
I. J. Computer Network and Information Security, 2013, 11, 9-16
Published Online September 2013 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijcnis.2013.11.02

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 9-16

Time Window Management for Alert Correlation
using Context Information and Classification

Mehdi Bateni
SheikhbahaeeUniversity,Isfahan, Iran

bateni@shbu.ac.ir

Ahmad Baraani
University of Isfahan,Isfahan,Iran

ahmadb@eng.ui.ac.ir

Abstract—Alert correlation is a process that analyzes the
alerts produced by one or more intrusion detection
systems and provides a more succinct and high-level
view of occurring or attempted intrusions. Several alert
correlation systems use pairwise alert correlation in
which each new alert is checked with a number of
previously received alerts to find its possible correlations
with them. An alert selection policy defines the way in
which this checking is done. There are different alert
selection policies such as select all, window-based
random selection and random directed selection. The
most important drawback of all these policies is their high
computational costs. In this paper a new selection policy
which is named Enhanced Random Directed Time
Window (ERDTW) is introduced. It uses a limited time
window with a number of sliding time slots, and selects
alerts from this time window for checking with current
alert. ERDTW classifies time slots to Relevant and
Irrelevant slots based on the information gathered during
previous correlations. More alerts are selected randomly
from relevant slots, and less or no alerts are selected from
irrelevant slots. ERDTW is evaluated by using
DARPA2000 and netforensicshoneynet data. The results
are compared with other selection policies. For
LLDoS1.0 and LLDoS2.0 execution times are decreased
60 and 50 percent respectively in comparing with select
all policy. While the completeness, soundness and false
correlation rate for ERDTW are comparable with other
more time consuming policies. For larger datasets like
netforensicshoneynet, performance improvement is more
considerable while the accuracy is the same.

Index Terms—Alert Correlation, Alert selection policy,
Time window management, Classification and regression
tree (CART)

I. INTRODUCTION

Intrusion detection is the process of identifying and
(possibly) responding to malicious activities targeted at
computing and network resources[1]. The system that
runs this process is named Intrusion Detection System
(IDS). When an IDS detects a malicious activity, it

generates an alert. The alert is usually in low-level format.
It means that the alert contains a little information about
the malicious activity and it is almost useless for system
administrator. An IDS in a large network of computers
with many different users generates high volumes of raw
alerts. These alerts overwhelm the system administrator
in such a way that she/he cannot use them effectively. As
a result, the administrator may ignore alerts and miss
their possible related intrusions. Alert correlation is used
to overcome this problem.

Alert correlation is a process that analyzes the alerts
produced by one or more intrusion detection systems and
provides a more succinct and high-level view of
occurring or attempted intrusions. It has two main goals:
reducing the number of alerts and increasing the
relevance and abstraction level of the produced reports[2].

Most alert correlation systems examine each new alert
with a number of previous alerts in order to find its
correlation with them. We refer to these correlation
methods as pairwise correlations. The correlation process
is started by arrival of a new alert, Alast. The system
examines Alast with some previous alerts to find its
possible causal relation with them. The main question is
that with which previous alerts Alast should be examined?
Alert selection policy describes the way in which this
question is answered. It defines the scope and method of
the search in previous alerts. The performance of pairwise
correlation process is considerably affected by its alert
selection policy.

Generally, the correlation process contains an outer
loop that repeats for each new alert. The correlation
process for each alert contains a couple of activities that
are done in each repetition. The alert selection policy
determines one important part of these activities. It
determines the previous alerts which are checked for
correlation with Alast. Alert selection policy does not
determine the correlation between Alast and previous alerts.
It only defines the way in which previous alerts are
selected and other components determine the degree of
correlation.

The first and simplest possible strategy for alert
selection is to select all previous alerts. There are many
researches[3] that use this strategy. It leads to another

10 Time Window Management for Alert Correlation using Context Information and Classification

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 9-16

inner loop that repeats for all previous alerts. By
increasing the number of alerts and by arriving each new
alert, this process takes longer and longer time. It is
obvious that this strategy is not appropriate for large
dataset and for online correlation. Another group of
selection policies use a limited time window to restrict
the scope of the search in previous alerts. By using a time
window, the number of repetitions for inner loop is
controlled by the width of the time window. Therefore
the computational cost of the system is adjustable. There
are many researches that use time window for alert
correlation. Time window management is an important
issue in all these researches. In a number of researches,
all alerts in the recent time window are used for
correlation[4-6]. In some other works only a limited
number of alerts in the recent time window are used in
correlation process. The previous alerts that are involved
in the correlation process of Alast, could be selected
randomly[7].It is possible to use more smart methods[8].
Generally, these methods gather some useful information
during the correlation process and use this information
for next alert selections.

