryption of entire directory contents with a single key, 

with storing cryptographic metadata in special files in 

that directory, so file sharing is not possible in these 

systems. For multiuser file sharing support, modified 

CFS and modified EncFS performs encryption of each 

file with a different File Encryption Key (FEK) that itself 

is encrypted with the public keys of the users who are 

authorized to access that file. Public key cryptographic 
support is being provided by Pluggable Authentication 

Module (PAM) [1] and GnuPG PKI module [17]. PAM 

provides a discretionary access control mechanism 

whereby superuser can parameterize how a user is 

authenticated and what happens at the time authentication. 

In both modified approaches, PAM captures the user‘s 

login passphrase and stores it in the session keyring. 

GnuPG PKI module has been used to access the user‘s 

GnuPG keyring. GnuPG keyring stores public key and 

private key pair corresponding to all the users on the 

system. GnuPG PKI module utilizes the user‘s login 

passphrase stored in user‘s session keyring to decrypt and 
access the user‘s private key stored on the GnuPG 

keyring. It provides the user‘s private key and public key 

to the CFS daemon and EncFS daemon when the user 

logged in. 
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Figure 1. Modified CFS Architecture 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Figure 2. Modified EncFS Architecture 
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In both the proposed approaches, cryptographic 

metadata (FEK encrypted with user‘s public key) is 

stored as extended attributes in file ACL to ease the file 

sharing task, detailed explanation in section III. In 

addition to ease of file sharing, there are several other 

benefits of per-file encryption with storing cryptographic 

metadata as extended attributes of a file [18]: 

Performance: In general, only certain files need to be 

encrypted. Encryption is not required for files like system 
libraries and executables. By limiting the encryption to  

only those files that really need it, system performance 

can be improved.  

Backup utilities: Incremental backup utilities can 

operate without having access to the decrypted content of 

the files.  

Transparent operation: Individual encrypted files can 

be easily transferred from the block device without any 

extra transformation, and others with authorization will 

be able to decrypt those files. 

 

III. CRYPTOGRAPHIC OPERATIONS IN MODIFIED CFS 

When a new file is created, the CFS daemon generates 

a new 128-bit symmetric File Encryption Key (FEK) for 

the encryption of the file contents using Blowfish 

algorithm. The owner of the file is automatically 

authorized to access the file, and so the FEK is encrypted 

with the public key of the owner of the file (Kowner), 

which was passed to CFS daemon at the time when the 

user logged in by GnuPG PKI module, as mentioned in 

section II. The encrypted FEK is then stored in the file 

ACL along with other user information. An ACL entry 

will look like as: 

 
 UID: username: permissions: EKowner (FEK)  

 

Suppose that the owner at this point wants to grant 

access to the file to another user whose public key, Kuser, 

is in the GnuPG keyring. GnuPG PKI module extracts 

Kuser from the GnuPG keyring, and passes it to the CFS 

daemon. CFS daemon now encrypts FEK with Kuser and 

adds to the extended attribute set of the file. The ACL for 

the file now contains two entries, with two copies of FEK 

encrypted with different public keys: EKowner (FEK) and 

EKuser (FEK) along with other user information. 
When a user opens an existing file, CFS daemon 

extracts the encrypted FEK from the file ACL, decrypts it 

using private key of the user and then decrypts the file 

contents using FEK. GnuPG PKI module provides the 

private key to the CFS daemon after retrieving it from 

GnuPG keyring when the user logged in, as already 

discussed in section II.  

Note that this is not an access control directive; it is 

rather a confidentiality enforcement mechanism that 

extends beyond the Linux access control policy, based on 

file permissions and/or ACL‘s. Without authorized user‘s 

private key, no entity will be able to access the decrypted 

contents of the file. Linux access control policies will act 

over the decrypted file. 

