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Abstract —This paper introduces a permutation 

generation mechanism based on a shared secret key. The 

generated permutation vectors are used as encryption 

keys in a stream ciphering cryptosystem. We investigated 
various types of attacks on the known stream cipher RC4 

and patched most of its loopholes, especially biased-byte 

and state-related attacks. Unique to our approach, we 

prove mathematically that the complexity of brute-

forcing such a system is (2n), where n is the key size in 
bytes. This paper also presents a complete security model 

using permutation-based encryption, in order to handle 

privacy. In addition, our approach achieved higher 

performance than that of existing peer techniques, while 

maintaining solid security. Experimental results show that 

our system is much faster than the existing security 

mechanisms, such as AES and DES. 

 

Index Terms —Biased byte attack, exponential brute 

force, network security permutation vector generation, 

stream cipher 

I.  INTRODUCTION 

A permutation describes an arrangement, or ordering, 

of objects [1]. Many algorithmic problems seek the best 

way to order a set of objects, including traveling 

salesman (the least-cost order to visit n cities), width 

(order the vertices of a graph on a line so as to minimize 

the length of the longest path), and graph 

isomorphism  (order the vertices of one graph so that it is 

identical to another). Any algorithm for solving such 

problems must construct a series of permutations along 

the way.  

There are n! permutations of n items, which grow 

exponentially to generate all permutations. Numbers like 

these should calm the urge of anyone interested in 

exhaustive search and help explain the importance of 

generating random permutations. 

Fundamental to any permutation-generation algorithm 

is a notion of sequence order, the sequence in which the 

permutations are constructed, from first to last. The most 

natural generation order is lexicographic, the order in 

which permutations would appear if they were sorted 

numerically. Lexicographic order for n = 3 is {1, 2, 3}, {1, 

3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, and finally {3, 2, 1}. 

Although lexicographic order is aesthetically pleasing, 

there is often no particular reason to use it. Indeed, 

nonlexicographic orders lead to faster and simpler 

permutation generation algorithms [1][2]. 

The generation of random permutations is important 

for simplifying security algorithms. One way to do this [3] 

is the following two-line, linear-time algorithm. We 

assume that Random(i,n) generates a random integer 

between i and n. 

for i  1 to n do  

ai  i /* a =(1, 2, ..., n)*/ 

for i  1 to n do  

swap(ai, aRandom(i, n)) 

It is not obvious that this algorithm generates all 

permutations uniformly. However, the validity of a 

security algorithm that is based on such linear generation 

of permutation vectors is yet to be proven in relation to 

peer algorithms. Permutations are also used to achieve 

―diffusion‖, a critical characteristic of a secure cipher [4], 

in symmetric-key encryption algorithms such as DES [5], 

Twofish [6] and Serpent [7]. Some permutations in 

cryptographic algorithms are not one-way only. For 

instance, the Expansion Permutation in DES maps some 

bits in the source data vector to multiple destinations in 

the result data vector [8]. 

The rest of this paper is organized as follows. Section 2 

presents a description of the RC4 stream cipher with 

some flaws that made it insecure. In Section 3, we 

propose a permutation technique to be used in building 

secure stream ciphers. The base theorem of our crypto 

system is presented in Section 4 as well as some useful 

lemmas. Section 5 presents in detail the theorem proof 

which covers all cases of forming a new permutation 

vector. Our SDES crypto system is briefly presented in 

Section 6. Section 7 shows some simulation experiments 

and comparison of SDES with the state-of-the-art security 

mechanisms in terms of throughput. The conclusion is 

given in Section 8. 

II.  RELATED WORK 

Stream cipher algorithms are an important class of 

encryption techniques. They encrypt individual characters 

(usually binary digits) of a plaintext message one at a 

time, using an encryption transformation that varies with 

time [9]. In contrast, block ciphers tend to simultaneously 

encrypt groups of characters of a plaintext message using 

a fixed encryption transformation [10]. Stream ciphers 
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are generally faster than block ciphers [11] and have less 

complex hardware circuitry. They are also more 

appropriate, and in some cases mandatory (e.g., in some 

telecommunications applications), when buffering is 

limited or when characters must be individually 

processed as they are received. 

RC4 is one of the dominant stream ciphers used in 

secure data communications [12]. Ron Rivest of RSA 

Data Security Inc developed the RC4 cipher in 1987, the 

details of which were published in 1996. RC4 is a stream 

cipher encryption system, which uses a shared key to 

shuffle a permutation vector, S, and randomly selects 

elements from it to encrypt and decrypt messages 

transferred during a particular communication session 

[13]. 

RC4 consists of two parts, as shown in Figure 1. The 

first is a key-scheduling algorithm, KSA, which turns a 

random key (whose typical size is 40-256 bits) into an 

initial permutation vector S of {1, …, n}; the second is a 

pseudo-random generation algorithm, PRGA, which uses 

S to generate a pseudo-random output sequence. 

 
KSA(K): 

/*Initialization*/ 

for i  1 to n do 

 Si  i 

 j  1 

/*Scrambling*/ 

for i  1 to n 

 j  j + Si + Ki  

 swap(Si, Sj) 

PRGA(K): 

/*Initialization*/ 

 i  1 

 j  1 

/*Generation loop*/ 

 i  i + 1 

 j  j + Si 

 swap(Si, Sj) 

 z  SSi + Sj 
 

Figure 1: Key scheduling and pseudo-random generation 

algorithms of RC4 

 

There are several methods of attempting a brute force 

attack on RC4 that are classified into two categories: 

KSA-based attacks and PRGA-based attacks. Knowing 

that the initial state is enough to predict all of the 

keystream bits (regardless of the shared key K), PRGA-

based attacks look for contradictions in the chosen 

keystream (in order to detect incorrect guesses) and 

discover some of the initial state entries. There has been 

considerable analysis of the probabilities of any given 

value being output by RC4. Most of these analyses have 

approached RC4 by looking at a given output. 

Even though RC4 uses a permutation vector as its 

internal state box, the generated keystream is not 

necessarily redundancy-free. Fluhrer and McGrew [14] 

and Mantin and Shamir [15] defined a class of predictive 

states in which a non-negligible bias appears in the 

keystream. In their search for a polynomial-space 

distinguisher, they came up with a startling theorem, 

claiming that if S2 = 0 and S1≠ 2, then z1 = 0 with 

probability of 1. 