In this paper a new alert selection policy, named
Enhanced Random Directed Time Window(ERDTW) is
introduced that is based on the time window. It uses a
time window which is divided to a number of time slots.
Several alerts are randomly selected from each time slot
in order to check their correlation with Alast. The number
of alerts that are selected from time slot, Ti, is specified
by the number of alerts that are occurred during Ti, the
time distance of Ti with current slot and the relevancy of
Ti which is calculated by considering the context
information that is gathered from Ti during the previous
correlations.

The main contribution of this paper is the concept of
relevancy for time slot Ti. During time slot Ti, some
context information is used. Information such as the
number of alerts which are occurred in Ti, the most
observed source IP address in Ti and the number of its
observation, the most observed destination IP address in
Ti and the number of its observation, the number of
observation of the most observed source IP address in Ti
as the most observed destination IP address for slots prior
to Ti, the number of dangerous destination ports that are
observed in alerts which are occurred in Ti and the mean
and standard deviation of the number of alerts in the time
window containing Ti. This information is used to
classify a time slot Ti to Relevant or Irrelevant slot. More
alerts are selected from relevant (dangerous) slots and
less or no alerts are selected from irrelevant (safe) slots.

A training dataset which is generated by gathering the
above mentioned information is used. A label of Relevant
or Irrelevant is assigned manually to each data. This
dataset is used as the training data to make a decision tree.
Classification and Regression Tree (CART) algorithm [9]
is used to make the decision tree, and the generated tree is
used in our new alert selection policy to classify slots.

DARPA2000[10] and netforensicshoneynet data[11]
are used to investigate the performance and accuracy of
ERDTW for alert correlation and, results are compared

with results generated by other alert selection policies.
The completeness, soundness and false correlation rate
are used for accuracy evaluation, and the execution time
is used for performance evaluation. Accuracy measures
are very close for all different polices, but the running
time is considerably varying for them. For example, the
running times for LLDoS1.0 with different selection
policies are considerably different. They are 12.53, 7.94,
7.81 and 4.95 Seconds for select all, random, random
directed (RDTW) and enhanced random directed
(ERDTW) respectively. For larger datasets like
netforensicshoneynet data, performance improvement is
more considerable. The results show that ERDTW is as
accurate as other selection policies and, it is considerably
more effective.

The rest of the paper is organized as follows. Section 2
illustrates different alert selection policies and their
features. Section 3 describes the proposed alert selection
policy in details. Section 4 reports the result of running
the system with the DARPA2000 and
netForensicshoneynet data. Finally, Section 5 provides
the conclusion.

II. ALERT SELECTION POLICY

Different correlation systems use different methods to
correlate alerts. For example, similarity measures, pre-
defined rules, pre-specified scenarios and statistical
measures are used by different correlation systems. In
pairwise correlation, each new alert, Alast, is examined
with several previous alerts and the decision for
correlation is made after that. The correlation process
contains a loop that repeats for each new alert, Alast. Other
loop(s) is required to find and select the previous alerts
for correlation with Alast. Regardless of the methods
which are used to calculate the correlation between a pair
of alerts, alert selection policy identifies which previous
alerts should be selected for correlation calculation. It
defines the scope and method of the search in previous
alerts. Alert selection policy considerably affects the
performance and accuracy of the pairwise correlation.
There are many different selection policies. We discuss
some well-known policies in this section.

A. Select All
The simplest selection policy for pairwise alert

correlation is select all policy. It investigates each new
alert Alast with all alerts that are occurred before it[3]. In
this way Alast is checked with all previous alerts including
the right relevant alerts. Therefore, by selecting all
previous alerts the selection policy does not reduce the
chance of Alast for correct correlation. Select all policy
seems attractive, but it is not an applicable selection
policy for large datasets and for online correlation. By
increasing the number of alerts the cost of correlation is
increased dramatically. It is obvious that this policy is not
applicable to online correlation where, the number of
alerts is not limited. The policy is not also appropriate for
large datasets, because two nested loops make the
correlation process very time consuming. Moreover,

 Time Window Management for Alert Correlation using Context Information and Classification 11

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 9-16

checking a new alert Alast with an alert which is occurred
for example, 5hours ago is not reasonable. Therefore,
window-based alert selection policies are introduced.

B. Random Selection
In this strategy a limited time window which contains

several sliding time slots is used [7]. Only the alerts that
are occurred during this time window are considered for
correlation and the older alerts which are out of time
window are ignored[7]. Two influential parameters
determine the performance and accuracy of this selection
policy. The number of time slots, n and the width of each
time slot, Ws.

