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Abstract — In today’s applications, evolving data 

streams are stored as very large databases; the databases 
which grow without limit at a rate of several million 

records per day. Data streams are ubiquitous and have 

become an important research topic in the last two 

decades. Mining these continuous data streams brings 

unique opportunities, but also new challenges. For their 

predictive nonparametric analysis, Hoeffding-based 

trees are often a method of choice, which offers a 

possibility of any-time predictions. Although one of 

their main problems is the delay in learning progress 

due to the presence of equally discriminative attributes. 

Options are a natural way to deal with this problem. In 

this paper, Option trees which build upon regular trees 
is presented by adding splitting options in the internal 

nodes to improve accuracy, stability and reduce 

ambiguity. Results based on accuracy and processing 

speed of algorithm under various memory limits is 

presented. The accuracy of Hoeffding Option tree with 

Hoeffding trees under circumstantial conditions is 

compared. 

 
Index Terms — Data streams, hoeffding trees, option 

trees,    large databases 
 

I.  INTRODUCTION 

Data mining is the task of discovering interesting and 

hidden patterns from large amounts of data where the 

data can be stored in databases, data warehouses, OLAP 
(on line analytical process ) or other repository 

information. At present the most efficient algorithms 

available are focused on making it possible to mine 

databases that do not fit in main memory by only 

requiring sequential scans of the disk. But these 

algorithms are tested only up to a few million examples. 

In many applications this is less than a day's worth of 

data. For example, every day, retail chains record 

millions of transactions, telecommunications companies 

connect millions of calls, large banks process millions 

of ATM and credit card operations, and popular Web 

sites log millions of hits. As the expansion of the 
Internet continues and ubiquitous computing becomes a 

reality, we can expect that such data volumes will 

become the rule rather than the exception. Current data 

mining systems are not suitable for such type of data as 

the amount of data generated and accumulated is rapidly 

increasing. To this extent, a new mining application that 

accepts data streams as input has emerged which can be 

expressed as stream mining. 

A data stream [1] is an ordered sequence of instances 

with bounded main memory and data may be evolving 

over time at a higher rate than they can be mined. Even 

simply storing the examples for future use may be lost 

or corrupted and can become unusable when the 
relevant information is no longer available.  

The contribution of this paper is to design a decision 

tree learner for extremely large (potentially infinite) 

datasets. Such a decision tree learner should require 

each example to be read at most once, and only a small 

constant time to process it. This will make it possible to 

directly mine online data sources (i.e., without ever 

storing the examples), and to build potentially very 

complex trees with acceptable computational cost. The 

problem of deciding exactly how many examples are 

necessary at each node is solved by using a statistical 

result known as the Hoeffding bound [2] (or additive 
Chernoff bound). 

Consider a real-valued random variable r whose range 

is R (e.g., for a probability the range is one, and for an 

information gain the range is log c, where c is the 

number of classes). Suppose we have made n 

independent observations of this variable, and computed 

their mean r. 

Hoeffding bound states that, with probability 1- δ, 

the true mean of the variable is at least r’ – ε, where 

 

(1)   

 

 

 Hoeffding-based tree learners have been recognized 

as the most efficient in terms of processing speed per 

example, although their learning might be slow, which 

results in lower any-time accuracy at the beginning. The 

Hoeffding trees tend to be less accurate in situations 

where several attributes appear to be equally 

discriminative. In such tie-situations, the split selection 
method based on the Hoeffding bound might never 

decide, which attribute is significantly better. To solve 

this problem, Hoeffding-based tree learners typically 

use a tie-breaking mechanism based on a user-defined 

threshold, which implicitly specifies the amount of data 

that has to be observed in order to decide on one of the 

competitive attributes. Setting this threshold requires 

knowledge of the problem domain. An additional side 

effect is that the splitting decision will be significantly 

delayed, which results in a lower any-time accuracy 

during this delay.  

This problem is solved using option trees, which can 
include option nodes in addition to ordinary split nodes. 
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The main motivation is that introducing option nodes 

removes the need for selecting the best splitting 

attribute. Main idea is to introduce options only when 

splitting decisions are ambiguous, which will avoid 

excessive and unnecessary tree growth and reduce 

memory consumption. We opt for a faster improvement 

of the any-time accuracy, which is a very important 

property of predictive algorithms for real-time dynamic 

systems. 
 