In a good keystream generator, each bit of the output 

will depend on the entire key for its value; the 

relationship between the key and a given bit (or set of bits) 

should be extremely complicated [9]. However, RC4 uses 

the shared key only once (in the KSA); the shared key is 

not involved at all in the keystream generation. Recall 

that at each step of the PRGA, S changes in, at most, two 

locations; thus we can still expect the prefix of the output 

stream generated by RC4 from some permutation, S, to be 

highly correlated with the stream generated from the 

same S (or a slightly modified one) by RC4 [12]. 

III. PROPOSED PERMUTATION VECTOR GENERATION 

The generation of permutation vectors can be 

performed recursively. Given a permutation vector PV
j
 (a 

vector that contains all elements from 1 till n, in a 

specific order), the generation of the next permutation 

vector PV
j+1

 is based on PV
j
 and some other parameter 

that provides randomness. Our goal is to generate a large 

set of PVs whose sequence order is difficult to guess. In 

fact, the shared secret key (SK) utilization, in swapping 

the elements of PV, captures the notion of randomness in 

the abovementioned algorithm.  Next is our linear 

algorithm to generate permutation vectors: 

for i  1 to n do  

PVi  i 

for i  1 to n do  

swap(    ,      )  /* 1 SKi  n */ 

The major advantage of using permutation vectors as 

encryption keys is the avoidance of biased byte analysis, 

in contrast with RC4 keystreams. In accordance with 

good keystream philosophy, an entry in the new 

generated permutation vector is a function of the entire 

key and the previous permutation vector, i.e., every bit in 

the new permutation vector is generated after performing 

exactly n swaps in the previous vector. 

Another major contribution of our permutation 

generation algorithm is the continuous involvement of the 

shared key in the permutation vector generation. This will 

render the state-based attacks obsolete, since the attacker 

is forced to obtain the state and the key together in order 

to break the system. In order to increase the level of 

security, the system should update the shared key 

internally after each record. Therefore, the attacker is 

compelled to break a system with pseudo-multiple keys, 

instead of a single static key. 

Most of cryptographic schemes are based on the 

―reducibility from hard problems‖ technique, which 

consists of proving that any successful protocol attack 

leads directly to the ability to solve a well-studied hard 

problem [11]. This ―reference‖ problem is considered 

computationally unfeasible, given current knowledge and 

an adversary with bounded resources, e.g., the ―integer 

factorization‖ and the ―discrete logarithmic‖ problems. 

Such analysis yields the so-called provably secure 

protocols, although the security is conditional on the 

reference problem‘s being truly difficult. On the contrary, 

we will show that a cryptanalyst is cornered to the brute-

force option only in order to guess the lexographic order 

of the generated permutation vectors. Hence, we will 

prove a theorem that underlimits such brute-force 

algorithmic complexity to an exponential function (2
n
), 
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with n the byte size of the shared secret key. 

A. Permute function 

A permutation function Permute(X, K) is a function 

that takes a permutation vector X (of size m) and a key K 

(of size m), and returns another permutation vector, as 

follows: 

Permute(X, K): 

Temp  X 

  for i  1 to m do  

swap(      ,       )  

return Temp 

B. Reverse permutation function 

Similarly, we can define a reverse function of 

Permute() as follows: 

ReversePermute(Y, K): 

Temp  Y 

for i  m downto 1 do  

swap(      ,       )  

return Temp 

C. Reduction function 

A reduction function Reduction(V) of a permutation 

vector V of size m+1, is a function that reduces V to a 

permutation vector of size m as follows (illustrated in  

Figure 2): 

Reduction(V): 

j  1 

  for i  1 to m+1 do  

if Vi  m+1 then /* skipping the ‗m+1‘ value*/ 

Tempj  Vi 

j  j + 1 

return Temp             /* Temp is a vector  of size m*/ 

Thus, if R = Reduction(V), and Vp = m+1, then: 

   {
          
          

 

 

 
Figure 2: Multiple reduction of a permutation vector 

D. Index map function 

The index map IMAPX,V corresponding to two 

permutation vectors X (of size m) and V (of size m or 

higher) is defined as follows (illustrated in Figure 3): 

IMAPX,V(i) = j if and only if Xi = Vj,  (i, j  {1, 2, …, 

m}). 

 
Figure 3: Index map function for two permutation vectors 

E. Reverse function 

A reverse function Reverse(X) of a vector X of size m, 

is a function that reverses backwards the coordinates of X 

(illustrated in Figure 4): 

Reverse(X) 

Temp  X 

  for i  1 to m do  

Tempi = Xm-i + 1 

return Temp 

 
Figure 4: The corresponding reverse vector of X = (2, 1, 5, 

8, 2, 4) 

IV. THEOREM STATEMENT 

In order to strengthen our security mechanism, we 

present throughout this paper a detailed proof the 

following theorem: ―Given two permutation vectors V 

and W of size m+1, there are 2
m
 different keys (K) (of size 

m+1) that satisfy W = Permute(V, K).‖ 

This theorem provides theoretical strength to 

cryptosystems in a way that a cryptanalyst who managed 

to obtain two consecutive encryption keys (permutation 

vectors), which is not an obvious task, will find it very 

hard to break the system and guess the secret key (2
m

 

possibilities) that is indispensible to calculate the next 

encryption keys. 

A. Lemma 1  

Given an index map function IMAPX,V of two 

permutation vectors X and V, IMAPX,V remains unchanged 

when swapping any two elements in X and V; swap(   , 

   ) on X and swap(   ,    ) on V, where i1, i2, j1, 

j2{1, …, m}) only if      =     and     =     (illustration 

is shown in Figure 5). 

Proof: Suppose that      =     = a, and       =     = b, 

then IMAPX,V(i1) = j1 and IMAPX,V(i2) = j2. After 

performing swap(   ,    ),     = b and     = a. Also, 

after performing swap(   ,    ),     = b and     = a. Thus,  

    =     and       =    ; then, IMAPX,V(i1) is still equal to 

j1 and IMAPX,V(i2) is still equal to j2. Since i1 and i2 are the 

only indices involved in swap(   ,    ), then IMAPX,V(i) 

still maintains the same value, for any other index  

i {i1, i2}. 
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Figure 5: IMAP stability. 

