
I. J. Computer Network and Information Security, 2013, 2, 1-9 
Published Online February 2013 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijcnis.2013.02.01 

Copyright © 2013 MECS                                                    I.J. Computer Network and Information Security, 2013, 2, 1-9 

Blocking of SQL Injection Attacks by Comparing 

Static and Dynamic Queries 
 

 
Jaskanwal Minhas

1 
and Raman Kumar

2
 
 

1,2 
Department of Computer Science and Engineering, 

1 
Sant Baba Bhag Singh Institute of Engineering and Technology, Jalandhar, Punjab, India. 

2 
D A V Institute Engineering and Technology, Jalandhar, Punjab, India. 

1,2 
{er.ramankumar}@aol.in 

 

 

Abstract — Due to internet expansion web applications 

have now become a part of everyday life. As a result a 

number of incidents which exploit web application 

vulnerabilities are increasing. A large number of these 

incidents are SQL Injection attacks which are a serious 

security threat to databases which contain sensitive 

information, the leakage of which cause a large amount 

of loss. SQL Injection Attacks occur when an intruder 
changes the query structure by inserting any malicious 

input. There are a number of methods available to detect 

and prevent SQL Injection Attacks. But these are too 

complex to use. This paper proposes a very simple, 

effective and time saving technique to detect SQLIAs 

which uses combined static and dynamic analysis and 

also defines an attack other than existing classification of 

SQLIAs. 

 

Index Terms —Dynamic and Static query, SQL query, 

SQLIAs 

I.  INTRODUCTION 

Due to the easy access to the internet nowadays most 

of services consist of web services. But the increasing use 

of internet for important applications poses a greater risk 

of attacks on the web. SQL-Injection Attack (SQLIA) is 

not affecting the systems like other attacks, but the ability 

of SQLIAs to obtain sensitive information, such as 

military systems, e-business, and banks, etc results into 

great security risk. The SQLIA occurs when an intruder 

changes the structure of the query by inserting any SQL 

keywords. Any secret information can be easily retrieved 

from database by using these attacks. Variety of 

techniques are available to detect SQL injection Attacks. 
Most preferred are Web Framework, Static Analysis, 

Dynamic Analysis, Combined Static and Dynamic 

Analysis and Machine Learning Technique. Web 

Framework[1] provides filters to filter special characters 

but other attacks are not detected. Static Analysis[2],[3] 

method checks the input parameter type, but fails to 

detect attacks with correct input type. Dynamic 

Analysis[4],[5] technique is capable of  scanning 

vulnerabilities of Web application but is not able to detect 

all types of SQLIAs. Combined Static and Dynamic 

Analysis[6]-[9] includes the benefits of both but this 

method is very complex. Machine learning method[10] 
can detect all types of attacks but results in number of 

false positives and negatives. This paper proposes a very 

simple and effective method to detect SQL Injection 

Attacks which uses Combined Static and Dynamic 

Analysis technique. The method is a combination of SQL 

Query attribute values removal and combined Static and 

Dynamic Analysis technique. The rest of the paper is 

organized in the form of different sections. Section 2 

describes the categories of SQLIAs. Section 3 discusses 
the related work. Section 4 explains the proposed method 

to detect SQLIAs. Section 5 describes the experimental 

results. Section 6 concludes this paper. 

II.  CATEGORIES OF SQL INJECTION ATTACKS 

There are a number of different methods of SQL 
Injection Attacks which are serious threat for any 

database. For a successful SQLIA the attacker should 

append a syntactically correct command to the original 

SQL query. Now the following classification of SQLIAs 

in accordance to the Halfond, Viegas and Orso[11] 

researches is presented.  

A. Tautologies 

This type of attack injects SQL tokens to the 

conditional query statement which always evaluates true. 

This type of attack is used to bypass authentication 

control and access to data by exploiting vulnerable input 

field which use WHERE clause. 
"Select * from loan where loan_no ='L11'  and  branch 

='aaa' OR '1'='1' " 

As the tautology statement (l = 1) has been added to the 

query statement so it is always true.  

B. IlIegal/Logically Incorrect Queries 

When any query is rejected, an error message is 

returned by SQL Oracle engine. This error messages help 

attacker to find vulnerable parameters in the Database.  

C. Union Query 

By using this technique, attackers join SQLIA to safe 

query by using word UNION and then can get data about 

other tables from the application. Consider the following 
example  

Select loan_no,branch from loan where 

loan_no=$loan_no 

By injecting the following loan_no value: 

$loan_no=L11 UNION select cust_name from 

customers We will have the following query: 



2 Blocking of SQL Injection Attacks by Comparing Static and Dynamic Queries 

Copyright © 2013 MECS                                                    I.J. Computer Network and Information Security, 2013, 2, 1-9 

Select loan_no,branch from loan where  loan_no=L11 

UNION  select cust_name from customers which will 

join the result of the original query with all the customer 

names. 