IV. CRYPTOGRAPHIC OPERATIONS IN MODIFIED ENCFS 

When a new file is created in modified EncFS, EncFS 

daemon generates a new 128-bit File Encryption Key 

(FEK) and 64-bit per-file tweak (TWK) that is used to 

carry out encryption of file contents using XTS-AES 

algorithm. XTS-AES allows for random access and 
encrypts file to the same length as their original size. XTS 

tweak of 128-bit is formed by concatenating 64-bit per-

file tweak value (TWK) with 64-bit file offset. The idea 

behind using a tweak is to get unique, per-file ciphertext, 

thus protects from chosen ciphertext attack and copy-

paste attack. If file size is not an integer multiple of the 

cipher block size, the XTS construction uses ciphertext 

stealing. Ciphertext stealing is a technique that can be 

used to encrypt data that does not comprise an integer 

multiple of the cipher‘s block size. XTS performs 

ciphertext stealing by combining the last two blocks of 
ciphertext. Sparse files are detected by examining if all 

4096 bytes in a sector are zero before decryption, they 

will not be decrypted rather zero-filled sector is returned.  
The public key cryptographic operations for file 

sharing take place in the similar way as discussed in 

section III. Here, EncFS daemon encrypts 128-bit FEK in 

concatenation with 64-bit TWK (FEK || TWK) with 

public key of the owner, and stores it in file ACL at the 

time of file creation. When a user wants to access a file, 

EncFS daemon extracts the encrypted FEK|| TWK from 

the ACL, decrypts it using private key of the user and 

then decrypts the file contents. 

 

 V. IMPLEMENTATION 

In modified CFS, CFS daemon is extended to perform 

encryption of each file with a new File Encryption Key 

(FEK) using blowfish cipher; and encryption/decryption 

of FEK with public key/private key of the user using 

RSA algorithm. CFS daemon is also extended to extract 

and store encrypted FEK in file‘s ACL.  

In place of DES, choice of blowfish cipher instead of 

AES has been made in modified CFS due to following 

two reasons. First, blowfish has high performance than 

AES, already mentioned in section I. Second, CFS can 
only be used with a 64-bit block cipher and AES uses 

fixed block size of 128 bits.  
Standard implementation of blowfish and RSA ciphers 

has been added by providing a block encrypt/decrypt 

function and key encrypt/decrypt function respectively; 

and adding hooks for them in the following routines: 

cipher(), mask_cipher(), pwcrunch(),and copykey().  

These routines can be found in cfs_cipher.c and getpass.c 

in standard CFS implementation [19]. Modification has 

also been made in cmkdir.c, cname.c, ccat.c, admproto.x, 

and cfs.h files to refer to the new cipher, as well as 

references has been added in various places in the 
Makefile to refer the new cipher module.   

Fig. 3 shows the various components of EncFS 

daemon [9]. Modifications have been made in various 

routines in files of libencfs component to perform to
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perform encryption of each file with a new file encryption 

key (FEK) using AES cipher in XTS mode; and 

encryption/decryption of FEK with public key/private 

key of the user using RSA algorithm. OpenSSL FIPS 

object module 2.0 [20] has been used as it provides 

support for XTS mode of AES in addition to RSA 

algorithm and key generation.    

 

 
 

Figure 3. EncFS Components 

 In both the modified approaches, Access Control List 

(ACL) for storing encrypted FEK is implemented using 

extended attributes [2] inside the kernel data structures. 

The posix_acl_entry and xattr_ acl_entry structures, that 

define the kernel‘s representation of ACL entries, have 

been augmented with the ‗encrypted FEK‘ field. On-disk 

format of ext4 ACL entries, defined in the ext4_acl_ 

entry and ext4_ acl_ entry_ short structures have also 

been augmented with ‗encrypted FEK‘ field. Suitable 
changes have also been made to various ACL 

manipulation functions.  

 

VI. PERFORMANCE 

In this section, performance evaluation of modified CFS 

and modified EncFS with CFS [8], EncFS [9], eCryptfs 

[5] will be presented. Performance of these encrypting 

file systems and unencrypted ext4 file system, have been 

evaluated by running IOZone [21], a popular 

benchmarking tool that performs synthetic read/write 

tests to determine the throughput of the system. Tests 

have been conducted on a 3 GHz Intel core i-3 machine 
with 2GB RAM running Linux kernel 2.6.34. 