V. THEOREM PROOF 

The proof of the above mentioned theorem is obtained 

simply by induction, which is based on proving the base 

case and the induction step. 

A. Base Case: m = 2 

 

Table I.  All possible keys that permute certain permutation 

vector V to certain permutation vector W of size 2 

V W All Possible values for K 

[1, 2] [1, 2] [1, 2], [2, 1] 

[1, 2] [2, 1] [1, 1], [2, 2] 

[2, 1] [2, 1] [1, 1], [2, 2] 

[2, 1] [2, 1] [1, 2], [2, 1] 

 

Table I shows that there are 2
1
 = 2 different keys K that 

permute V into W, for any permutation vectors V and W 

of size 2. 

B.  Induction Step 

Given two permutation vectors V and W of size m+1, 

we will prove that there are 2
m
 keys that permute V into 

W, assuming that for any two permutation vectors X and 

Y of size m, there are 2
m-1

 keys that permute X into Y 

(inductive hypothesis). 

Given two permutation vectors V and W of size m+1 

(where     =     = m+1), we extract three permutation 

vectors X, Y (Figure 6) and Z (Figure 7), of size m, as 

follows. X and Y are the corresponding reductions of V 

and W, respectively, i.e., X = Reduction(V) and Y = 

Reduction(W).  

Z is obtained directly from Y as follows: 

 

   

{
 

 
          
             
     
   

          
       

 (1) 

 

 

Figure 6: V and W reduction to X and Y respectively 

 

Figure 7: Z vector extraction from Y 

 

a. Case of p1 > p2 

In this section, we will investigate a methodology to 

build keys that permute V into W, where the element m+1 

moves backward. First, we will construct 2
m-1

 keys based 

on the inductive hypothesis. Then we will deduce a 

second set of 2
m-1

 keys that basically permute a different 

vector Vr to a different vector Wr, where m+1 still moves 

backward from Vr to Wr, and prove that these keys also 

permute V into W. 

First set of 2
m-1

 keys 

Based on the inductive hypothesis, there are 2
m-1

 keys 

that permute X into Y. Also, there are 2
m-1

 keys that 

permute X into Z. Since X is the reduction of V and Y is 

the reduction of W, we will try to construct 2
m-1

 keys of 

size m+1 from the existing 2
m-1

 keys that permute X to Y. 

Unfortunately, this process will fail, as we will show later.  

Note that V has all elements of X plus an extra element, 

m+1, and W has all elements of Y plus an extra element, 

m+1. We will consider a key K
X→Y

 from the 2
m-1

 keys that 

permute X into Y. We will try to expand K
X→Y

 into a 

larger key of size m+1 with the property of permuting V 

into W. Therefore, the permutation algorithm based on 

the expanded key (here, K
V→W

) has basically two tasks: 

(i) permuting the X elements inside V into the Y 

elements in W, and  

(ii) moving the value m+1 from position p1 to 

position p2. 

We will work on task (i) separately, and ignore the fact 

that m+1 is migrating from p1 to p2. Practically, we will 

set the entry of index p1 in the key K
V→W

 to be equal to p1 

itself (Figure 8). Hence, the permutation of V based on 

K
V→W

 will skip the ―moving‖ of m+1. Then, we fill the 

rest of the K
V→W

 entries from K
X→V

 sequentially, as 

follows: 

  
    {

  
          
         
    
          

 

 

 

Figure 8: Key expansion to permute V into W 

 

Due to the insertion of the element m+1 into X, Vi+1 = 

Xi when i ≥ p1; hence the next modification is necessary, 

in order to cope with the shifting of X elements, indexed 

from p1 through m, filling V elements, indexed from p1+1 

through m+1: 

     

p1 

     

p1 

p1 

Y 

p2 p1-1 

Z 

p2 p1-1 

V 

p1 

m+1 W 

p2 

m+1 

X Y 
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for i  1 to m+1 do  

if i ≠ p1 then 

if   
     ≥ p1 then increment   

    

Now, we will work on task (ii); i.e., moving m+1 in V 

from p1 to p2 (Figure 9). This can be done easily by 

setting    
   to p2. 

 
Figure 9: Modification of the p1 entry to let m+1 migrate from 

p1 to p2 

 

However, this single change in K
V→W

 leads to two side 

effects. First, when swap(   ,     
    = p2) is executed, 

    and     are no longer identical, violating the strict 

equality of Vi = Xi, when i < p1 (Figure 10). In fact, 

   will equal    . 

  

Figure 10: Violation of the reduction property when a unilateral 
swap occurs on V only 

 

Any further swapping involving     (using K
X→Y

) 

should be translated to an access to     by K
V→W

: 

for i  p1+1 to m+1 do  

if   
    = p2, then   

     p1 

The second side effect is that, at the end of the 

permutation algorithm, the elements of the resulting 

vector between position p2+1 and p1 will be rotated to the 

left, compared to the expected W. 

Hence, we failed to obtain W by permuting V using 

K
V→W

, which was constructed based on K
X→Y

. Had we 

selected a mysterious permutation vector identical to Y, 

except with the element range between p2 and p1-1 

rotated right by one step, we would have obtained our 

target W (Figure 11). This mysterious vector is exactly Z. 

Therefore, we can generate K
V→W

 using K
X→Z

 instead of 

K
X→Y

. 

 
Figure 11: The violation of the reduction property misleads the 

swapping into a vector other than W 

 

Here is a three–step algorithmic depiction of the above 

discussion: 

Step 1 

 

  
    {

  
          
         
    
          

 (2) 

Step 2  (3) 

for i  1 to m+1 do  

if i ≠ p1 then 

if   
     ≥ p1 then increment   

    

Step 3  (4) 

for i  p1+1 to m+1 do  

if   
    = p2, then    

    p1 

 

In order to prove that the newly constructed key K
V→W

 

permutes V into W, we will perform Permute(V, K
V→W

) in 

parallel with Permute(X, K
X→Z

), as shown in Table II. 

Then, we will show that the result of Permute(V, K
V→W

) 

is identical to W. 

Phase I: At the end of this phase, IMAPxTemp,vTemp will 

be set as follows (based on IMAP Definition): 

 

               ( )  {
          

            
 

 

Phase II: In order to maintain the same IMAPxTemp,vTemp 

after executing Phase II, we need to show, based on 

Lemma 1, that        =       , and      
  
   = 

     
  
   , for 1  i < p1. 

i.        =        (based on IMAPxTemp,vTemp). 

ii. If   
   < p1, then   

      
   =, based on (2). 