Suppose that the time slots are numbered from 1 to n.
Also, suppose that there are si alerts in slot number i.
When a new alert arrives, mi alerts are randomly selected
for correlation from time slot, Ti. mi is different for each
time slot and is less than or equal to si. mi is determined
by considering two values: i, the slot number that is
between 1 and n and si, the total number of alerts in Ti. mi
is calculated as below[7]:

𝑚𝑚𝑖𝑖 = �
𝑠𝑠𝑖𝑖 × 𝑖𝑖
𝑛𝑛

� (1)

For example, in Fig. 1, the numbers of selected alerts

for slot 1 to 5 are 2, 6, 7, 10, and 11 respectively. By
using the time window, this selection policy restricts the
search scope. It also considers the time distance of the
alerts and assigns more importance to more recent time
slots. All alerts of the last time slot are selected by this
policy, but some alerts are randomly selected from other
time slots. As a result, the percentages of alerts that are
selected for each time slots 1 to 5 are 17, 35, 54, 77 and
100 percent respectively. It is obvious that by limiting the
selection duration and decreasing the number of alerts
that are selected from each time slot, considerable
performance improvement is obtainable[7]. The main
drawback of randomselection is that the blindly selection
may lead to accuracy degradation. It is probably better to
select alerts more wisely to increase the accuracy of the
policy.

Figure 1. A time window with 5 sliding time slots

C. Random dircted time window (RDTW)
Although randomselection provides better

performance, its accuracy is under question. Blindly
selecting previous alerts may lead to missing some
relevant alerts and leads to degrading the accuracy of the
correlation process. Random Directed Time
Window(RDTW)[8] employs a new parameter besides to
n and Ws for each time slot Ti. This parameter, mx, is the

maximum correlation between new alert, Alast, and all
selected alerts from Ti. RDTWuses the Equation 1 to
calculate the initial value of mi. After selecting and
correlating𝑚𝑚𝑖𝑖

2
 alerts of Ti, the calculated value of mx is

checked. If mx is less than a minimum acceptable
correlation threshold, minaccept, then it seems that Alast is
not related with Ti. As a result, mi is decremented by one,
and the selection and correlation process is continued by
the new value of mi. On the other hand, if after
correlating mi alerts mx is more than 1-minaccept, then it is
reasonable to conclude that Alast is strongly related with Ti.
Thus, miis incremented by one and the system continues
the process of alert selection and correlation for this slot
(Ti). The selection terminates either by encountering an
alert with correlation probability less than 1-minaccept or
by selecting all alerts from Ti[8]. As a result of this
strategy, the selection process is directed toward the more
relevant time slots. There are three adjustable parameters
that influence the performance of RDTWpolicy: n, the
number of slots in a time window; Ws, the width of each
time slot and minaccept, the minimum acceptable
correlation probability for a slot. The main goal of
RDTWis to direct the selection process toward the more
relevant time slots and to select more alerts from them.
Even it is possible to select all alerts of Ti, if it is
determined as a relevant slot for Alast. For irrelevant slots,
the selection process is stopped early, even after
selecting𝑚𝑚𝑖𝑖

2
 alerts. Algorithm 1outlines RDTWselection

policy [8].

Algorithm 1.RDTW selection policy
Input: New alert Alast
Output: A group of alerts for correlation with Alast

1: n ← The number of time slots
2: for i= 1 to ndo
3:mi← �𝑠𝑠𝑖𝑖×𝑖𝑖

𝑛𝑛
�//siis the number of alerts in Ti

4: k ← 0
5: mx ← -1
6: while (k < mi) and (k <si)
7: b ← a random alert from slot i
8: y ← Correlation value between Alastand Aselected
9: if (y > mx)
10: mx ← y
11: end if
12: k ← k + 1
13: if (k >𝑚𝑚𝑖𝑖

2
) and (mx <minaccept)

14: mi ← mi − 1
15: end if
16: if (k = mi) and (mx > 1-min accept) and (k <si)
17: mi ← mi+ 1
18: mx ← 0
19: end if
20: end while
21: end for

III. ENHANCED RANDOM DIRECTED TIME WINDOW (ERDTW)

Time

Current Time

𝑠𝑠1 = 12 𝑠𝑠2 = 17 𝑠𝑠3 = 13 𝑠𝑠4 = 13 𝑠𝑠5 = 11

𝑊𝑊𝑠𝑠

12 Time Window Management for Alert Correlation using Context Information and Classification

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 9-16

RDTWselects alerts more wisely than random alert
selection policy almost with the same performance. It
selects more than mi alerts from relevant slots and less
than mi alerts from irrelevant ones (Random policy selects
mi alerts from all slots). ERDTWuses some context
information to classify time slot, Ti, to Relevant
(dangerous) or Irrelevant (safe) slot. It uses Equation 2 to
calculate the value of mi for Ti.