 
 

 
 

Figure 4. Throughput obtained for different file systems using IOZone benchmarking tool 

 

Fig. 4 shows throughput obtained in Kbytes/sec for 

read and write operation on different file systems, by 

running IOZone on different file systems mount points, 

choosing file size of 1 GB with record size set to 128 KB. 

The iozone utility has been used with –t option for 

obtaining the throughput like: 
 

# iozone -t 1 -i 0 -i 1 -s 1024m -r 128k –F ./f1 -b 

/home/output.xls 

where –i option specifies the read and write tests (0 

and 1 respectively); -s option specifies file size; -r option 

specifies record size; -F option specifies the path for 

creating temporary test file; and –b option specifies the 

output file in which obtained throughput will be stored 

after successful execution of the command. The path of 
file f1 should be given inside a particular file system 

mount point, for which throughput has to be obtained.  
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Performance overhead is calculated for different 

encrypting file systems with respect to unencrypted Ext4 

file system, and is being reported in Table I. 

Performance overhead is more in case of CFS and 

EncFS as compared with eCryptfs, as both are 

implemented in user-space, so they have to perform many 

context switches and data copies between kernel-space 

and user-space as mentioned in section I.  

 
TABLE I. PERFORMANCE OVERHEAD IN DIFFERENT EFS WITH RESPECT 

TO UNENCRYPTED EXT4 FILE SYSTEM 

 

File System % overhead in write 

operation w.r.t. ext4 

% overhead in 

read operation 

w.r.t. ext4 

eCryptfs 43 % 34 % 

CFS 87 % 93 % 

EncFS 71 % 68 % 

Modified CFS 70 % 84 % 

Modified 

EncFS 58 % 55 % 

 

Performance overhead in modified CFS has been 

reduced significantly with the use of blowfish cipher. 

Performance gain of nearly 131 % for write and 136 % 

for read operation has been obtained when compared with 

CFS. Besides that, as shown in Table I, performance 

overhead in modified CFS is much more as compared 

with unencrypted Ext4 local file system, which makes 

concerns about its use as an encrypting file system. 
However, as mentioned in section I, it itself can act as a 

remote NFS server, so it is a better choice for remote file 

access than other encrypting file systems. Other 

encrypting file systems need to be mounted on NFS for 

remote file access, and then their performance degrades. 

Performance gain of around 44 % for write and 39 % 

for read operation has been observed in modified EncFS 

as compared with EncFS. When compared with eCryptfs, 

performance overhead is around 50 % for both read 

operation and write operation in EncFS, which has been 

reduced to almost 26 % for write operation and 32 % for 

read operation in modified EncFS. This may be attributed 

to the reason, that both eCryptfs and EncFS uses keyed 

hashes, like HMAC, for file integrity, rather modified 

EncFS does not use any separate mechanism for integrity. 

Modified EncFS uses XTS mode that itself protects it 

from unauthorized manipulation of data, as discussed in 

section I. 
 

VII. CONCLUSION AND FUTURE WORK 

Existing implementations of CFS and EncFS have 

been modified for providing better performance and 

support for file sharing. Significant performance gain has 

been observed in modified CFS and modified EncFS 

implementations with the use of blowfish and XTS-AES 

ciphers respectively. Performance of modified EncFS is a 

bit inferior with respect to kernel-space encrypting file 

system (eCryptfs), although there are major benefits of 

implementation in user-space like portability, and 

possible mounting of file system by non-privileged users. 

File sharing support in both proposed approaches has 

been provided by PKI integration using GnuPG PKI 

module and performing encryption on a per-file basis 

with storing cryptographic metadata as extended 

attributes in file‘s ACL. 

In future, modified EncFS can be implemented using 

parallel implementations of XTS-AES for further 

improving its performance. Hardware devices such as 

smart cards or USB connected disks can be used in 

modified implementations for storing the user‘s private 

key using openCryptoki PKCS#11 public-key 

infrastructure [22] support.  
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