Since        =       , for j < p1 (based on 

IMAPxTemp,vTemp), then      
  
   =      

  
    

(substituting j with   
    and   

   ). 

iii. If   
   > p1, then   

    =   
    + 1, based on (2) 

and (3). Since        =       +1, for j > p1 

(based on IMAPxTemp,vTemp), then      
  
   = 

     
  
    (substituting j and j+1 with   

   and 

  
   , respectively). 

Thus, the same IMAPxTemp,vTemp is still maintained at the 

end of Phase II. We skipped the case of   
   = p1, 

because it is inconsistent with (3). 

 

Table II.  Running Permute(X, KX→Z) and Permute(V, KV→W) 

in parallel 

Pha-

ses 
Permute(X, KX→Z) Permute(V, KV→W) 

I xTemp  X vTemp  V 

II 

for i  1 to p1-1 do  

  swap(      , 
          ) 

for i  1 to p1-1 do  

  swap(      , 
          ) 

III  swap(       ,        ) 

IV 

for i  p1+1 to m+1 do  

swap(        ,

            )  

for i  p1+1 to m+1 do  

  swap(      , 
          ) 

V return xTemp return vTemp 

 

Phase III: Since swapping is performed on vTemp only, 

a new IMAPxTemp,vTemp is obtained: 

Obtained 
Vector 

p2 

m+1 

p1 

    

W 

p2 

m+1     

V 

p2 

m+1 

p1 

    

X 

p2 

    

     p2 

p1 
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               ( )  {

          
         
 

   

          
         

 

Also,         = m+1. 

 

Phase IV: In order to maintain the same IMAPxTemp,vTemp 

after executing this set of swaps, we need to show, based 

on Lemma 1, that Vi = Xi-1, and      
    
   = 

     
  
   , for i > p1. 

i. Xi-1 = Vi (based on IMAPxTemp,vTemp). 

ii. If   
    < p1, then   

    =     
   , based on (2). 

Also,   
   ≠ p2, based on (4). Since        = 

      , for j < p1 and j ≠ p2 (based on 

IMAPxTemp,vTemp), then      
  
    =      

  
    

(substituting j with     
   and   

   ). 

iii. If   
    = p1, then     

    = p2 based on (4). But 

        =        , based on IMAPxTemp,vTemp. 

Therefore, =      
  
   . 

iv. If   
    > p1, then   

    =     
    +1, based on (2) 

and (3). Since        =       +1, for j > p1 

(based on IMAPxTemp,vTemp), then      
    
    = 

     
  
    (substituting j and j+1 with     

   and 

  
   , respectively).  

So, based on Lemma 1, the last version of 

IMAPxTemp,vTemp is still maintained at the end of Phase IV.  

Since   
    ≠ p2, based on (4),         is not 

swapped in this phase.  

Thus, 

 

        = m+1  (5) 

 

Phase IV: In this phase, the result of permuting X and 

V is returned. Based on the inductive hypothesis, 

Permute(X, K
X→Z

) results in Z, i.e., xTemp = Z. However, 

we still need to show that vTemp is identical to W. 

Based on the last version of IMAPxTemp,vTemp, we have: 

 

       

{
 

 
                
               
       
         

          
         

 

 

Therefore (substituting xTemp with Z): 

 

   

{
 

 
                
               
       
         

          
         

 

 

Then, based on (1), we have:  

{
 

 
                   

                     
            
            

          
         

 

 

which is equivalent to: 

 

{
 

 
                   
                       
             
                     

 

 

After simplification: 

 

   {
                
                  

 

 

But Y = Reduction(W) . Then, based on the reduction 

definition we have: 

 

{
                   

                       
 

W vTemp if i p

W vTemp if p i m

i i

i i

  

  



  

,

,

1 2

1 1 2  
 

Also,         = m+1, based on (5), and     = m+1 

based on the induction step. Therefore: 

 

{

                   
            

                       

 

 

Hence: vTemp = W. 

At this stage, we have proved that the constructed key 

K
V→W

 does permute V into W. Therefore, given that there 

are 2
m-1

 keys that permute X into Z (based on the 

induction hypothesis), we can expand them to generate 

2
m-1

 keys that permute V into W, following (2), (3) and (4) 

(see example in Figure 12). 

 
Figure 12: First set of two keys that permute (1, 2, 3) to (3, 2, 1) 

 

Second set of 2
m-1

 keys 

In order to complete the proof, we need to construct 

V = (1, 2, 3) W = (3, 2, 1) 

X = (1, 2) Y = (2, 1) 

Reduction Reduction 

Keys that permute X to Z: 

{(1, 1), (2, 2)} (given) 

Modification 

based on (1) 

Z = (2, 1) 

Step 1 

{(1, 1, 1), (2, 2, 1)} 

Step 2 

{(1, 1, 1), (2, 2, 1)} 

Step 3 

{(1, 1, 1), (2, 2, 1)} 
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another set of 2
m-1

 keys that permutes V into W. For this 

purpose, we will investigate the relationship between 

keys that permute V into W, and keys that shuffle the 

reverse vector of W (Wr = Reverse(W)) into the reverse 

vector of V (Vr = Reverse(V)). 

Suppose that there is a key  ̂    (different from any 

of the 2
m-1

 keys generated in the first set) that permutes V 

into W, i.e., W = Permute(V,  ̂   ). Then, V = 

ReversePermute(W,  ̂   ), based on the reverse 

permutation definition. 

 
Table III.  Modifying the ReversePermute() code 

Original execution of  

ReversePermute(W,  ̂   ) 

Modified version of 

ReversePermute(W,  ̂   ) 

wTemp  W 

for i  m+1 downto 1 do  

   swap(      , 
      ̂ 

   )  

return wTemp 

wTemp  W 

for i  1 to m+1 do  

    swap(          , 
      ̂     

   )  

return wTemp 

 

As shown in Table III, we modified the original code 

of ReversePermute(W,  ̂   ) in order to resemble a 

regular Permute() function, i.e., the inner loop becomes 

to..do instead of downto..do. Consequently, wTemp is 

scanned backward starting by         ,       , 

        , …,       , and      . In order to 

restore the original form of scanning elements in an 

increasing order, we may assign Wr to wTemp instead of 

W, as shown next: 

wTemp  Wr 

for i  1 to m+1 do  

swap(      ,           ̂     
   )  

return wTemp 

Since wTemp was reversed at the beginning of the 

above function, the returned vector will be also reversed 

at the end of execution, i.e., wTemp will be identical to Vr 

instead of V. 