𝑚𝑚𝑖𝑖 = �
𝑠𝑠𝑖𝑖 × 𝑖𝑖
𝑛𝑛

� × 𝜔𝜔 (2)

ωis a reduction factor. It is an adjustable parameter that

is 1 for relevant slots and is a real value between 0 and 1
for irrelevant slots. By using ω, it is possible to adjust the
computational cost of the ERDTWpolicy more precisely.
A small value (less than or equal to 0.5) is assigned to ω
for irrelevant slots. As a result, the number of selected
alerts is reduced considerably. Both performance and
accuracy of the system is remarkably related to the
process of context information gathering. If the context
information is selected properly with low computational
cost, then the performance of the system is considerably
improved. The accuracy of the system is improved if the
context information would be useful and related
information for identifying the Relevant and Irrelevant
time slots.

After calculating mi, the same process as RDTWis used
to increase and decrease the value of mi. Two next
subsections describe the context information and the
classification process.

A. Context information
Context information for each time slot, Ti, is gathered

during the processing of the alerts of Ti. This information
is stored and used later to classify Ti as Relevant or
Irrelevant time slot. The information gathering process
should be a very light weight process in such a way that
its cost does not exceed the computational cost that is
saved by using ω. Suppose that S_IPmax and D_IPmax are
the most observed source and destination IP addresses in
Ti. The following information is used as context
information of Ti.

S_IPper: the percentage of alerts that S_IPmaxis observed
in them

If there are many alerts with the same source IP
address in Ti, then Ti is more likely to be a dangerous slot
and should be classified as Relevant (dangerous) slot. We
assume that there is a direct relation between the S_IPper
and the degree of relevancy. S_IPper is calculated by
counting the number of observation of S_IPmax and
dividing it to si. S_IPper is a real value between 0 and 100.

D_IPper:the percentage of alerts that D_IPmax is
observed in them

If there are many alerts with the same destination IP
address in Ti, then Ti is more likely to be a dangerous slot
and should be classified as Relevant slot. We assume that
there is a direct relation between the D_IPper and the
degree of relevancy. D_IPper is calculated by counting the

number of observation of D_IPmax and dividing it to si.
D_IPper is a real value between 0 and 100.

Seqnum:the number of observation of S_IPmax of Ti in
the set of D_IPmax of Tj (for all j less than i)

If D_IPmaxof one previous time slot such as Tj is equal
to S_IPmax of Ti, then it is possible that Tj contains the
attack steps that prepare for attacks in Ti. We assume that
the number of time slots like Tjhas direct relation with the
degree of relevancy of Ti. Seqnumis an integer value
between 0 and (n-1).

D_Portper: the percentage of alerts with destination
ports belonged to the dangerous port numbers

By considering different known attacks and the
experience of administrator about them, it is possible to
define a list of dangerous ports. Therefore, D_Portper is
calculated by counting alerts with the destination ports
that are belonged to this list and dividing it to si.

InRange: si is in range or is not
It is a Boolean value which is used to identify that the

value of siis close or it is far from the mean value of alert
numbers in the time window and is calculated as follows.

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = �
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ≤ 𝑠𝑠𝑖𝑖 ≤ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
� (3)

Where Uper and Lower are calculated as follow:

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = �
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 < 𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
�

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = �
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 > 𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
�

Where, Max, Min, Mean and StDev are the maximum,

minimum, mean and standard deviation of sj respectively
(for j=1to n). We assume that if the value of InRange is
false, then it is more likely to classify the Ti as Relevant
or dangerous slot.

Window management for ERDTWis based on the
sliding window. After a specified time (Ws), all time slots
slide forward and one time slot is put out from one side
and a new time slot is entered from the other side.
Accordingly some information about time slots is
modified. S_IPper,D_IPper and D_Portper are not modified
by slot sliding, but Seqnumand InRange are probably
changed by sliding slots. As a result, only when a new
slot is started the context information about previous slots
is updated. The process of information gathering for
current slot is done during the correlation process. Hence,
the computational cost of this process is crucial.

