
I. J. Computer Network and Information Security, 2012, 8, 33-39
Published Online August 2012 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2012.08.04

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 8, 33-39

Distributed Encrypting File System for Linux in

User-space

U. S. Rawat, Shishir Kumar

Department of Computer Science & Engineering, Jaypee University of Engineering & Technology, Guna (MP), India

umasrawat@gmail.com, dr.shishir@yahoo.com

Abstract — Linux systems use Encrypting File System

(EFS) for providing confidentiality and integrity services

to files stored on disk in a secure, efficient and

transparent manner. Distributed encrypting file system
should also provide support for secure remote access,

multiuser file sharing, possible use by non-privileged

users, portability, incremental backups etc. Existing

kernel-space EFS designed at file system level provides

all necessary features, but they are not portable and

cannot be mounted by non-privileged users. Existing

user-space EFS have performance limitations and does

not provide support for file sharing.

Through this paper, modifications in the design and

implementation of two existing user-space EFS, for

performance gain and file sharing support, has been

presented. Performance gain has been achieved in both
the proposed approaches using fast and modern ciphers.

File sharing support in proposed approaches has been

provided with Public Key Infrastructure (PKI) integration

using GnuPG PKI module and Linux Pluggable

Authentication Module (PAM) framework.

Cryptographic metadata is being stored as extended

attributes in file‘s Access Control List (ACL) to make file

sharing task easier and seamless to the end user.

Index Terms — Encrypting File System (EFS), File

System in User-space (FUSE), Network File System

(NFS), Public-Key Infrastructure (PKI), Access Control
List (ACL), Pluggable Authentication Module (PAM)

I. INTRODUCTION

While considering file system security, several aspects

should be taken into account such as authentication,

authorization, access control, confidentiality and integrity.

Linux systems provides authentication, authorization and

access control services using Pluggable Authentication

Module (PAM) [1] ; policy language that defines file

owner and group, along with the owner/group/world

read/write/execute attributes of the file; Posix Access

Control Lists (ACL‘s) [2] that provides more stringent
access control on a per-file basis etc. For confidentiality

and integrity services, Encrypting File System (EFS)

have to be used that provides file encryption/decryption

along with integrity mechanisms, in a secure, efficient

and transparent manner to the user. Distributed

encrypting file system should also provide secure remote

access over Network File System (NFS), file sharing

among multiple users, possible use by non-privileged

users, portability, incremental backups etc.

Encryption services by encrypting file systems can be
placed at file system level or device layer level. In device

layer systems like dmCrypt [3] and cryptsetup [4],

encryption/decryption takes place at device layer in

kernel-space, using Linux kernel device mapper

infrastructure that provides a generic way to create virtual

layers of block devices. These systems perform

encryption with a single key on entire block device, so

file sharing is not possible among multiple users. They

are also not convenient for incremental back-ups, cannot

be mounted by non-privileged users and cannot be used

remotely over NFS.

At file system level, EFS can be implemented either in
user-space or in kernel-space. eCryptfs [5] is the most

popular kernel-space EFS, integrated with the Linux

kernel since 2.6.19. It uses stackable file system interface

approach [6] to introduce a layer of encryption that can fit

over any underlying file system. eCryptfs has been

implemented using File System Translator (FiST) [7], a

tool that can be used to develop stackable file systems

using template code. eCryptfs is more efficient than

existing user-space encrypting file systems, discussed

subsequently. It performs encryption on a per-file basis

and provides support for file sharing among multiple

users using Public Key Infrastructure (PKI) support. It
also provides support for file integrity using keyed hashes.

It can be used remotely on top of networked file systems.

The limitations of eCryptfs are that, it cannot be ported

across different platforms and do not provide any options

for non-privileged users to mount a file system.