The above function looks like a typical Permute() 

function, except for the second parameter of swap(). For 

this matter, we will construct a new key K
WrVr

 as 

follows: 

  
                

                (6) 

And similarly, 

 ̂ 
              

                  (7) 

Therefore, the above algorithm will look like: 

wTemp  Wr 

for i  1 to m+1 do  

swap(      ,       ̂ 
     )  

return wTemp 

which is identical to Permute(Wr, K
WrVr

), which 

results in Vr. 

Thus, we found a relationship between keys that 

permute V into W, and keys that permute Wr into Vr, 

referring to (6) and (7). Therefore, if we could generate 

keys that permute V into W, we could easily infer the 

same number of keys that permute Wr into Vr, and vice 

versa. Since     =     = m+1, then,          = 

         = m+1. Then, we can set two new positions 

  ̂  and  ̂  to be        and       , 

respectively. Since p1 is greater than p2, then   ̂  is also 

greater than  ̂ . Based on the previous section, there are 

2
m-1

 keys that permute Wr into Vr, since   ̂ >  ̂ . We will 

consider a key K
WrVr

 from this set. Then, based on (7), 

we can infer a new key  ̂    that permutes V into W. 

Consequently, we can infer another set of 2
m-1

 keys in this 

manner. 

Now, we will show that  ̂   does not belong to the 

first set of 2
m-1 

keys that we generated previously. For this 

purpose, we will choose a key, K
V→W

, from the previously 

generated keys (first set). 

We know that   
       ̂ , when i <  ̂ , based on (2) 

and (3).  

Therefore,      ̂     
     ̂ , for i <  ̂ . 

Then,      ̂     
          , for i <m+2–p2. 

Therefore  ̂     
      ,  

for i <m+2–p2. 

So, if j = m + 2 – i, then  ̂ 
      ,  

for m + 2 – j < m + 2 – p2. 

Therefore,  ̂ 
      , for j  > p2.  

Hence, when j = p1,  ̂  
       . 

But, for any key K
V→W

 from the first set, we have 

   
      , based on (2). 

Therefore,  ̂   does not belong to the 2
m-1

 set of 

generated keys. 

To conclude this subsection: given two permutation 

vectors V and W of size m+1, where            , 

and p1 > p2, we constructed 2
m-1

 keys that permutes V into 

W, and inferred a second, different set of 2
m-1

 keys that 

also permutes V into W, for a total of 2
m

 keys (see 

example in Figure 13). 

Hence, we finished the proof by induction for the case 

of (p1 > p2). 

 
Figure 13: Second set of two keys that permute (1, 2, 3) to (3, 2, 

1) 

V = (1, 2, 3) W = (3, 2, 1) 

Xr = (1, 2) Yr = (2, 1) 

Reduction Reduction 

Keys that permute Xr to Zr: 

{(1, 1), (2, 2)} (given) 

Modification 
based on (1) 

Zr = (2, 1) 

Step 1 

{(1, 1, 1), (2, 2, 1)} 

Step 2 

{(1, 1, 1), (2, 2, 1)} 

Step 3 

{(1, 1, 1), (2, 2, 1)} 

Wr = (1, 2, 3) Vr = (3, 2, 1) 
Inversion 

Modification based on (7) 

 
{(3, 3, 3), (3, 2, 2)} 

Keys that permute Wr to Vr 

 

Keys that permute V to W 
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 (b) Case of p1 < p2 

In this case, the element m+1 moves forward from 

position p1 in V to position p2 in W. We will try to find a 

specific pair of permutation vectors,  ̂ and  ̂, where the 

element m+1 moves backward ( ̂ ̂ = ̂ ̂ 
= m+1, and   ̂ > 

 ̂ ). Then, we have to show that any key that permutes  ̂ 

into  ̂ also permutes V into W. Since there are 2
m
 keys 

that permute  ̂ into  ̂ (based on case (a)), we can infer 

that there are also 2
m
 keys that permute V into W. 

Index Map Set 

An index map set, IMAPSX,V(A), corresponding to a set 

of indices, A, is the set of indices that are produced by the 

function IMAPX,Y over the set A, i.e., IMAPSX,V(A) = 

{IMAPX,V(i) | iA}. 

Lemma 2: For any given set of indices, A,  

|A| = |IMAPSX,V(A)|, where X and V are two permutation 

vectors. 

Proof:  

1. If |A| < |IMAPSX,V(A)|, then IMAPX,V is not a function.  

2. If |A| > |IMAPSX,V(A)|, then there exist two different 

indices i, jA where IMAPX,V(i) = IMAPX,V(j). 

Therefore, if r = IMAPX,V(i) = IMAPX,V(j), then  

Xi = Vr and Xj = Vr. Thus Xi = Xj, which is a 

contradiction, since X is a permutation vector. 

Lemma 3: (Equilibrium Principle) Given two 

permutation vectors, V and W, where     =     = m+1, 

and p1 < p2, there exists an index j ≠ p1 such that j > 

IMAPV,W(j). In other words, since the element m+1 moves 

forward from p1 in V into p2 in W, there should be another 

element, v1, that moves backward from position j in V 

into position IMAPV,W(j) in W (Figure 14). 

 
Figure 14: The equilibrium principle 

 

Proof: By contradiction. Suppose that j  IMAPV,W(j), 

for any j ≠ p1. Based on that, if j > p1, then IMAPV,W(j) > 

p1. Given that IMAPV,W(p1) = p2  {p1+1, …, m+1} since 

p1 < p2; therefore IMAPSV,W{p1, …, m+1} {p1+1, …, 

m+1}, which is a contradiction based on Lemma 2, since 

|{p1, …, m+1}| > |{p1+1, …, m+1}|. 

So, based on Lemma 3, there exists j1  p1 where j1 > 

IMAPV,W(j1) = j2, and     =     = v1. 