 Time Window Management for Alert Correlation using Context Information and Classification 13

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 9-16

B. Classification
Considering attacks which exist in our three

experimental scenarios, a dataset of aforementioned
context information is generated and Relevant (dangerous)
or Irrelevant (safe) labels are assigned to its record
manually. Each record contains context information about
a sample slot and its Relevant or Irrelevant label. This
dataset is used to train the classification algorithm. The
Classification and Regression Tree (CART) algorithm[9]
with ten-fold cross-validation is used to generate a proper
decision tree based on the training data. The total number
of training data is 160 samples. They are generated by
considering different possible values of five above
context information, and their labels are assigned
manually. 120 out of 160 samples are from Irrelevant and
40 samples are from Relevant class. The CART algorithm
classifies 136 samples correctly and 24 samples
incorrectly. Thus, its accuracy is 85 percents. The
confusion matrix is as follows:

Classified as→ Relevant Irrelevant

Actual Class ↓
Relevant �25 15

9 111
� Irrelevant

The goal of this classification is not to decide about the

correlation of two alerts. It only tries to recognize the
more dangerous time slots and, even if its decision would
be incorrect the processing of the slot will be continued
only with less number of selections and will be continued
by our directed strategy. Hence, 85 percent of accuracy is
acceptable for this application.Fig. 2 shows a sample
generated tree by the CART algorithm.

Figure 2. A sample generated tree by the CART algorithm for

classifying slots to Relevant and Irrelevant

This tree is used in ERDTWto determine whether a slot
is dangerous (Relevant) or safe (Irrelevant). By
determining the relevancy of one slot, the amount of
processing on its alerts is determined. ERDTWuses ω to
enforce the impact of relevancy on each slot. For relevant
slots, ω is considered 1. As a result, more alerts are
selected from them, and for irrelevant slots, ω is
considered a value between 0 and 1. Therefore, less
processing efforts are imposed for them.

Algorithm 2 outlines the ERDTWselection policy. The
main difference between this algorithm and algorithm 1 is
in line 6. Where, the algorithm identifies the safety of
time slot Ti. It is accomplished by considering the context
information that is previously generated for each time slot.
If Ti is not safe then it needs more processing efforts. It is
achieved by assigning 1.0 to ω (line 8). Otherwise, ω gets
the value of 0.5 (line 10), and it leads to less processing
for slot Ti. The rest of the algorithm is similar to
Algorithm 1. It uses random directed selection with time
window to direct its selection toward the more relevant
time slots.

Algorithm 2: ERDTW selection policy

Input: New alert Alast
Output: A group of alerts for correlation with Alast
1: n ←The number of time slots
2: if (new slot is started with alert Alast)
3: Update (ContextInfo)
4: end if
5: for i= 1 to ndo
6: r ←Classify(Ti, ContextInfo) // Tiis ithtime slot
7: if (r = Relevant)
8: ω←1
9: else
10: ω←0.5 // or other proper value
11: end if
12: mi←�𝑠𝑠𝑖𝑖×𝑖𝑖

𝑛𝑛
� × 𝜔𝜔// siis the number of alerts in Ti

13: k ←0
14: mx ←-1
15: while (k < mi) and (k <si)
16: b ←a random alert from Ti
17: y ←Correlation value between Alastand Aselected
18: if y > mx then
19: mx ←y
20: end if
21: k ←k + 1
22: if (k >𝑚𝑚𝑖𝑖

2
) and (mx <minaccept)

23: mi←mi−1
24: end if
25: if (k = mi) and (mx >1-minaccept) and (k <si)
26: mi ←mi + 1
27: mx ←0
28: end if
29: end while
30: end for

14 Time Window Management for Alert Correlation using Context Information and Classification

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 9-16

C. Performance estimation
The numbers of pairs which are selected for correlation

by different selection policies are used to estimate their
performance. It is a good measure, because the actions
that are done for each pair of alerts are the same for
different selection policies and are determined by the
method of correlation calculation. Suppose that m is the
total number of alerts, n is the number of time slots, s is
the mean number of alerts in different time slots, k is the
mean number of relevant slots in a time window, ω is the
reduction factor and Ts is the total number of selected
alerts by one policy.

For select all policy, each new alert is correlated with
all previous alerts. Thus, for this policy Tsis 𝑚𝑚×(𝑚𝑚−1)

2
. On

the other hand, for Random selection policy, each new
alert is correlated with alerts which are belonging to n-1
previous time slots. Not all alerts from previous time slots
are selected. In average s alerts are selected from each
previous time slot. Therefore, Tsfor randompolicy is
𝑚𝑚×𝑠𝑠×(𝑛𝑛−1)

2

It is obvious that if the correlation duration is more
than the width of time window, then (m-1) is greater than
s×(n-1). For large dataset the difference between (m-1)
and s×(n-1) is huge. As a result, running times for all
window-based polices are considerably less than select
all policy.