Existing user-space EFS like CFS [8] and EncFS [9]

are implemented using NFS approach and File System in

User-space (FUSE) [10] respectively. CFS is

implemented entirely in user-space as a modified NFS

server. A userspace daemon, cfsd, acts as a pseudo-NFS

server, and NFS client in the kernel makes RPC calls to

the daemon. The CFS daemon performs transparent
encryption/decryption of file contents during write and

read operations.CFS can be mounted by any user on the

system and does not require any modifications to the

kernel so can be easily portable. CFS is capable of acting

as a remote NFS server, so it can be accessed remotely

without requiring an additional NFS mount. The

limitation of CFS is its poor performance due to frequent

34 Distributed Encrypting File System for Linux in User-space

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 8, 33-39

context switches and data copies between user-space and

kernel-space. Also, it uses DES algorithm for file

encryption/ decryption, which further degrades its

performance. EncFS [9] is another popular user-space

EFS for Linux, written using FUSE library. FUSE has

been integrated into the Linux kernel tree and provides a

good way to write virtual file systems. FUSE exports all

file system calls within the kernel to the user-space

through a simple application programming interface (API)
by connecting to a daemon that is running in the user-

space. In EncFS, this user-space daemon has been

modified to perform transparent encryption and

decryption of file contents during write and read system

calls respectively. EncFS is portable as FUSE has ports

available for other major operating systems. EncFS also

has provisions to permit non-privileged users to mount

the file system. FUSE provides an efficient userspace-

kernel interface, so performance of EncFS is somewhat

better than CFS. EncFS can be used remotely, mounted

on top of NFS. It also provides support for file integrity

using keyed hashes. Both CFS and EncFS perform
encryption with a single key on entire directory, so

sharing of files is not possible among different users.

As mentioned above, performance, file sharing,

portability and availability to non-privileged users, all

cannot be achieved together. Existing user-space EFS

have performance limitations and does not provide

support for file sharing; and kernel-space EFS are not

portable and cannot be mounted by non-privileged users.

Through this work, design and implementation of user-

space EFS using two approaches: one based on CFS and

another based on EncFS, with performance improvements

and file sharing support, has been presented. In modified
CFS approach, Blowfish algorithm has been used instead

of DES for improving performance. Blowfish gives high

performance that DES, Triple DES and AES ciphers [11].

In modified EncFS approach, XTS (XEX-based Tweaked

codebook mode with ciphertext Stealing) mode of the

AES algorithm [12, 13] has been used for performance

gain. EncFS uses CBC (Cipher Block Chaining) mode for

file encryption with keyed hashes, like HMAC, for file

integrity. In modified EncFS, XTS-AES itself provides

more protection than CBC-AES against unauthorized

manipulation of the encrypted data, thus curtails the need

for separate integrity mechanism [14, 15]. Thus, XTS-
AES mode is suitable choice for encrypting data stored

on hard disks where there is not additional space for an

integrity field. It also provides random access to

encrypted data. It can also be implemented as parallel

algorithm. Parallel implementation of XTS-AES

algorithm is 90 % more efficient than the serial algorithm

[16].

In both the proposed approaches, file sharing support is

being provided by PKI integration and performing

encryption on a per-file basis with storing cryptographic

metadata as extended attributes in file‘s ACL.

The rest of this paper is organized as follows. Section
II presents the modified CFS and modified EncFS

architectures with PKI integration for file sharing support.

Section III and section IV explains the cryptographic

operations taking place in modified CFS and EncFS

respectively. Section V describes the implementation of

proposed designs. Section VI provides performance

comparison of both proposed approaches with existing

user-space and kernel-space encrypting file systems.

Section VII concludes the paper with identified future

work.

II. MODIFIED ARCHITECTURES OF CFS AND ENCFS

Modification made in the existing architectures of CFS

and EncFS, for providing support for file sharing, have

been shown as dotted portions in Fig. 1 and Fig. 2,

respectively. Existing CFS and EncFS perform

encryption of entire directory contents with a single key,

with storing cryptographic metadata in special files in

that directory, so file sharing is not possible in these

systems. For multiuser file sharing support, modified

CFS and modified EncFS performs encryption of each

file with a different File Encryption Key (FEK) that itself

is encrypted with the public keys of the users who are

authorized to access that file. Public key cryptographic
support is being provided by Pluggable Authentication

Module (PAM) [1] and GnuPG PKI module [17]. PAM

provides a discretionary access control mechanism

whereby superuser can parameterize how a user is

authenticated and what happens at the time authentication.