Then, we will construct a permutation vector,  ̂ , of 

size m+1 as follows: 

 

 ̂  {

             
              

               

 (8) 

 

And another permutation vector  ̂  of size m+1 as 

follows: 

 ̂  {

             
   

           
   

            

 (9) 

 

In other words, we perform swap(   ,    ) in V to get  ̂, 

and swap(   ,    ) in W to get  ̂ (Figure 15).  

 
Figure 15: Utilization of the equilibrium principle to generate 

different vectors V and W 

 

Therefore,  ̂ and  ̂ are also two permutation vectors 

of size m+1. Since j1 > j2, we have 2
m
 keys that permute  ̂ 

into  ̂ based case (a).  Then, all we need is to show that 

these keys also permute V into W. 

Lemma 4 (Value-independent property of the 

‘Permute()’ function): Given two permutation vectors A 

and B of size m+1, a key K of size m+1, a pair (a, b) 

({1, …, m+1})
2
, a position p where Ap = a and Bp = b, 

two permutation vectors C = Permute(A, K) and D = 

Permute(B, K); therefore, if Cq = a for certain position q, 

then Dq = b. 

Proof: by loop invariant. Suppose that we run 

Permute(A, K) and Permute(B, K) in parallel as shown in 

Table IV. We will set the loop invariant as ―if aTempt = a 

for some position t, then bTempt = b.‖ 

 

Table IV.  Running Permute(A, K) and Permute(B, K) in 

parallel 

Permute(A, K) Permute(B, K) 

aTemp  A 

for i  1 to m+1 do  

swap(      ,        )  

return aTemp 

bTemp  B 

for i  1 to m+1 do  

swap(      ,        )  

return bTemp 

 

Initialization: Before executing the two loops, aTemp 

= A and bTemp = B. Therefore, aTempp = a and bTempp = 

b for position p defined in Lemma 4. 

Maintenance: Suppose that before executing the i
th

 

loop, there exists a position t such that aTempt = a and 

bTempt = b. Also, we will set j = Ki. 

i. If i = t and j = t, then a and b will remain in their 

position t inside aTemp and bTemp, respectively, 

after executing the i
th
 loop. 

ii. If i = t and j  t, then a and b will swap to position j 

inside aTemp and bTemp, respectively, after 

executing the i
th

 loop. 

iii. If i  t and j = t, then a and b will swap to position i 

inside aTemp and bTemp, respectively, after 

executing the i
th

 loop. 

iv. If i  t and j  t, then a and b are not involved at all 

in the i
th

 swap operation. Therefore, a and b will 

remain in their position t inside aTemp and bTemp, 

 ̂ 

p1 

v1 

j1 

m+1 

 

 ̂ 

j2 

v1 

 

m+1 

p2 

V 

p1 

m+1 

j 

v1 

W 

       ( ) 

m+1 v1 

 

p2 
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respectively, after executing the i
th

 loop. 

Therefore, a and b will share the same position (t, i, or 

j) in aTemp and bTemp, respectively, after executing the 

i
th
 loop, based on the above cases. Hence, the loop 

invariant is still valid at the end of the i
th

 loop.  

Termination: When i = m+2, Permute(A, K) and 

Permute(B, K) will return aTemp and bTemp, and store 

them in C and D, respectively. Therefore, if Cq = a for 

some position q, then Dq = b. 

Next, we will choose a key   ̂  ̂ from the 2
m
  keys 

that permute  ̂  into  ̂  and observe the result of 

Permute(V,   ̂  ̂ ). For this purpose, we will run 

Permute(V,   ̂  ̂  ) and Permute( ̂  ̂  ̂ , ) in parallel, 

as shown in Table V. 

 

Table V.  Running Permute(V,   ̂  ̂ ) and Permute( ̂,  ̂  ̂ ) 

in parallel 

Phases Permute(V,   ̂  ̂) Permute( ̂,  ̂  ̂) 

I vTemp  V  ̂       ̂ 

II 

for i  1 to m+1 do  

 swap(

      ,          ̂  ̂
)  

 for i  1 to m+1 do  

swap( ̂     ,
  ̂    

  
 ̂  ̂)  

III return vTemp return  ̂     

 

We know that Permute( ̂,   ̂  ̂  ) results in  ̂. We 

will use Lemma 4 to show that Permute(V,   ̂  ̂  ) also 

results in W, i.e., at the end of Permute(V,   ̂  ̂  ), 

vTemp will be identical to W. We will consider all 

elements of vTemp and  ̂     at Phase I (       and 

 ̂     , for 1  j  m+1). 

i. If        = v1 at Phase I, then  ̂     = 

m+1, based on (8). At Phase III,  ̂      = 

 ̂  = m+1, based on (9). Therefore, 

       = m+1, based on Lemma 4. 

  

Hence,        =    
  (10) 

 
ii. If        = m+1 at Phase I, then  ̂     = 

v1, based on (8). At Phase III,  ̂      = 

 ̂  = v1, based on (9). Therefore,        = 

v1, based on Lemma 4.  

 

Hence,        =    
  (11) 

 
iii. If        ≠ v1 or m+1 at Phase I, then        = 

 ̂     , based on (8). Thus, at Phase III,        

=  ̂     , based on Lemma 4, when  ̂      ≠ v1 

or m+1 (1  k  m+1). Therefore,        = 

 ̂     , when k ≠ v1 or m+1, based on (9).  

 
Hence,       = Wk, when k ≠ v1 or m+1  (12) 
 

Based on (10), (11) and (12), vTemp is identical to W 

at Phase III. 

Hence,   ̂  ̂ permutes V into W. 

To conclude this sub-section: given two permutation 

vectors V and W of size m+1, where     =     = m+1 and 

p1 < p2, we constructed two new vectors  ̂ and  ̂ of size 

m+1, where   ̂   =   ̂   = m+1 and j1 > j2. Based on (case 

(a)), there are 2
m
 keys that permute  ̂ into  ̂. Ultimately, 

we proved that these keys also permute V into W (see 

example in Figure 16). 

Then, we finished the proof by induction for the case 

of (p1 < p2). 

