
I. J. Computer Network and Information Security, 2012, 8, 49-54
Published Online August 2012 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2012.08.06

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 8, 49-54

Mining Data Streams using Option Trees

B.Reshma Yusuf, Dr.P.Chenna Reddy

JNTUA college of engineering, pulivendula, Andhra Pradesh, INDIA.

resh.yusuf@gmail.com , pcreddy1@rediffmail.com

Abstract — In today’s applications, evolving data

streams are stored as very large databases; the databases
which grow without limit at a rate of several million

records per day. Data streams are ubiquitous and have

become an important research topic in the last two

decades. Mining these continuous data streams brings

unique opportunities, but also new challenges. For their

predictive nonparametric analysis, Hoeffding-based

trees are often a method of choice, which offers a

possibility of any-time predictions. Although one of

their main problems is the delay in learning progress

due to the presence of equally discriminative attributes.

Options are a natural way to deal with this problem. In

this paper, Option trees which build upon regular trees
is presented by adding splitting options in the internal

nodes to improve accuracy, stability and reduce

ambiguity. Results based on accuracy and processing

speed of algorithm under various memory limits is

presented. The accuracy of Hoeffding Option tree with

Hoeffding trees under circumstantial conditions is

compared.

Index Terms — Data streams, hoeffding trees, option

trees, large databases

I. INTRODUCTION

Data mining is the task of discovering interesting and

hidden patterns from large amounts of data where the

data can be stored in databases, data warehouses, OLAP
(on line analytical process) or other repository

information. At present the most efficient algorithms

available are focused on making it possible to mine

databases that do not fit in main memory by only

requiring sequential scans of the disk. But these

algorithms are tested only up to a few million examples.

In many applications this is less than a day's worth of

data. For example, every day, retail chains record

millions of transactions, telecommunications companies

connect millions of calls, large banks process millions

of ATM and credit card operations, and popular Web

sites log millions of hits. As the expansion of the
Internet continues and ubiquitous computing becomes a

reality, we can expect that such data volumes will

become the rule rather than the exception. Current data

mining systems are not suitable for such type of data as

the amount of data generated and accumulated is rapidly

increasing. To this extent, a new mining application that

accepts data streams as input has emerged which can be

expressed as stream mining.

A data stream [1] is an ordered sequence of instances

with bounded main memory and data may be evolving

over time at a higher rate than they can be mined. Even

simply storing the examples for future use may be lost

or corrupted and can become unusable when the
relevant information is no longer available.

The contribution of this paper is to design a decision

tree learner for extremely large (potentially infinite)

datasets. Such a decision tree learner should require

each example to be read at most once, and only a small

constant time to process it. This will make it possible to

directly mine online data sources (i.e., without ever

storing the examples), and to build potentially very

complex trees with acceptable computational cost. The

problem of deciding exactly how many examples are

necessary at each node is solved by using a statistical

result known as the Hoeffding bound [2] (or additive
Chernoff bound).

Consider a real-valued random variable r whose range

is R (e.g., for a probability the range is one, and for an

information gain the range is log c, where c is the

number of classes). Suppose we have made n

independent observations of this variable, and computed

their mean r.

Hoeffding bound states that, with probability 1- δ,

the true mean of the variable is at least r’ – ε, where

(1)

 Hoeffding-based tree learners have been recognized

as the most efficient in terms of processing speed per

example, although their learning might be slow, which

results in lower any-time accuracy at the beginning. The

Hoeffding trees tend to be less accurate in situations

where several attributes appear to be equally

discriminative. In such tie-situations, the split selection
method based on the Hoeffding bound might never

decide, which attribute is significantly better. To solve

this problem, Hoeffding-based tree learners typically

use a tie-breaking mechanism based on a user-defined

threshold, which implicitly specifies the amount of data

that has to be observed in order to decide on one of the

competitive attributes. Setting this threshold requires

knowledge of the problem domain. An additional side

effect is that the splitting decision will be significantly

delayed, which results in a lower any-time accuracy

during this delay.