In both modified approaches, PAM captures the user‘s

login passphrase and stores it in the session keyring.

GnuPG PKI module has been used to access the user‘s

GnuPG keyring. GnuPG keyring stores public key and

private key pair corresponding to all the users on the

system. GnuPG PKI module utilizes the user‘s login

passphrase stored in user‘s session keyring to decrypt and
access the user‘s private key stored on the GnuPG

keyring. It provides the user‘s private key and public key

to the CFS daemon and EncFS daemon when the user

logged in.

 Distributed Encrypting File System for Linux in User-space 35

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 8, 33-39

Figure 1. Modified CFS Architecture

Figure 2. Modified EncFS Architecture

Application

Program

Virtual
File

System

FUSE

EncFS

Daemon

User-space

Kernel-space

File
Data

ACL

GnuPG PKI

Module
PAM

GnuPG

Keyring

Session

Keyring

Application

Program

Virtual File

System

NFS

Client

CFS Daemon
(Modified NFS

Server)

File

Data
ACL

GnuPG PKI

Module
PAM

GnuPG

Keyring

Session

Keyring

User-space

Kernel-space

36 Distributed Encrypting File System for Linux in User-space

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 8, 33-39

In both the proposed approaches, cryptographic

metadata (FEK encrypted with user‘s public key) is

stored as extended attributes in file ACL to ease the file

sharing task, detailed explanation in section III. In

addition to ease of file sharing, there are several other

benefits of per-file encryption with storing cryptographic

metadata as extended attributes of a file [18]:

Performance: In general, only certain files need to be

encrypted. Encryption is not required for files like system
libraries and executables. By limiting the encryption to

only those files that really need it, system performance

can be improved.

Backup utilities: Incremental backup utilities can

operate without having access to the decrypted content of

the files.

Transparent operation: Individual encrypted files can

be easily transferred from the block device without any

extra transformation, and others with authorization will

be able to decrypt those files.

III. CRYPTOGRAPHIC OPERATIONS IN MODIFIED CFS

When a new file is created, the CFS daemon generates

a new 128-bit symmetric File Encryption Key (FEK) for

the encryption of the file contents using Blowfish

algorithm. The owner of the file is automatically

authorized to access the file, and so the FEK is encrypted

with the public key of the owner of the file (Kowner),

which was passed to CFS daemon at the time when the

user logged in by GnuPG PKI module, as mentioned in

section II. The encrypted FEK is then stored in the file

ACL along with other user information. An ACL entry

will look like as:

 UID: username: permissions: EKowner (FEK)

Suppose that the owner at this point wants to grant

access to the file to another user whose public key, Kuser,

is in the GnuPG keyring. GnuPG PKI module extracts

Kuser from the GnuPG keyring, and passes it to the CFS

daemon. CFS daemon now encrypts FEK with Kuser and

adds to the extended attribute set of the file. The ACL for

the file now contains two entries, with two copies of FEK

encrypted with different public keys: EKowner (FEK) and

EKuser (FEK) along with other user information.
When a user opens an existing file, CFS daemon

extracts the encrypted FEK from the file ACL, decrypts it

using private key of the user and then decrypts the file

contents using FEK. GnuPG PKI module provides the

private key to the CFS daemon after retrieving it from

GnuPG keyring when the user logged in, as already

discussed in section II.

Note that this is not an access control directive; it is

rather a confidentiality enforcement mechanism that

extends beyond the Linux access control policy, based on

file permissions and/or ACL‘s. Without authorized user‘s

private key, no entity will be able to access the decrypted

contents of the file. Linux access control policies will act

over the decrypted file.