 
Figure 16: Inferring a set of four keys that permute (3, 2, 1) to 

(1, 2, 3) 

 
(c) Case of p1 = p2 

Lemma 5: (Equilibrium Principle #2) Given two 

permutation vectors V and W, where     =     = m+1, 

there exists an index j ≠ p1 such that j ≥ IMAPV,W(j). In 

other words, since the element m+1 stays in position p1 

when permuting V into W, there should be another 

element that either stays still or moves backward  from 

position j in V into position IMAPV,W(j) in W (Figure 17). 

 

 
Figure 17: The second equilibrium principle: (a) there exists an 
element that moves backward (b) there exists an element that 

stays still 

 

Proof: By contradiction. Suppose that j ≠ p1   

j < IMAPV,W(j). So, if j > p1, then IMAPV,W(j) > p1+1. 

Therefore IMAPV,W{p1+1, …, m+1} {p1+2, …, m+1}, 

which is a contradiction based on Lemma 2, since 

|{p1+1, …, m+1}| > |{p1+2, …, m+1}|. 

Notice that Lemma 5 is another version of Lemma 3, 

but it is not necessary to find an element moving 

backwards. Therefore, two cases are to be discussed: 

1. There exists j1  p1 where j1 > IMAPV,W(j1) = j2. 

Then, following the same steps in case (b) (p1 < 

p2), we can infer 2
m
 keys that permute V into W 

(see example in Figure 18). 

 

 

p1 

m+1 

j1 

v1 

W 

j2 

 v1 

 

V 

p1 

m+1 

p1 

m+1 

j1 

v1 

W 

j1 

 v1 

 

V 

p1 

m+1 

(a) (b) 

V = (3, 2, 1) W = (1, 2, 3) 

 ̂ = (1, 2, 3) 

Swapping 

1 and 3 

Swapping 

1 and 3 

 ̂ = (3, 2, 1) 
{(1, 1, 1), (2, 2, 1), (3, 2, 2), (3, 3, 3)} 

Keys that permute  ̂ into  ̂, and V into W 
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Figure 18: Inferring a set of four keys that permute (1, 3, 2) to 

(2, 3, 1) 

 

2. For any index j,  j = IMAPV,W(j). This means that V 

and W are identical. Following the same steps of 

constructing keys in case (a), we will end up with 2
m-1

 

keys that permute V into W (or V). We will choose a key 

K
V→W

 for comparison purposes.  

We need to find another set of 2
m-1

 keys that permute 

V into W. Notice that we cannot use the same 

methodology of case (a), because the argument presented 

to prove that the new set of keys is different than the one 

constructed at case (a) is not valid in case p1 = p2. 

Instead, we will try to come up with a second pair of 

identical permutation vectors  ̂and  ̂, and we will show 

that the keys that permute  ̂ into  ̂also permute V into W. 

2.1 if p11: 

We will construct a permutation vector  ̂  (also 

identical to  ̂) of size m+1 as follows: 

 

 ̂  {

               
              

              

 

 

In other words, we perform swap(   ,      ) in V to 

get  ̂ (also swap(   ,      ) in W to get  ̂). Therefore, 

 ̂  and  ̂  are also two identical permutation vectors of 

size m+1. Following the same steps for constructing the 

keys in case (a), we obtain 2
m-1

 keys that permute  ̂ into 

 ̂. Since Reduction(V) = Reduction(W) = Reduction( ̂) = 

Reduction( ̂) = X = Y, then the 2
m-1

 set of keys that 

permute V into W, and the 2
m-1

 set of keys that permute   ̂ 

into  ̂are constructed based on the same 2
m-1

 set of keys 

that permute X into Z (Z is the modification of Y based on 

(1)). For comparison purposes, we will choose a key, 

  ̂  ̂, from the 2
m-1

 set of keys that permute  ̂ into  ̂, 

such that   ̂  ̂ and K
V→W

 are constructed using the same 

key, K
X→Z

, that permutes X into Z (based on (2), (3), and 

(4)). Following the same methodology in case (b), we can 

prove that   ̂  ̂ also permutes V into W.  

Unfortunately, K
V→W

 and   ̂  ̂  are not always 

different, which prevents the union of 2
m-1

 sets of keys 

that permute V into W, and 2
m-1

 sets of keys that permute 

 ̂ into  ̂, to achieve 2
m
 different keys. 

i. If      
    ≠ p1-1, then K

V→W
 and   ̂  ̂  are different, 

since      
 ̂  ̂ = p1-1. 

ii. If      
    = p1-1, then K

V→W
 and   ̂  ̂  may be 

identical, since      
 ̂  ̂  = p1-1. In this case, 

Permute(V, K
V→W

) will be idle at step p1-1; 

swap(      ,      ). Also, since    
    = p1, 

Permute(V, K
V→W

) will be idle at step p1; swap(   , 

   ). Since these two swaps are adjacent, then we 

can replace them by two new swaps: swap(     , 

   ) and swap(   ,      ). In other words, instead of 

two idle swaps, we will swap the elements twice at 

position p1 (which is m+1) and position p1-1, which 

will cancel the swap effect. Based on the latter, we 

can modify the key   ̂  ̂ to be: 

 

  
 ̂  ̂  {

  
                

             
             

 (13) 

 

Now, K
V→W

 has a different corresponding key   ̂  ̂  

that also permutes V into W. Hence, we infer a second, 

different set of 2
m-1

 keys that permute V into W, when V 

and W are identical (see example in Figure 19). 

2.2 if p1=1: 

Following the same methodology of Section 2.1, we 

can proceed in the proof by setting  ̂ as follows (using 

p1+1 = 2 instead of p1-1): 

 

 ̂  {

              

              
          

 

 

Hence, we finish the proof by induction for the case of  

(p1 = p2). 