This problem is solved using option trees, which can
include option nodes in addition to ordinary split nodes.

n

R

2

)/1ln(2

50 Mining Data Streams using Option Trees

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 8, 49-54

The main motivation is that introducing option nodes

removes the need for selecting the best splitting

attribute. Main idea is to introduce options only when

splitting decisions are ambiguous, which will avoid

excessive and unnecessary tree growth and reduce

memory consumption. We opt for a faster improvement

of the any-time accuracy, which is a very important

property of predictive algorithms for real-time dynamic

systems.

II. RELATED WORK

Classification is one of the most familiar and most

popular data mining techniques. It aims to find a

function that can map each data item in dataset into one

of several predefined classes. Many classification

algorithms are available in literature but decision trees is

most commonly used because of its ease of

implementation and easier to understand compared to

other classification algorithms.

Decision tree is one of the most often used techniques

in the data mining literature. Each node of a decision

tree contains a test on an attribute. Each branch from a

node corresponds to a possible outcome of the test and

each leaf contains a class prediction. A decision tree is

constructed by recursively replacing leaves by test

nodes, starting at the root. The attribute to test in a leaf
is chosen by comparing all available attributes and

choosing the best one according to some heuristic

evaluation function.

Classic decision tree learners like ID3, C4.5, and

CART assume that all training examples can be stored

simultaneously in memory, and thus are severely limited

in the number of examples from which they can learn.

Previous work on scaling up decision tree learning

produced systems such as SLIQ [3], SPRINT [4]. These

systems perform batch learning of decision trees from

large data sources in limited memory by performing

multiple passes over the data and using external storage.

Such operations are not suitable for high speed stream
processing.

Hoeffding tree an incremental decision tree algorithm

proposed by Domingos and Hulten in the paper ―Mining

High Speed Data Streams‖. For streams made up of

discrete types of data, Hoeffding bounds guarantee that

the output model is asymptotically nearly identical to

that of a conventional decision tree. The Hoeffding tree

algorithm is the basic theoretical algorithm, while

VFDT adopts several enhancement techniques for

practical applications, such as grace period, pre-pruning,

and tie breaking.

Hulten proposed a new algorithm called CVFDT [5],

which used a fixed-size window to determine which

nodes are aging and may need updating. For fragments

of the Hoeffding tree that become old and inaccurate,

alternative subtrees are grown that later replace the
outdated nodes. It is worth noting, that the whole

process does not require model retraining. Outdated

examples are forgot by updating node statistics and

necessary model changes are performed on subtrees

rather than the whole classifier.

Some methods for voting classification algorithms

have been developed to be very successful in improving

accuracy of certain classifiers for artificial and real

world datasets. They are based on the performance of

previous classifier.

Option decision trees [6] are used to reduce the error

of decision trees on real world problems by combining

multiple options which is quite similar to that of voting
algorithms that learn multiple models and combine the

predictions. The main goal of the paper is to explore

when option nodes are most useful and to control the

growth of trees by which complexity of little utility is

limited.

Option nodes are also used in the context of learning

from data streams, as an extension of Hoeffding trees

[7] for classification. Although Hoeffding trees are more

stable than batch tree learners, decisions are still subject

to limited lookahead. This is the main motivation of

Pfahringer et al. Their approach is somewhat different

from the proposed batch ones, mainly because option

nodes are not introduced in the split selection process,

but only after a node has been transformed into an

internal (decision) node

Kirkby [8] proposed an Option Tree that allows each

training example to update a set of option nodes rather

than just a single leaf. Option nodes work like standard
decision tree nodes with the difference that they can

split the decision paths into several sub trees. Making a

decision with an option tree involves combining the

predictions of all applicable leaves into a single result.

Hoeffding tree algorithm is clearly explained and

experiments are conducted concerning the windowed

classifier, hoeffding option tree and hoeffding tree with

a drift detector in mining data streams using concept

drift [9]. The results of hoeffding option tree are always

more accurate than the single hoeffding tree with a drift

detector.