We assume that Ts is also 𝑚𝑚×𝑠𝑠×(𝑛𝑛−1)
2

 for RDTWpolicy.
It is not far from truth. Results show that the running time
for RDTWis quite close to Random selection. For
RDTWsome slots are processed more than their
counterpart in randomselection and some slots are
processed less. In average the value of Ts is very close to
its counterpart in randomselection.

For ERDTWtwo new parameters are introduced: the
reduction factor ω and the mean numbers of relevant slots
in a time window k. The total reduction in the number of
selected alerts comparing with previous window based
policies is (𝑘𝑘+(𝑛𝑛−𝑘𝑘)×𝜔𝜔)

𝑛𝑛
. Thus, for this policy Ts is

(𝑚𝑚×𝑠𝑠×(𝑛𝑛−1))
2

× (𝑘𝑘+(𝑛𝑛−𝑘𝑘)×𝜔𝜔)
𝑛𝑛

. It is obvious that the value of
Ts is not more than its counterparts in randomand
RDTWpolicies. For example if half of slots are relevant
slots (𝑘𝑘 = 𝑛𝑛

2
)and the reduction factor ω is 0.5, then Ts

would be 0.75 of its counterparts in two other window-
based policies. As a result, the computational cost of
ERDTWis less than all other selection policies. In next
section these theoretic estimations are evaluated by using
several datasets.

IV. EVALUATION AND RESULTS

Alert selection policy is one component of alert
correlation process, particularly for pairwise correlation.
In order to evaluate ERDTWand compare it with other
selection policies, a pairwise alert correlation system is
required. Regardless of the way in which the correlation
between two alerts is calculated, ERDTWis able to work

as selection policy. We evaluate ERDTWand other
selection policies in a pairwise alert correlation system
named, iCorrelator[8]. It is an AIS-inspired[12] alert
correlation system in which a three-layer alert correlation
architecture is used. It is able to assign a correlation
probability to each pair of alerts and uses this probability
to extract the attack scenario. We use different selection
policies along with iCorrelator and report the results.

Datasets which are used to evaluate ERDTWand other
policies are DARPA2000[10] and netForensicshoneynet
data[11]. The first dataset is a well known dataset for
alert correlation and, there are different works that use it
as their evaluation dataset. The second dataset is a
relatively large dataset and, it is more appropriate for
performance evaluation. Completeness, soundness, false
correlation rate (FCR) and execution time are reported for
both datasets. The completeness, soundness and false
correlation rate are defined as follow[13]:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
correctly correlated alerts

related alerts
 (4)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
correctly correlated alerts

total correlated alerts
 (5)

𝐹𝐹𝐹𝐹𝐹𝐹 =
incorrectly correlated alerts

related alerts
 (6)

Where, the correlated alerts are all alerts in the

extracted scenario and the related alerts are all alerts in
the desired complete scenario.

DARPA2000 contains two multi-step attack scenarios
LLDoS1.0 and LLDoS2.0. These scenarios are placed in
two traffic data file Inside1 and Inside2 and, we examine
both traffic data with different selection policies. All
datasets are examined ten times with each selection
policies and results are reported based on the mean value.
The most important parameters that are related to
different selection policies are the number of time slots,
n,the width of each time slot, Ws, the minimum
acceptable correlation, minaccept and the reduction factor,
ω. The values of these parameters are 20, 300, 0.75 and
0.5 respectively.

Alerts in the first attack scenario (LLDoS1.0) are from
six different types: SadmindPing,
SadmindAmslverifyOverflow, Admind, Rsh,
MstreamZombie and StreamDoS. The first five alert types
are appeared in extracted scenarios by all selection
policies. The last step of the attack is a Stream DoS alert.
It is the only alert that is not correlated with other alerts.
It is placed in a hyper-alert with only one alert.

Table 1 shows generated results for Inside1 data. It
shows that the completeness of the select all policy is the
best among all policies. It is predictable that by using the
time window some steps of attacks are ignored, but the
main problem with select all policy is its performance.
The running time forselect all policy is 12.53 and for
random, RDTWand ERDTWare 7.94, 7.81 and 4.95
seconds respectively. Although, the soundness and false
correlation rate for different policies are very close the

 Time Window Management for Alert Correlation using Context Information and Classification 15

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 9-16

generated results for ERDTWare the best. Therefore, by
employing the context information and the classification
tree the running time, soundness and false correlation rate
are improved. The completeness is decreased comparing
with select all, but it is improved comparing with two
other policies. It shows the advantage of ERDTWand our
classification method.