 
Figure 19: Constructing a set of four keys that permute (1, 2, 3) 

to (1, 2, 3) 

 

To conclude this subsection: given two permutation 

vectors V and W of size m+1, where     =     = m+1, we 

constructed 2
m
-1 keys that permute V into W based on 

case (a), and inferred a second different set of 2
m-1

 keys 

V = (1, 2, 3) 

X = (1, 2) Y = (1, 2) 

Reduction 

Modification 

based on (1) 

Z = (1, 2) 

Step 1 

{(1, 2, 3), (2, 1, 3)} 

Step 2 

{(1, 2, 3), (2, 1, 3)} 

Step 3 

{(1, 2, 3), (2, 1, 3)} 

W = (1, 2, 3) 

Keys that permute X to Z: 

{(1, 2), (2, 1)} (given) 

 ̂ = (1, 2)  ̂ = (1, 2) 

Reduction 

Modification 
based on (1) 

 ̂ = (1, 2) 

Step 1 

{(1, 2, 2), (2, 2, 1)} 

Step 2 

{(1, 2, 3), (3, 2, 1)} 

Step 3 

{(1, 2, 3), (3, 2, 1)} 

Keys that permute  ̂ to  ̂: 

{(1, 2), (2, 1)} (given) 

 ̂ = (1, 3, 2)  ̂ = (1, 3, 2) 

Identical 
Modification 

based on (13) 

{(1, 3, 2), (3, 2, 1)} 

{(1, 2, 3), (2, 1, 3), (1, 3, 2), (3, 2, 1)} 

Keys that permute V to W 

 

V = (1, 3, 2) W = (2, 3, 1) 

 ̂ = (1, 2, 3) 

Swapping 

2 and 3 

Swapping 

2 and 3 

 ̂ = (3, 2, 1) 

{(1, 1, 1), (2, 2, 1), (3, 2, 2), (3, 3, 3)} 

Keys that permute  ̂ into  ̂, and V into W 
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that also permutes V into W, based on case (b). 

VI. SECURITY MODEL: SYNCHRONOUS DYNAMIC 

ENCRYPTION SYSTEM (SDES) 

SDES is a stream cipher cryptosystem based on 

permutation vector generation [16][17][18]. The 

encryption function is simplified in order to minimize the 

overhead cost. Thus, a simple XOR is performed between 

the data record d
j
 and one of the generated permutation 

vectors PV
j
, resulting in a cipher c

j
 to be transmitted 

(Figure 20 (a)). The decryption function is performed in 

the same manner as the encryption function. The cipher 

record c
j
 is XORed with the same permutation vector PV

j
 

(generated at the recipient side), producing the original 

data record d
j
 (Figure 20 (b)). Then, a new permutation 

vector is generated (PV
i+1

 = Permute(PV
j
, SK)) to be used 

in the next encryption/decryption operations. Notice that 

the first permutation vector to be used in encryption PV
1
 

is the result of Permute(PV
0
, SK), where PV

0
 is the initial 

permutation vector (1, 2, …, n), and n is the key size. 

Figure 20: (a) Encryption at the sender side (b) Decryption at 
the recipient side. 

A. Static shared key 

This option provides a low security profile; 

compromising two consecutive PVs will break the entire 

system, since the corresponding IMAP between PV
j
 and 

PV
j+1

 is identical to the IMAP of PV
j+1

 and PV
j+2

. 

Therefore, this option is used only with the assumption 

that a cryptanalysis is unfeasible (e.g., transmitted data 

are proportionally limited). 

B. Stream of shared keys 

In order to alleviate the previous security loophole, a 

second option is also provided to modify the shared key 

after each data record encryption, for more IMAP 

dynamics. Practically, we perform SK
j+1

   SK
j
 + PV

j
 

before generating the next permutation vector PV
j+1

. Then, 

the shared key generation is not vulnerable to ―biased 

byte‖ analysis since the involved permutation vector is a 

good source of byte diversity. However, in the event that 

more than one encryption session is opened (in parallel or 

at different times), the same stream of shared keys is 

generated, lacking security independence between 

sessions; i.e., breaking one session breaks all. 

C. Session-based stream of shared keys 

For ultimate security, the communicated data is 

involved in the shared key generation, as a third option. 

Basically, we perform SK
j+1

   SK
j
 + PV

j
 + d

j
 before 

generating the next permutation vector, PV
j+1

. Hence, a 

different sequence of shared keys is generated in every 

session (assuming that sessions are of different 

communication data). 

VII. EXPERIMENTAL RESULTS 

A prototype simulation of our technique proved to run 

two to three times faster than the-state-of-the-art AES 

(Advanced Encryption Standard), DES (Data Encryption 

Standard), and Triple DES (Figure 21). Using the NS2 

simulator (version 2.26), we designed a topology of five 

nodes connected to a router that routes packets to a sink 

node through a duplex connection of 1 Mbits/s maximum 

capacity. Each of the four nodes tries to send an 

exponential generated traffic data to the sink passing 

through the bottleneck 1Mbits/s connection. The first 

node sends non-encrypted packets. The second, the third, 

the fourth and the fifth nodes send packets securely, 

encrypted with AES, DES, 3DES, and SDES, 

respectively. 

Figure 21 shows that SDES (using the dynamic stream 

of shared keys option) achieves a maximum throughput 

of 896 Kbits/s. This result proves the higher efficiency of 

our SDES algorithm compared to other peer techniques 

(AES: 409 Kbps, DES: 528 Kbps, and Triple DES: 112 

Kbps). The reason for achieving such better performance 

is the simplicity of our encryption/ decryption function, 

since the function complexity is shifted to the dynamics 

of the key management (i.e., the permutation vectors 

generation). 

VIII. CONCLUSION 

In this paper, a simple mechanism to generate 

permutation vectors (based on a random secret key) is 

introduced for data encryption. Unique to our technique, 

we proved that 2
m-1

 different secret keys have the same 

effect on the generation of the next encryption key. 

Hence, even if an intruder (hypothetically) compromises 

two consecutive encryption keys, he is cornered to brute-

force a massively huge key space (for m = 256). 

Moreover, the involvement of the entire permutation 

vector in the encryption process results in a much more 

diverse stream of keys than those of RC4, avoiding state-

related attacks. 

We also presented a cryptosystem implementation that 

utilizes permutation vectors in the process of encryption 

as well as in key management. Experimental results 

(using the NS2 simulator) showed that our security 

system outperformed peer security mechanisms, e.g., 

AES and Triple DES, due to the simplicity of both 

encryption and key management functions.  

Future work is related to the diversity of IMAPs 

between consecutive encryption keys. On average, there 

is a chance of 1/n! for two subsequent secret keys to yield 

the same IMAP. Hence, it would be useful to investigate 

mechanisms to enhance secret key management in order 

to assert such diversity. 
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(a)  (b) 

 

  
(c)  (d) 

Figure 21: NS2 experimental results showing network throughput using secure transmission modes: (a) SDES (b) AES (c) DES (d) 
3DES 
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