III. OPTION TREES

Option trees are a single general structure making it

possible to travel down multiple paths and arrive at

multiple leaves. This is achieved by introducing the

possibility of option nodes to the tree, alongside the
standard decision nodes and leaf nodes.

An option node [4] splits the decision path several

ways—when an option node is encountered several

different sub trees are traversed, which could

themselves contain more option nodes, thus the

potential for reaching different leaves is multiplied by

every option. Making a decision with an option tree

involves combining the predictions of the applicable

leaves into a final result. A potential benefit of option

trees over a traditional ensemble is that the more

flexible representation can save space.

Consider as an extreme example an ensemble of one
hundred mostly identical large trees, where the only

 Mining Data Streams using Option Trees 51

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 8, 49-54

difference between each tree lies at a single leaf node, in

the same position in each tree. The standard ensemble

representation would require one hundred whole copies

of the tree where only the leaf would differ. Efficiently

represented as an option tree this would require almost a

hundred times less space, where the varying leaf could

be replaced by an option node splitting one hundred

ways leading to the one hundred different leaf variants.

IV. METHODOLOGY

 Massive Online Analysis (MOA) is a software

environment for implementing algorithms and running

experiments for online learning. It is designed to deal
with the problems of scaling up the implementation of

state of the art algorithms to real world dataset sizes and

of making algorithms comparable in benchmark

streaming settings. It is implemented in Java and

contains a collection of data stream generators, online

learning algorithms, and evaluation procedures.

A. Environments:

Three environments are simulated using memory

limits, since memory limits cannot be ignored and can
significantly limit capacity to learn from data streams.

Potential practical deployment of data stream

classification has been divided into scenarios of

increasing memory utilization, from the restrictive

sensor environment, to a typical consumer grade

handheld PDA environment, to the least restrictive

environment of a dedicated server.

1) Sensor Network

This environment represents the most restrictive case,

learning in 100 kilobytes of memory. Because this limit
is so restrictive, it is an interesting test case for

algorithm efficiency.

When memory limits are in the order of kilobytes,

other applications requiring low memory usage also

exist, such as specialized hardware in which memory is

expensive.

2) Handheld Computer

In this case the algorithm is allowed 32 megabytes of

memory. This simulates the capacity of lightweight
consumer devices designed to be carried around by

users and can easily fit into a shirt pocket. The ability to

do analysis on site with a handheld device is desirable

for certain applications.

3) Server

This environment simulates either a modern

laptop/desktop computer or server dedicated for

processing a data stream. The memory limit assigned in

this environment is 400 megabytes. Considering that

several algorithms have difficulty in fully utilizing this
much working space, it seems sufficiently realistic to

impose this limit.

There are many applications that fit into this higher

end of the computing scale. An obvious task is

analyzing data arising from the Internet, as web

searches, web usage, site logs or click streams. Smaller

scale computer networks also produce traffic of interest,

as do other telecommunication activities, phone call

logs for example. Banks may be interested in patterns of

ATM transactions, and retail chains and online stores

will need details about customer purchases.

B. Data generators:

MOA stream generators allow simulating potentially

infinite sequence of data. The following are the

generators used for generating data according to some

pattern instead of reading data from file, database or any

other data source.

1) Random Tree Generator

Random tree generator generates examples by

assigning uniformly distributed random values to

attributes which then determine the class label via the

tree which choose attributes at random to split. The

generator has parameters to control the number of

classes, attributes and depth of tree. Two random trees

were generated one is simple and the other complex.

The simple random tree (rts) has ten nominal
attributes with five values each, ten numeric attributes,

two classes, a tree depth of five, with leaves starting at

level three and a 0.15 chance of leaves. The complex

random tree (rtc) has 50 nominal attributes with five

values each, 50 numeric attributes, two classes, a tree

depth of ten, with leaves starting at level five and a 0.15

chance of leaves.

A degree of noise can be introduced to the examples

after generation. The streams rtsn and rtcn are

introduced by adding 10% noise to the respective
random tree data streams.