II.  RELATED WORK 

Classification is one of the most familiar and most 

popular data mining techniques. It aims to find a 

function that can map each data item in dataset into one 

of several predefined classes. Many classification 

algorithms are available in literature but decision trees is 

most commonly used because of its ease of 

implementation and easier to understand compared to 

other classification algorithms.  

Decision tree is one of the most often used techniques 

in the data mining literature. Each node of a decision 

tree contains a test on an attribute. Each branch from a 

node corresponds to a possible outcome of the test and 

each leaf contains a class prediction. A decision tree is 

constructed by recursively replacing leaves by test 

nodes, starting at the root. The attribute to test in a leaf 
is chosen by comparing all available attributes and 

choosing the best one according to some heuristic 

evaluation function.  

Classic decision tree learners like ID3, C4.5, and 

CART assume that all training examples can be stored 

simultaneously in memory, and thus are severely limited 

in the number of examples from which they can learn. 

Previous work on scaling up decision tree learning 

produced systems such as SLIQ [3], SPRINT [4]. These 

systems perform batch learning of decision trees from 

large data sources in limited memory by performing 

multiple passes over the data and using external storage. 

Such operations are not suitable for high speed stream 
processing.  

Hoeffding tree an incremental decision tree algorithm 

proposed by Domingos and Hulten in the paper ―Mining 

High Speed Data Streams‖. For streams made up of 

discrete types of data, Hoeffding bounds guarantee that 

the output model is asymptotically nearly identical to 

that of a conventional decision tree. The Hoeffding tree 

algorithm is the basic theoretical algorithm, while 

VFDT adopts several enhancement techniques for 

practical applications, such as grace period, pre-pruning, 

and tie breaking. 

Hulten proposed a new algorithm called CVFDT [5], 

which used a fixed-size window to determine which 

nodes are aging and may need updating. For fragments 

of the Hoeffding tree that become old and inaccurate, 

alternative subtrees are grown that later replace the 
outdated nodes. It is worth noting, that the whole 

process does not require model retraining. Outdated 

examples are forgot by updating node statistics and 

necessary model changes are performed on subtrees 

rather than the whole classifier. 

Some methods for voting classification algorithms 

have been developed to be very successful in improving 

accuracy of certain classifiers for artificial and real 

world datasets. They are based on the performance of 

previous classifier.  

Option decision trees [6] are used to reduce the error 

of decision trees on real world problems by combining 

multiple options which is quite similar to that of voting 
algorithms that learn multiple models and combine the 

predictions. The main goal of the paper is to explore 

when option nodes are most useful and to control the 

growth of trees by which complexity of little utility is 

limited. 

Option nodes are also used in the context of learning 

from data streams, as an extension of Hoeffding trees 

[7] for classification. Although Hoeffding trees are more 

stable than batch tree learners, decisions are still subject 

to limited lookahead. This is the main motivation of 

Pfahringer et al. Their approach is somewhat different 

from the proposed batch ones, mainly because option 

nodes are not introduced in the split selection process, 

but only after a node has been transformed into an 

internal (decision) node 

Kirkby [8] proposed an Option Tree that allows each 

training example to update a set of option nodes rather 

than just a single leaf. Option nodes work like standard   
decision tree nodes with the difference that they can 

split the decision paths into several sub trees. Making a 

decision with an option tree involves combining the 

predictions of all applicable leaves into a single result. 

Hoeffding tree algorithm is clearly explained and 

experiments are conducted concerning the windowed 

classifier, hoeffding option tree and hoeffding tree with 

a drift detector in mining data streams using concept 

drift [9].  The results of hoeffding option tree are always 

more accurate than the single hoeffding tree with a drift 

detector. 

 

III. OPTION TREES  

Option trees are a single general structure making it 

possible to travel down multiple paths and arrive at 

multiple leaves. This is achieved by introducing the 

possibility of option nodes to the tree, alongside the 
standard decision nodes and leaf nodes. 

An option node [4] splits the decision path several 

ways—when an option node is encountered several 

different sub trees are traversed, which could 

themselves contain more option nodes, thus the 

potential for reaching different leaves is multiplied by 

every option. Making a decision with an option tree 

involves combining the predictions of the applicable 

leaves into a final result. A potential benefit of option 

trees over a traditional ensemble is that the more 

flexible representation can save space. 