IV. CRYPTOGRAPHIC OPERATIONS IN MODIFIED ENCFS

When a new file is created in modified EncFS, EncFS

daemon generates a new 128-bit File Encryption Key

(FEK) and 64-bit per-file tweak (TWK) that is used to

carry out encryption of file contents using XTS-AES

algorithm. XTS-AES allows for random access and
encrypts file to the same length as their original size. XTS

tweak of 128-bit is formed by concatenating 64-bit per-

file tweak value (TWK) with 64-bit file offset. The idea

behind using a tweak is to get unique, per-file ciphertext,

thus protects from chosen ciphertext attack and copy-

paste attack. If file size is not an integer multiple of the

cipher block size, the XTS construction uses ciphertext

stealing. Ciphertext stealing is a technique that can be

used to encrypt data that does not comprise an integer

multiple of the cipher‘s block size. XTS performs

ciphertext stealing by combining the last two blocks of
ciphertext. Sparse files are detected by examining if all

4096 bytes in a sector are zero before decryption, they

will not be decrypted rather zero-filled sector is returned.
The public key cryptographic operations for file

sharing take place in the similar way as discussed in

section III. Here, EncFS daemon encrypts 128-bit FEK in

concatenation with 64-bit TWK (FEK || TWK) with

public key of the owner, and stores it in file ACL at the

time of file creation. When a user wants to access a file,

EncFS daemon extracts the encrypted FEK|| TWK from

the ACL, decrypts it using private key of the user and

then decrypts the file contents.

 V. IMPLEMENTATION

In modified CFS, CFS daemon is extended to perform

encryption of each file with a new File Encryption Key

(FEK) using blowfish cipher; and encryption/decryption

of FEK with public key/private key of the user using

RSA algorithm. CFS daemon is also extended to extract

and store encrypted FEK in file‘s ACL.

In place of DES, choice of blowfish cipher instead of

AES has been made in modified CFS due to following

two reasons. First, blowfish has high performance than

AES, already mentioned in section I. Second, CFS can
only be used with a 64-bit block cipher and AES uses

fixed block size of 128 bits.
Standard implementation of blowfish and RSA ciphers

has been added by providing a block encrypt/decrypt

function and key encrypt/decrypt function respectively;

and adding hooks for them in the following routines:

cipher(), mask_cipher(), pwcrunch(),and copykey().

These routines can be found in cfs_cipher.c and getpass.c

in standard CFS implementation [19]. Modification has

also been made in cmkdir.c, cname.c, ccat.c, admproto.x,

and cfs.h files to refer to the new cipher, as well as

references has been added in various places in the
Makefile to refer the new cipher module.

Fig. 3 shows the various components of EncFS

daemon [9]. Modifications have been made in various

routines in files of libencfs component to perform to

 Distributed Encrypting File System for Linux in User-space 37

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 8, 33-39

perform encryption of each file with a new file encryption

key (FEK) using AES cipher in XTS mode; and

encryption/decryption of FEK with public key/private

key of the user using RSA algorithm. OpenSSL FIPS

object module 2.0 [20] has been used as it provides

support for XTS mode of AES in addition to RSA

algorithm and key generation.

Figure 3. EncFS Components

 In both the modified approaches, Access Control List

(ACL) for storing encrypted FEK is implemented using

extended attributes [2] inside the kernel data structures.

The posix_acl_entry and xattr_ acl_entry structures, that

define the kernel‘s representation of ACL entries, have

been augmented with the ‗encrypted FEK‘ field. On-disk

format of ext4 ACL entries, defined in the ext4_acl_

entry and ext4_ acl_ entry_ short structures have also

been augmented with ‗encrypted FEK‘ field. Suitable
changes have also been made to various ACL

manipulation functions.

VI. PERFORMANCE

In this section, performance evaluation of modified CFS

and modified EncFS with CFS [8], EncFS [9], eCryptfs

[5] will be presented. Performance of these encrypting

file systems and unencrypted ext4 file system, have been

evaluated by running IOZone [21], a popular

benchmarking tool that performs synthetic read/write

tests to determine the throughput of the system. Tests

have been conducted on a 3 GHz Intel core i-3 machine
with 2GB RAM running Linux kernel 2.6.34.

Figure 4. Throughput obtained for different file systems using IOZone benchmarking tool

Fig. 4 shows throughput obtained in Kbytes/sec for

read and write operation on different file systems, by

running IOZone on different file systems mount points,

choosing file size of 1 GB with record size set to 128 KB.