2) Random RBF Generator

Random RBF generates examples from a fixed

number of random centroids. Each time a centroid is

selected at random, a data point around the centroid is

drawn randomly. The centroid determines the class label

of the example, and the data point determines the

attributes of the example. Examples in Random Tree are

generated by assigning random values to each attribute

first and the class label is determined via a pre-

constructed decision tree. Only numeric attributes are

generated. Two random streams are produced one

simple and other complex.
The simple RBF (RRBFS) generator has 100 centers

and ten attributes where complex RBF (RRBFC)

generator has 50 attributes and 1000 centers. Both have

only two classes.

3) LED Generator

The generator actually generates stream predicting

the digit displayed on a seven-segment LED display,

where each attribute has a 10% chance of being

inverted. It has an optimal Bayes classification rate of

74%. The particular configuration of the generator used

for experiments produces 24 binary attributes, 17 of

which are irrelevant.

4) Waveform Generator

This generator shares its origins with LED. The goal

of the task is to differentiate between three different

classes of waveform, each of which is generated from a

combination of two or three base waves. There are two

versions of the problem. Wave21 has 21 numeric

52 Mining Data Streams using Option Trees

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 8, 49-54

attributes, all of which include noise. Wave40

introduces an additional 19 irrelevant attributes.

5) Function Generator

 Function generator produces a stream containing
nine attributes, six numeric and three categorical which

was used as data source for work on scaling up decision

tree learners. There are ten functions defined for

generating binary class labels from the attributes. For

the experiments the ten functions are used, with a

perturbation factor of 5% (referred to as genF1-genF10).

Perturbation shifts numeric attributes from their true

value, adding an offset drawn randomly from a uniform

distribution, the range of which is a specified percentage

of the total value range.

V. EVALUATION

Wide variety of data sets is used for evaluation. The

experiments are performed on a machine 2.40 GHz Intel

Core 2 Duo processor, 2 GB RAM, running windows
XP. The evaluation procedure of a learning algorithm

determines which examples are used for training the

algorithm, and which are used to test the model output

by the algorithm. The evaluation methodology used was

predictive sequential which is known as prequential

approach. Prequential evaluation provides a learning

curve that monitors the evaluation of learning as a

process. It is based on the idea that statistical methods

should be assessed by means of validity of predictions

that flow from them and that such assessments can

usefully be extracted from a sequence of realized data

values, by forming, at each intermediate time point, a
forecast for next value, based on an analysis of earlier

values.

The first, and baseline algorithm is a single Hoeffding

tree, enhanced with majority class prediction(HTMC)

and hoeffding tree with adaptive naïve bayes leaf

predictions(HTNBA) and the Hoeffding Option Tree

algorithm(HOT) for which maximum of five option

paths are given.

MOA framework is used for evaluating the

algorithms, in which parameter settings are made.

The following are the list of parameters used for

evaluating hoeffding tree algorithm:
Split confidence: The allowable error in split

decision, values closer to 0 will take longer to decide.

The default value is set as 10^-7.

Tie threshold: A situation may occur where two or

more competing attributes cannot be separated. Even

with very small Hoeffding bound, it would not be able

to separate them and the tree growth would stall.

Threshold below which a split will be forced to break

ties. The default value is set as 0.05.

Grace period: The number of instances a leaf should

observe between split attempts. The default value is set

as 200.
 Pre Pruning: Pre pruning is carried out by

considering at each node a NULL attribute X0, which

consists of not splitting the node. The split will only be

made if, with confidence 1– δ, the best split found is

better according to G than not splitting. X0 will

determine the leaf nodes.

HTNBA have all the parameters set as HTMC except

prediction strategy. It allows either adaptive hybrid or

naïve bayes prediction where HTMC allows only

Majority class prediction.

In hoeffding option tree (HOT) with five option paths

all the above parameters are considered along with an

important parameter of HOT5 algorithm.
Secondary split confidence: The allowable error in

secondary split decisions, values closer to 0 will take

longer to decide. The default value is set as 0.99.