Consider as an extreme example an ensemble of one 
hundred mostly identical large trees, where the only 
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difference between each tree lies at a single leaf node, in 

the same position in each tree. The standard ensemble 

representation would require one hundred whole copies 

of the tree where only the leaf would differ. Efficiently 

represented as an option tree this would require almost a 

hundred times less space, where the varying leaf could 

be replaced by an option node splitting one hundred 

ways leading to the one hundred different leaf variants. 

 

IV.  METHODOLOGY 

     Massive Online Analysis (MOA) is a software 

environment for implementing algorithms and running 

experiments for online learning. It is designed to deal 
with the problems of scaling up the implementation of 

state of the art algorithms to real world dataset sizes and 

of making algorithms comparable in benchmark 

streaming settings. It is implemented in Java and 

contains a collection of data stream generators, online 

learning algorithms, and evaluation procedures. 

 

A. Environments: 

Three environments are simulated using memory 

limits, since memory limits cannot be ignored and can 
significantly limit capacity to learn from data streams. 

Potential practical deployment of data stream 

classification has been divided into scenarios of 

increasing memory utilization, from the restrictive 

sensor environment, to a typical consumer grade 

handheld PDA environment, to the least restrictive 

environment of a dedicated server. 

1) Sensor Network 

This environment represents the most restrictive case, 

learning in 100 kilobytes of memory. Because this limit 
is so restrictive, it is an interesting test case for 

algorithm efficiency. 

When memory limits are in the order of kilobytes, 

other applications requiring low memory usage also 

exist, such as specialized hardware in which memory is 

expensive. 

2) Handheld Computer 

In this case the algorithm is allowed 32 megabytes of 

memory. This simulates the capacity of lightweight 
consumer devices designed to be carried around by 

users and can easily fit into a shirt pocket. The ability to 

do analysis on site with a handheld device is desirable 

for certain applications.  

3) Server 

This environment simulates either a modern 

laptop/desktop computer or server dedicated for 

processing a data stream. The memory limit assigned in 

this environment is 400 megabytes. Considering that 

several algorithms have difficulty in fully utilizing this 
much working space, it seems sufficiently realistic to 

impose this limit.  

There are many applications that fit into this higher 

end of the computing scale. An obvious task is 

analyzing data arising from the Internet, as web 

searches, web usage, site logs or click streams. Smaller 

scale computer networks also produce traffic of interest, 

as do other telecommunication activities, phone call 

logs for example. Banks may be interested in patterns of 

ATM transactions, and retail chains and online stores 

will need details about customer purchases. 

B. Data generators: 

MOA stream generators allow simulating potentially 

infinite sequence of data. The following are the 

generators used for generating data according to some 

pattern instead of reading data from file, database or any 

other data source.  

1) Random Tree Generator 

Random tree generator generates examples by 

assigning uniformly distributed random values to 

attributes which then determine the class label via the 

tree which choose attributes at random to split. The 

generator has parameters to control the number of 

classes, attributes and depth of tree. Two random trees 

were generated one is simple and the other complex. 

The simple random tree (rts) has ten nominal 
attributes with five values each, ten numeric attributes, 

two classes, a tree depth of five, with leaves starting at 

level three and a 0.15 chance of leaves. The complex 

random tree (rtc) has 50 nominal attributes with five 

values each, 50 numeric attributes, two classes, a tree 

depth of ten, with leaves starting at level five and a 0.15 

chance of leaves. 

A degree of noise can be introduced to the examples 

after generation. The streams rtsn and rtcn are 

introduced by adding 10% noise to the respective 
random tree data streams.  

2) Random RBF Generator 

Random RBF generates examples from a fixed 

number of random centroids. Each time a centroid is 

selected at random, a data point around the centroid is 

drawn randomly. The centroid determines the class label 

of the example, and the data point determines the 

attributes of the example. Examples in Random Tree are 

generated by assigning random values to each attribute 

first and the class label is determined via a pre-

constructed decision tree. Only numeric attributes are 

generated. Two random streams are produced one 

simple and other complex. 
The simple RBF (RRBFS) generator has 100 centers 

and ten attributes where complex RBF (RRBFC) 

generator has 50 attributes and 1000 centers. Both have 

only two classes.  