Different selection policies are also examined by using
Inside2 data. Again all policies extract the attack scenario
almost completely (except the last step). Alerts that
appear in all extracted scenario are Admind,
SadmindAmslverify Overflow, FTP Put and Mstream
Zombie. The last step of the attack is not extracted in all
experiments, and its related alert (Stream DoS) is placed
in a hyper-alert with only one alert.

Table 1. The results generated for LLDoS1.0 with different

policies
 All Random RDTW ERDTW
Completeness 0.941 0.745 0.816 0.878
Soundness 0.950 0.928 0.943 0.953
FCR 0.950 0.060 0.052 0.045

Results generated by different selection policies are

more close to each other for Inside2 (see Table 2). Its
reason is that the duration of LLDoS2.0 is less than
LLDoS1.0, and the size of the time windows that is used
for both data are the same (n×Ws=6000 seconds). Hence,
the time window contains almost all alerts of Inside2.
Little differences in completeness for four polices are
negligible. The soundness and false correlation rate for
three time window-based policy are better than select all.
It shows that these methods select alerts more wisely and
less numbers of irrelevant alerts are selected by them. As
expected, the execution time improved by using the time
window-based polices. The best execution time belongs
to ERDTWpolicy without any meaningful accuracy
degradation. Thus, our new selection policy is the best
method among all policies for Inside2 data.

Table 2. The results generated for LLDoS2.0 with different

policies
 All Random RDTW ERDTW
Completeness 0.607 0.600 0.600 0.600
Soundness 0.937 0.982 0.982 0.958
FCR 0.050 0.014 0.014 0.029

Snort generates 3419 alerts belonging to 43 different

alert types for the first two days of netForensicshoneynet
data. Results show that all 43 types of alerts in the input
data are correlated with each other with different
strengths. The most compelling evidence of compromise
in this data is the outbound IRC communication, which
implies that the intrusion succeeded. For this dataset there
is not a unanimous agreement about the designated
scenario and its related alerts. As a result, we report the
extracted attack graph instead of three accuracy measures
(completeness, soundness and false correlation rate). Our
extracted scenario is started by three alert types: WEB
ATTACKS rm command attempt, BLEEDING EDGE
EXPLOIT Awstats Remote Code Execution Attempt

andWEB ATTACKS wget command attempt. The attacker
uses these remote command attempts to download and
install malicious software on the target machines. Then
the attacker issues IRC attacks from those compromised
targets to the final victim. Snort is produced alerts such as
CHAT IRC nick change, BLEEDING EDGE IRC Nick
change on non-std port and CHAT IRC message for the
rest of the attack, and all policies correlate these alerts.
Fig.3 shows extracted scenarios with two different
selection policies: select all and ERDTW. The first policy
has the most computational cost and examines all alerts
and, the second one has the least computational cost and
examines the least number of alerts. Although the running
time is very different for two policies (213.6 and 13.33
seconds), both policies extract the same scenario (see
Fig.3). Probabilities that are assigned to edges are a little
different, but their general logic is the same.

The goal of a selection policy is to improve the
performance of a correlation system without accuracy
degradation. Reported results in Table 3 and Fig.3 show
that ERDTWmeets this goal perfectly.

Figure 3. The attack graphs generated for netForensicshoneynet

with Select All and ERDTW (separated by slash)

Table 3. The running time for different policies
 All Random RDTW ERDTW
LLDos1.0 12.53 s 7.94 s 7.81 s 4.95 s
LLDos2.0 3.27 s 2.80 s 2.85 s 1.64 s
netForensics 213.60s 23.98 s 23.11 s 13.33 s

V. CONCLUDSION

In pairwise alert correlation, each new alert is
examined with several previous alerts to find possible
correlation. Alert selection policy defines the scope and
method of the search in previous alerts for selecting some
of them. The performance of the correlation is
considerably affected by its alert selection policy. A good
policy must select the more relevant previous alerts and
ignore the irrelevant ones. As a result of this good
selection policy, the computational cost is decreased
without accuracy degradation. A new alert selection
policy named, Enhanced Random Directed Time Window
(ERDTW) is introduced in this paper. It is a time window-
based alert selection. The time window contains several
sliding time slots. It gathers some context information
about each time slot and uses this information later to
recognize the importance of the slot. A dataset of training
data is generated and used by the Classification and
Regression Tree algorithm to classify slots to Relevant

rm Command
Attempt Wget Command

Attempt

Awstats
Remote Code

Execution

BLEEDING-EDGE IRC
- Nick change IRC nick change

Chat IRC message

.72/.81
.28/.44

.66/.76

.58/.47

.14/.1 .19/.1

.14/.1

.2/.12
.14/.1

.19/.1

16 Time Window Management for Alert Correlation using Context Information and Classification

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 11, 9-16

and Irrelevant. More alerts are selected from
Relevantslots and less or no alerts are selected from
Irrelevant slots. Experimental results on different datasets
with different alert selection policies show that ERDTWis
able to achieve two goals simultaneously: the
performance and the accuracy.