MOA environment is used for obtaining results from

the learning algorithms i.e., Hoeffding option tree

algorithm and Hoeffding tree algorithm with some

parameters set for evaluation using prequential

evaluation technique. Data generator is chosen and

algorithm is invoked for number of examples based on

evaluation method and results signifying accuracy, tree

size, number of leaves, etc are produced.

Comparison between Hoeffding Tree algorithm with
Naïve Bayes prediction and Majority class prediction at

leaves along with Hoeffding Option Tree algorithm with

five option paths is done by setting the parameters

given above with specified number of examples.

TABLE I

COMPARISON OF ACCURACY FOR HOEFFDING TREES WITH MAJORITY

CLASS AND NAÏVE BAYES PREDICTION AT LEAVES

Method

htmc

memory limit

htnba

memory limit

Dataset

100

KB

32

MB

400

MB

100

KB

32

MB

400

MB

rts 97.2 99.8 99.8 97.2 99.9 99.9

rtsn 74.9 77.3 77.3 72.9 77.8 78.1

rtc 77.8 68.1 68.1 63.5 69.2 69.2

rtcn 56 58.9 58.9 56.0 59.3 59.3

rrbfs 88 90 90 88 91.7 91.7

rrbfc 92.1 95.3 95.3 92.1 97.3 97.3

wave21 81.9 83.1 83.1 81.5 86.7 86.7

wave40 82.1 83.1 83.1 82.1 86 86

Led 74.9 75.8 75.8 75.3 75.2 75.2

genF1 95.5 95.5 95.5 95.5 95.5 95.5

genF2 81.1 85.4 85.4 81.1 86.5 86.5

genF3 97.8 97.8 97.8 97.8 97.8 97.8

genF4 94 94.4 94.4 94.1 94.3 94.3

genF5 86.8 91.9 91.9 86.8 93.1 93.1

genF6 88.9 90.8 90.8 88.9 91.2 91.2

genF7 96 95.9 95.9 96.2 97.2 97.2

genF8 99.4 99.4 99.4 99.5 99.4 99.4

genF9 95.2 96.5 96.5 95.2 96.4 96.4

genF10 99.7 99.7 99.7 99.7 99.7 99.7

 Mining Data Streams using Option Trees 53

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 8, 49-54

Result of accuracy of Hoeffding tree which uses

majority class and naïve bayes at the leaves to predict

the attribute are presented.

Hoeffding tree with majority class prediction gives

more accurate values when compared with hoeffding

tress with adaptive naïve bayes prediction at only

restricted 100KB environments. In the remaining two

environments HTNBA is comparatively more accurate

than HTMC.
The 32MB memory limit gives approximately good

accuracy results in both evaluations. The datasets with

noise generated give less accuracy. When a random tree

is complex it gives very low accuracy results mainly in

100KB environment.

TABLE II

COMPARISON OF ACCURACY FOR HOEFFDING TREES AND HOEFFDING

OPTION TREES WITH FIVE OPTION PATHS

The results given above of Hoeffding tree with two

ways of predictions at leaves are compared with

hoeffding option tree with option paths restricted to

five.

But Hoeffding option tree has more accurate values

than hoeffding trees in both cases with different
prediction at leaves. HOT5 is more accurate in all

environments than hoeffding trees.

The LED generator takes more time for evaluation

when compared to other generators. The results in

32MB and 400MB are quite similar but at an average,

accuracy of hoeffding option trees is greater than the

hoeffding trees

VI. CONCLUSION

Data streams are defined and the evaluation of the

Massive Online Analysis framework as a software

environment for research on learning from evolving data

streams and evaluating algorithms is done.

We used a prequential evaluation method to

experimentally compare single classifier and ensemble
data stream classifier which is considered as Hoeffding

option trees. Use of option trees for classification in data

streams is made and results are noted. Memory limits

are set to define various environments where evaluation

can be done.

Data generators which generate data sets based on

some pattern are formed which are further used for

evaluation and experiments are carried out on the given

algorithms mainly on hoeffding trees and hoeffding

option trees.