D. Piggy-backed Queries 

In this type of attack, intruders exploit database by 

using query delimiter, such as ";" by appending extra 

query to the original query. In this attack database 

receives and execute a multiple distinct queries. Normally 
the first query is legitimate query, whereas following 

queries could be illegitimate. So attacker can inject any 

command related to SQL to the database. In the following 

example, attacker inject " PO; drop table branch" into the 

designation input field instead of logical value. Then the 

application would produce the query: 

Select salary from employee where emp_code='23467' 

AND designation=‘PO‘; drop table branch 

Because of ";" character, database accepts both queries 

and executes them. The second query is not legitimate 

and can drop branch table from the database.  

E. Stored Procedure 

Stored procedure is a part of database that programmer 

could set an extra abstraction layer on the database. By 

using stored procedure a user can store its own function 

according to the need. In stored procedure, a collection of 

SQL queries are included. As stored procedure could be 

coded by programmer, so, this is also one of the causes of 

SQLIA. Depending on specific stored procedure in the 

database there are number of different ways to attack. 

Create procedure dbo @emp_code varchar2, @desi 

varchar2 AS 

Exec(―select * from employee where emp_code 

=‘‖+@emp_code+‖‘ and designation=‘‖+ desi‖+‖‘);  
GO 

If the intruder adds one more query after the legitimate 

query, then the normal query is converted into piggy 

backed query which is a type of SQLIA.  

Select * from employee where emp_code=‘23451‘ and 

designation=‘PO‘;Shutdown; 

After the execution of original query the second query 

which is illegitimate is executed and causes database shut 

down. 

F. Alternate Encoding 

In this type of attack the regular strings and characters 

are converted into hexadecimal, ASCII and Unicode. 
Because of this the input query is escaped from filter 

which scans the query for some bad characters which 

results in SQLIAs i.e. the converted SQLIA is considered 

as normal query. 

G. Inference  

By this type of attack, intruders change the behaviour 

of a database or application.  There are two well known 

attack techniques that are based on inference: blind 

injection and timing attacks. 

• Blind Injection: Sometimes developers hide the error 

details which help attackers to compromise the database. 

In this situation attacker face to a generic page provided 

by developer, instead of an error message. So the SQLIA 

would be more difficult but not impossible. An attacker 

can still steal data by asking a series of True/False 

questions through SQL statements. Consider two possible 

injections into the login field: 

SELECT accounts FROM users WHERE 

user_name='abc' and 1 =0 -- AND password= AND 

pin=0 

SELECT accounts FROM users WHERE 
user_name='abc' and 1 = 1 -- AND password = AND 

pin=0 

If the application is secured, both queries would be 

unsuccessful, because of input validation. But if there is 

no input validation, the attacker can try the chance. First 

the attacker submit the first query and receives an error 

message because of "1=0". So the attacker does not 

understand the error is for input validation or for logical 

error in query. Then the attacker submits the second 

query which always true. If there is no login error 

message, then the attacker finds the user_name field 

vulnerable to injection. 
• Timing Attacks: A timing attack lets attacker gather 

information from a database by observing timing delays 

in the database's responses. This technique by using if-

then statement cause the SQL engine to execute a long 

running query or a time delay statement depending on the 

logic injected. This attack is similar to blind injection and 

attacker can then measure the time the page takes to load 

to determine if the injected statement is true. WAITFOR 

is a keyword along the branches, which causes the 

database to delay its response by a specified time. For 

example, in this attack the following query is inserted 

into user_name field: 
‗‗legalUser‘ and ASCII (SUBSTRING ((select top 1 

name from sysobjects),1,1)) > X WAITFOR 5 --‘‘ 

Following query is produced from this- 

SELECT accounts FROM users WHERE user_name 

=‘legalUser‘ and ASCII(SUBSTRING((select top 1 name 

from sysobjects),1,1)) > X WAITFOR 5 -- ‘ AND 

password=‘‘ AND pin=0 

This query is used to extract a table name from the 

database. In this attack substring function is used to 

extract first character of first table‘s name. If the ASCII 

value of character is greater than X, the attacker can get 

the character by using 5 seconds time delay in the 
response of database. 

III. RELATED WORK 

Order to detect and prevent SQLIAs a number of 

detection methods are available. This section explains the 

related work. 

A. Web Framework 

A Web Framework is a software framework that is 

designed to support the development of dynamic websites, 

web applications and web services. Some Web 

Frameworks offer SQL Injection Attack prevention 

methods. PHP provides magic quotes[1]. Magic quotes is 

a special feature of PHP language in which special 
characters ‗,‖,/,NULL are pre pended with a backslash 



 Blocking of SQL Injection Attacks by Comparing Static and Dynamic Queries 3 

Copyright © 2013 MECS                                                    I.J. Computer Network and Information Security, 2013, 2, 1-9 

before being passed on to detect SQLIAs. But magic 

quotes support only four special symbols. SQLIAs with 

other symbols are not detected. 