By using ERDTWfor LLDoS1.0 and LLDoS2.0,
running times are decreased about 60 and 50 percent
respectively in comparing with select all policy. While
reductions for randomand RDTWare 36 and 37 percent
for LLDoS1.0 and 14 and 13 percent for LLDoS2.0. The
completeness, soundness and false correlation rate for
ERDTWare comparable with other more time consuming
policies. For larger dataset like netforensicshoneynet, the
performance improvement is more considerable. Running
times for select all, random, RDTWand ERDTWare 213.6,
23.98, 23.11 and 13.33 Seconds respectively, while the
accuracy is almost the same for all of them.

REFERENCES

[1] A. Ghorbani, W. Lu, and M. Tavallaee. Network
Intrusion Detection and Prevention. Springer, New
York, 2010.

[2] F. Valeur, G. Vigna, C.Kruegel and R. Kemmerer. A
comprehensive approach to intrusion detection alert
correlation. IEEE Transactions on Dependable and
Secure Computing,2004.p.153-172.

[3] B. Zhu and A. Ghorbani. Alert correlation for
extracting attack strategies.International Journal of
Network Security, 2006. 3(3):p.244-258.

[4] P. Kabiri and A. Ghorbani. A rule-based temporal
alert correlation system. International Journal of
Network Security, 2007. 5(1):p.66-72.

[5] Z. Li, A. Zhang, J. Lei and L. Wang. Real-Time
Correlation of Network Security Alerts. In
proceeding of e-Business Engineering, ICEBE 2007,
IEEE International Conference, p.73-80.

[6] H. Ren, N. Stakhanova and A. Ghorbani. An online
adaptive approach to alert correlation. Volume 6201
of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, 2010, p.153-172.

[7] H. Ahmadinejad and S.Jalili. Alert Correlation Using
Correlation Probability Estimation and Time
Windows. In proceedings of the 2009 International
Conference on Computer Technology and
Development, IEEE Computer Society ICCTD
'09,2009. p.170-175.

[8] M. Bateni, A. Baraani, A. Ghorbani and A.Rezaei.
An AIS-inspired Architecture for Alert Correlation.
International Journal of innovative Computing,
Information & Control, 2013. 9(1):p. 231-255.

[9] Y. Yohannes andJ.Hoddinott. Classification and
Regression Trees: an introduction. Technical guide,
International Food Policy Research Institute (IIFPRI),
1999.

[10] MIT Lincoln Laboratory. Darpa2000 intrusion
detection scenario specific data sets.
http://www.ll.mit.edu. (last accessed June 2013)

[11] netForensicsHoneynet team.Honeynet traffic logs.
http://old.honeynet.org/scans/scan34. (last accessed
June 2013)

[12] L.N. de Castro and J.Timmis. Artificial Immune
Systems: A new computational intelligence approach.
Springer-Verlag London Berlin Heidelberg, 2002.

[13] P. Ning, Y. Cui and D.S. Reeves. Techniques and
Tools for Analyzing Intrusion Alerts. ACM
Transactions on Information and System Security,
2004. 7(2):p.274–318.

Mehdi Bateni,is an assistant professor of computer
engineering at the Faculty of Engineering of the
Sheikhbahaee University (SHBU). He received his B. Sc.
in Computer Engineering in 1997 from University of
Isfahan, Isfahan, Iran and his M. Sc. in Computer
Engineering from Ferdowsi University of Mashhad,
Mashhad, Iran in 2000. He received his Ph.D. in
Computer Engineering in 2012 from University of
Isfahan, Isfahan, Iran.

Ahmad Baraani,is an associate professor of computer
engineering at the Faculty of Engineering of the
University of Isfahan (UI). He got his BS in Statistics and
Computing in 1977. He got his MS and PhD degrees in
Computer Science from George Washington University
in 1979 and University of Wollongong in 1996,
respectively. He was Head of the Research Department of
the Communication systems and Information Security
(CSIS). He has published more than 70 papers and He
coauthored three books in Persian and received an award
of "the Best e-Commerce Iranian Journal Paper".

	I. Introduction
	II. Alert selection policy
	A. Select All
	B. Random Selection
	C. Random dircted time window (RDTW)
	III. Enhanced random directed time window (erdtw)

	A. Context information
	B. Classification
	C. Performance estimation
	IV. Evaluation and Results
	V. Concludsion
	References