The iozone utility has been used with –t option for

obtaining the throughput like:

iozone -t 1 -i 0 -i 1 -s 1024m -r 128k –F ./f1 -b

/home/output.xls

where –i option specifies the read and write tests (0

and 1 respectively); -s option specifies file size; -r option

specifies record size; -F option specifies the path for

creating temporary test file; and –b option specifies the

output file in which obtained throughput will be stored

after successful execution of the command. The path of
file f1 should be given inside a particular file system

mount point, for which throughput has to be obtained.

38 Distributed Encrypting File System for Linux in User-space

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 8, 33-39

Performance overhead is calculated for different

encrypting file systems with respect to unencrypted Ext4

file system, and is being reported in Table I.

Performance overhead is more in case of CFS and

EncFS as compared with eCryptfs, as both are

implemented in user-space, so they have to perform many

context switches and data copies between kernel-space

and user-space as mentioned in section I.

TABLE I. PERFORMANCE OVERHEAD IN DIFFERENT EFS WITH RESPECT

TO UNENCRYPTED EXT4 FILE SYSTEM

File System % overhead in write

operation w.r.t. ext4

% overhead in

read operation

w.r.t. ext4

eCryptfs 43 % 34 %

CFS 87 % 93 %

EncFS 71 % 68 %

Modified CFS 70 % 84 %

Modified

EncFS 58 % 55 %

Performance overhead in modified CFS has been

reduced significantly with the use of blowfish cipher.

Performance gain of nearly 131 % for write and 136 %

for read operation has been obtained when compared with

CFS. Besides that, as shown in Table I, performance

overhead in modified CFS is much more as compared

with unencrypted Ext4 local file system, which makes

concerns about its use as an encrypting file system.
However, as mentioned in section I, it itself can act as a

remote NFS server, so it is a better choice for remote file

access than other encrypting file systems. Other

encrypting file systems need to be mounted on NFS for

remote file access, and then their performance degrades.

Performance gain of around 44 % for write and 39 %

for read operation has been observed in modified EncFS

as compared with EncFS. When compared with eCryptfs,

performance overhead is around 50 % for both read

operation and write operation in EncFS, which has been

reduced to almost 26 % for write operation and 32 % for

read operation in modified EncFS. This may be attributed

to the reason, that both eCryptfs and EncFS uses keyed

hashes, like HMAC, for file integrity, rather modified

EncFS does not use any separate mechanism for integrity.

Modified EncFS uses XTS mode that itself protects it

from unauthorized manipulation of data, as discussed in

section I.

VII. CONCLUSION AND FUTURE WORK

Existing implementations of CFS and EncFS have

been modified for providing better performance and

support for file sharing. Significant performance gain has

been observed in modified CFS and modified EncFS

implementations with the use of blowfish and XTS-AES

ciphers respectively. Performance of modified EncFS is a

bit inferior with respect to kernel-space encrypting file

system (eCryptfs), although there are major benefits of

implementation in user-space like portability, and

possible mounting of file system by non-privileged users.

File sharing support in both proposed approaches has

been provided by PKI integration using GnuPG PKI

module and performing encryption on a per-file basis

with storing cryptographic metadata as extended

attributes in file‘s ACL.

In future, modified EncFS can be implemented using

parallel implementations of XTS-AES for further

improving its performance. Hardware devices such as

smart cards or USB connected disks can be used in

modified implementations for storing the user‘s private

key using openCryptoki PKCS#11 public-key

infrastructure [22] support.

REFERENCES

[1] Andrew G. Morgan, ―Linux Pluggable

Authentication Module,‖ http://www.kernel.org/

pub/linux/libs/pam.

[2] A. Grunbacher, ―POSIX Access Control Lists on

Linux,‖ Proceedings of the USENIX Annual

Technical Conference (ATC), FREENIX Track, San

Antonio, Texas, USA, June 2003, pp. 259–272.

[3] ―DMCrypt: Linux Kernel Device-Mapper Crypto

Target,‖

http://code.google.com/p/cryptsetup/wiki/DMCrypt.

[4] ―Cryptsetup - Setup Virtual Encryption Devices

under dm-crypt Linux,‖

http://code.google.com/p/cryptsetup.