3) LED Generator 

The generator actually generates stream predicting 

the digit displayed on a seven-segment LED display, 

where each attribute has a 10% chance of being 

inverted. It has an optimal Bayes classification rate of 

74%. The particular configuration of the generator used 

for experiments produces 24 binary attributes, 17 of 

which are irrelevant. 

4) Waveform Generator 

This generator shares its origins with LED. The goal 

of the task is to differentiate between three different 

classes of waveform, each of which is generated from a 

combination of two or three base waves. There are two 

versions of the problem. Wave21 has 21 numeric 
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attributes, all of which include noise. Wave40 

introduces an additional 19 irrelevant attributes. 

5) Function Generator 

 Function generator produces a stream containing 
nine attributes, six numeric and three categorical which 

was used as data source for work on scaling up decision 

tree learners.  There are ten functions defined for 

generating binary class labels from the attributes.  For 

the experiments the ten functions are used, with a 

perturbation factor of 5% (referred to as genF1-genF10). 

Perturbation shifts numeric attributes from their true 

value, adding an offset drawn randomly from a uniform 

distribution, the range of which is a specified percentage 

of the total value range. 

 

V. EVALUATION 

Wide variety of data sets is used for evaluation. The 

experiments are performed on a machine 2.40 GHz Intel 

Core 2 Duo processor, 2 GB RAM, running windows 
XP. The evaluation procedure of a learning algorithm 

determines which examples are used for training the 

algorithm, and which are used to test the model output 

by the algorithm. The evaluation methodology used was 

predictive sequential which is known as prequential 

approach. Prequential evaluation provides a learning 

curve that monitors the evaluation of learning as a 

process. It is based on the idea that statistical methods 

should be assessed by means of validity of predictions 

that flow from them and that such assessments can 

usefully be extracted from a sequence of realized data 

values, by forming, at each intermediate time point, a 
forecast for next value, based on an analysis of earlier 

values. 

The first, and baseline algorithm is a single Hoeffding 

tree, enhanced with majority class prediction(HTMC) 

and hoeffding tree with adaptive naïve bayes leaf 

predictions(HTNBA) and the Hoeffding Option Tree 

algorithm(HOT) for which  maximum of five option 

paths are given.  

MOA framework is used for evaluating the 

algorithms, in which parameter settings are made. 

The following are the list of parameters used for 

evaluating hoeffding tree algorithm: 
Split confidence: The allowable error in split 

decision, values closer to 0 will take longer to decide. 

The default value is set as 10^-7.  

Tie threshold: A situation may occur where two or 

more competing attributes cannot be separated. Even 

with very small Hoeffding bound, it would not be able 

to separate them and the tree growth would stall. 

Threshold below which a split will be forced to break 

ties. The default value is set as 0.05. 

Grace period: The number of instances a leaf should 

observe between split attempts. The default value is set 

as 200. 
     Pre Pruning: Pre pruning is carried out by 

considering at each node a NULL attribute X0, which 

consists of not splitting the node. The split will only be 

made if, with confidence 1– δ, the best split found is 

better according to G than not splitting. X0 will 

determine the leaf nodes. 

HTNBA have all the parameters set as HTMC except 

prediction strategy. It allows either adaptive hybrid or 

naïve bayes prediction where HTMC allows only 

Majority class prediction. 

In hoeffding option tree (HOT) with five option paths 

all the above parameters are considered along with an 

important parameter of HOT5 algorithm.  
Secondary split confidence: The allowable error in 

secondary split decisions, values closer to 0 will take 

longer to decide. The default value is set as 0.99. 

MOA environment is used for obtaining results from 

the learning algorithms i.e., Hoeffding option tree 

algorithm and Hoeffding tree algorithm with some 

parameters set for evaluation using prequential 

evaluation technique. Data generator is chosen and 

algorithm is invoked for number of examples based on 

evaluation method and results signifying accuracy, tree 

size, number of leaves, etc are produced. 

Comparison between Hoeffding Tree algorithm with 
Naïve Bayes prediction and Majority class prediction at 

leaves along with Hoeffding Option Tree algorithm with 

five option  paths  is done by setting the parameters 

given above with specified number of examples. 