 Majority class prediction and naïve Bayes prediction

at the leaves is used for hoeffding trees and they are
evaluated using the framework and the results are noted

and accuracy of the algorithms mainly Hoeffding trees

and Hoeffding option trees are compared for different

data sets under various memory limits.It is observed that

option nodes enable faster growth without instability in

splitting decisions and have improved lookahead

strategy.

As a future work, we plan to work on the evaluation

method with other large number of algorithms to take a

diversified look at the performance of the most recent

stream mining techniques.

REFERENCES

[1]P. Domingos and G. Hulten, ―Mining High Speed

Data Streams‖, in Proceedings of the Association for

Computing Machinery Sixth International Conference

on Knowledge Discovery and Data Mining, 2000.

[2]P. Domingos and G. Hulten. A General Framework
for Mining Massive Data Streams.

[3]Manish Mehta, Rakesh Agarwal, and Jorma

Rissanen. ―SLIQ : A fast scalable classifier for data

mining‖. In Extending Database Technology, 1996.

[4]John Shafer, Rakesh Agarwal, and Manish Mehta.

―SPRINT : A scalable parallel classifier for data

mining ―. In International Conference on Very Large

Databases. 1996.

[5]Geoff Hulten, Laurie Spencer, and Pedro Domingos.

Mining time-changing data streams. In KDD, pages

97–106, 2001.

[6]Eric Bauer and Ron Kohavi. An Empirical
Comparison of Voting Classification Algorithms:

Bagging, Boosting, and Variants

[7]Bernhard Pfarhringer, Goeffrey Holmes, and Richard

Kirkby. ―New Options for Hoeffding trees‖. 2007.

Method

htnba

memory limit

hot5

memory limit

dataset

100

KB

32

MB

400

MB

100

KB

32

MB

400

MB

rts 97.2 99.9 99.9 98.5 100 100

rtsn 72.9 77.8 78.1 71.3 77.7 78.1

rtc 63.5 69.2 69.2 55.7 70.2 68.1

rtcn 56.0 59.3 59.3 55 62 61

rrbfs 88 91.7 91.7 88.6 92.1 92.1

rrbfc 92.1 97.3 97.3 94.5 97.9 97.9

wave21 81.5 86.7 86.7 83.8 86.7 86.7

wave40 82.1 86 86 80.6 86.4 86.4

led 75.3 75.2 75.2 75 75.2 75.2

genF1 95.5 95.5 95.5 95.5 95.5 95.5

genF2 81.1 86.5 86.5 86.5 86.5 86.5

genF3 97.8 97.8 97.8 97.8 97.8 97.8

genF4 94.1 94.3 94.3 94.2 94.4 94.4

genF5 86.8 93.1 93.1 86.4 92.4 92.4

genF6 88.9 91.2 91.2 90.1 91.2 93

genF7 96.2 97.2 97.2 96.4 97.1 97.1

genF8 99.5 99.4 99.4 99.1 99.5 99.5

genF9 95.2 96.4 96.4 95.7 96.5 96.5

genF10 99.7 99.7 99.7 99.7 99.7 99.7

54 Mining Data Streams using Option Trees

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 8, 49-54

[8]Ron Kohavi and Clayton Kunz, ―Option Decision

trees with majority votes‖. In International

Conference on Machine Learning.

[9]Richard Kirkby, ―Improving Hoeffding Trees‖,

University of Waikato, 2007.

[10]Dariusz Brzezinski, ―Mining data streams using

concept drift‖, Poznan University of Technolgy, 2010

Dr. P. Chenna Reddy did his B.Tech from S.V.

University College of Engineering, Tirupati, M.Tech &

Ph.D from JNTU, Hyderabad. He has 15 years of

Teaching experience. His areas of interest are Computer

Networks and related fields. He is currently working on
Bio inspired networking. He is currently working as

Associate Professor at JNTUA College of Engineering,

Pulivendula. He has published several papers in reputed

journals and conferences.

B. Reshma Yusuf received her Bachelor degree with

Computer Science and Engineering in 2010. She is been

under Master of Technology degree with specialization

in Computer Science and Engineering and a research

scholar in JNTU, pulivendula. Her research interests

include Data Mining and related fields.