[5] M.A. Halcrow, ―eCryptfs: An Enterprise-class

Cryptographic Filesystem for Linux,‖ Proceedings of

the Linux Symposium, Ottawa, Canada, July 2005,

pp. 201–218.
[6] E. Zadok, I. Badulescu, ―A Stackable File System

Interface for Linux,‖ LinuxExpo, Raleigh, North

Carolina, May 1999, pp. 141–151.

[7] E. Zadok, J. Nieh, ―FiST: A Language for Stackable

File Systems,‖ Proceedings of the USENIX Annual

Technical Conference (ATC), San Diego, CA, USA,

June 2000, pp. 55–70.

[8] Matt Blaze, ―A Cryptographic File System for

UNIX,‖ Proceedings of the ACM Conference on

Computer and Communications Security (CCS),

Fairfax, VA, USA, November 1993, pp. 9–16.

[9] Valient Gough, ―EncFS Encrypted Filesystem

Source Code,‖

http://encfs.googlecode.com/files/encfs-1.7.4.tgz.

[10] Miklos Szeredi, ―Filesystem in Userspace,‖ 2012.

http://sourceforge.net/projects/fuse/files/fuse-2.X.

[11] A. A. Tamimi, ―Performance Analysis of Data
Encryption Algorithms,‖ Project Report, Washington

University, St. Louis, USA, 2006.

[12] IEEE Standard 1619–2007, ―The XTS-AES

Tweakable Block Cipher,‖ Institute of Electrical and

Electronics Engineers, Inc., 2008.

[13] M. Dworkin, ‗‗Recommendation for Block Cipher

Modes of Operation: The XTS-AES Mode for

Confidentiality on Storage Devices,‘‘ NIST SP 800-

38E, 2009.

[14] M. Liskov, K. Minematsu, ―Comments on XTS-

AES‖,

2008.http://csrc.nist.gov/groups/ST/toolkit/BCM/doc

 Distributed Encrypting File System for Linux in User-space 39

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 8, 33-39

uments/comments/XTS/XTS_comments-

Liskov_Minematsu.pdf

[15] Matthew V. Ball, Cyril Guyot, James P. Hughes,

Luther Martin & Landon Curt Noll, ―The XTS-AES

Disk Encryption Algorithm and the Security of

Ciphertext Stealing,‖ Cryptologia, vol. 36, no. 1, pp.

70-79, January 2012.

[16] M.A. Alomari, K. Samsudin, A.R.Ramli, ―A Parallel

XTS Encryption Mode of Operation,‖ IEEE Student

Conference on Reseach and Development

(SCOReD), UPM Serdang, Malaysia, November

2009, pp. 172-175.

[17] ―GnuPG PKI Module,‖ http://www.gnupg.org.
[18] M. A. Halcrow, ―Demands, Solutions, and

Improvements for Linux Filesystem Security,‖

Proceedings of the Linux Symposium, Ottawa,

Canada, July 2004, pp. 269–286.

[19] Matt Blaze, ―CFS Encrypting File System Source

Code,‖ http://www.crypto.com/software/.

[20] ―OpenSSL FIPS Object Module v2.0 Source Code,‖

2012. http://www.openssl.org/source/ openssl-fips-

2.0.tar.gz.

[21] ―IOZone,‖ http://www.iozone.org.

[22] ―OpenCryptoki v2.4.2 PKCS#11 implementation for

Linux,‖ http://sourceforge.net/projects/opencryptoki.

U.S.Rawat is Senior Lecturer and Ph.D. candidate in the

Department of Computer Science and Engineering at

Jaypee University of Engineering and Technology, Guna,

India. He earned his M.E. in Computer Engineering from

SGSITS, Indore in 2003. He is having 10 years of

teaching experience. His current research interests
include Information Systems Security and File Systems.

Shishir Kumar is currently working as Professor and

Head in Department of Computer Science and

Engineering at Jaypee University of Engineering and

Technology, Guna, India. He has completed his PhD

(Computer Science) in 2005. He is having around 13

years of teaching experience. His current areas of interest

are Information Systems Security & Image Processing.