 
TABLE I 

COMPARISON OF ACCURACY FOR HOEFFDING TREES WITH MAJORITY 

CLASS AND NAÏVE BAYES PREDICTION AT LEAVES 

Method 

htmc 

memory limit 

htnba 

memory limit 

Dataset 

100 

KB 

32 

MB 

400 

MB 

100 

KB 

32 

MB 

400 

MB 

rts 97.2 99.8 99.8 97.2 99.9 99.9 

rtsn 74.9 77.3 77.3 72.9 77.8 78.1 

rtc 77.8 68.1 68.1 63.5 69.2 69.2 

rtcn 56 58.9 58.9 56.0 59.3 59.3 

rrbfs 88 90 90 88 91.7 91.7 

rrbfc 92.1 95.3 95.3 92.1 97.3 97.3 

wave21 81.9 83.1 83.1 81.5 86.7 86.7 

wave40 82.1 83.1 83.1 82.1 86 86 

Led 74.9 75.8 75.8 75.3 75.2 75.2 

genF1 95.5 95.5 95.5 95.5 95.5 95.5 

genF2 81.1 85.4 85.4 81.1 86.5 86.5 

genF3 97.8 97.8 97.8 97.8 97.8 97.8 

genF4 94 94.4 94.4 94.1 94.3 94.3 

genF5 86.8 91.9 91.9 86.8 93.1 93.1 

genF6 88.9 90.8 90.8 88.9 91.2 91.2 

genF7 96 95.9 95.9 96.2 97.2 97.2 

genF8 99.4 99.4 99.4 99.5 99.4 99.4 

genF9 95.2 96.5 96.5 95.2 96.4 96.4 

genF10 99.7 99.7 99.7 99.7 99.7 99.7 



 Mining Data Streams using Option Trees 53 

Copyright © 2012 MECS                                                I.J. Computer Network and Information Security, 2012, 8, 49-54 

Result of accuracy of Hoeffding tree which uses 

majority class and naïve bayes at the leaves to predict 

the attribute are presented. 

Hoeffding tree with majority class prediction gives 

more accurate values when compared with hoeffding 

tress with adaptive naïve bayes prediction at only 

restricted 100KB environments. In the remaining two 

environments HTNBA is comparatively more accurate 

than HTMC.  
The 32MB memory limit gives approximately good 

accuracy results in both evaluations. The datasets with 

noise generated give less accuracy. When a random tree 

is complex it gives very low accuracy results mainly in 

100KB environment. 

 

TABLE II 

COMPARISON OF ACCURACY FOR HOEFFDING TREES AND HOEFFDING 

OPTION TREES WITH FIVE OPTION PATHS 

 

The results given above of Hoeffding tree with two 

ways of predictions at leaves are compared with 

hoeffding option tree with option paths restricted to 

five. 

But Hoeffding option tree has more accurate values 

than hoeffding trees in both cases with different 
prediction at          leaves. HOT5 is more accurate in all 

environments than hoeffding trees. 

The LED generator takes more time for evaluation 

when compared to other generators. The results in 

32MB and 400MB are quite similar but at an average, 

accuracy of hoeffding option trees is greater than the 

hoeffding trees 

 

VI. CONCLUSION 

Data streams are defined and the evaluation of the 

Massive Online Analysis framework as a software 

environment for research on learning from evolving data 

streams and evaluating algorithms is done. 

We used a prequential evaluation method to 

experimentally compare single classifier and ensemble 
data stream classifier which is considered as Hoeffding 

option trees. Use of option trees for classification in data 

streams is made and results are noted. Memory limits 

are set to define various environments where evaluation 

can be done.  

Data generators which generate data sets based on 

some pattern are formed which are further used for 

evaluation and experiments are carried out on the given 

algorithms mainly on hoeffding trees and hoeffding 

option trees.  

     Majority class prediction and naïve Bayes prediction 

at the leaves is used for hoeffding trees and they are 
evaluated using the framework and the results are noted 

and accuracy of the algorithms mainly Hoeffding trees 

and Hoeffding option trees are compared for different 

data sets under various memory limits.It is observed that 

option nodes enable faster growth without instability in 

splitting decisions and have improved lookahead 

strategy.  

As a future work, we plan to work on the evaluation 

method with other large number of algorithms to take a 

diversified look at the performance of the most recent 

stream mining techniques.  
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