B. Static Analysis  

Static Analysis method analyzes the SQL query 

sentences to detect SQLIAs. This method verifies user‘s 

input type to reduce SQLIAs. JDBC checker[2] validates 

user input to prevent SQLIAs by using JSA. But if the 

malicious query has correct syntax and type, attack 
cannot be detected. Combined Automated Reasoning and 

Static Analysis method by Wasserman[3] uses FSA to 

detect SQLIAs. The use of FSA under approximation of 

the SQL grammar makes this technique too restrictive to 

remove some possible malicious queries from the 

represented set. The main problem with all static analysis 

techniques is that these require source code modification 

and most of the techniques are just used for web 

applications written in java. 

C. Dynamic Analysis 

Dynamic Analysis can locate vulnerabilities of 

SQLIAs without any source code modification. Paros[4] 
is a tool written in java used to locate vulnerabilities in 

web applications. Through its proxy nature all HTTP and 

HTTPS data between server and client, including cookies 

and form fields, can be intercepted and modified.  Paros 

is not perfect because it uses predetermined attack codes 

to scan and uses HTTP response to the success-rate of the 

attack. Sania[5] finds and collects all the SQL Injection 

vulnerabilities between web application and database and 

automatically generate elaborate attacks according to the 

syntax and semantics. Then the Sania compares the parse 

tree of intended SQL query and those resulting after 

attack to assess the safety of vulnerable spots. Due to the 
use of parse tree Sania is more accurate to detect SQLIAs 

than any other dynamic analysis technique. Dynamic 

Analysis methods are useful because no source 

modification is required. But the vulnerabilities found in 

web application must be manually fixed by developer and 

not all of them can be found before predefined attack. 

D. Combined Static and Dynamic Analysis 

Combined Static and Dynamic Analysis includes the 

advantages of both Static and Dynamic Analysis 

techniques. SQLCheck[7] presents the definition of 

command injection attacks and gives a sound and 

complete algorithm for preventing SQLIAs based on 
context-free grammars and compiler parsing techniques. 

AMNESIA[6] is a model based approach to detect 

SQLIAs. This technique builds a model of all legitimate 

queries. Then each dynamic query is compared with this 

model to detect SQLIAs. Parse Tree[8] is used to 

compare static SQL query with dynamic SQL query to 

detect SQLIAs. Wei[9] proposed a technique to detect 

attacks in stored procedure using Control flow graph. 

 

 

 
Fig.1. Structure of Sania 

 

E. Instruction-Set Randomization 

In Instruction set Randomization SQL query is encoded 

by inserting a random value in the query. SQLrand[12] 
uses this technique to protect the query from SQLIAs. 

But this method is not effective if the random key is 

predicted. 

 

Fig.2. Sqlrand System Architecture 

 

F. Machine Learning 

Machine Learning is a technique in which training set 

i.e. a model is prepared which contain all the legitimate 
queries belonging to any web application. At run time all 

the requested queries are compared with queries in the 

training set to detect SQLIAs. Intrusion Detection System 

(IDS) by Valeur and colleagues[10] is based on this 

technique. But this technique results in number of false 

positives and negatives if the poor training set is used. 

G. Prepare Statements 

Prepare statements[13] are used in SQL to separate the 

values in query from the structure of query. In this the 

skeleton of SQL query is defined and then the values are 

filled at run time. SQLIA is detected if there is any 

change in the structure of query. But the main limitation 
of this method is that the whole web application needs to 

be modified in order to apply this method. 

 

 

 

 



4 Blocking of SQL Injection Attacks by Comparing Static and Dynamic Queries  

Copyright © 2013 MECS                                                    I.J. Computer Network and Information Security, 2013, 2, 1-9 

 
Fig.3. Overview of AMNESIA 

 

H. Taint Based Technique 

Java Dynamic Tainting[14] is a tool implemented in 

java. This tool chases string for taint information instead 
of character and then sanitizes query strings which are 

generated using tainted input. But the primary limitation 

of this tool is that this is not able to detect SQLIAs in 

numeric fields.  

IV.  PROPOSED METHOD 

In this research work combined static and dynamic 

analysis technique is used to reduce false positives and 

false negatives. The static query structure is compared 

with dynamic query. In this database is maintained to 

store the valid query structure. These valid queries are 

also known as static queries. The attribute values of 

dynamic queries are removed during run time and 
compared with previously stored static queries having 

same number of tokens as in dynamic query. The 

symbols needed in the proposed algorithm are given in 

Table I. 

Consider an example to explain the symbols used in 

Table I.  

SQ: select * from users where user_id=? and 

password=? DQt: select * from users where 

user_id=‘admin‘ and password=‘123456‘ 

DQf: select * from users where user_id=‘‘ or ‗1‘=‘1‘—

and password=‘123456‘ 

The detection method proposed in this paper will 
utilize the function f given in equation 1, which has the 

capability to remove the attribute values and replace the 

attribute values with ‗?‘ in SQL queries. 

DDQ = f (DQ)                                (1)  

Another function used in this paper fn given in 

equation 2 calculates the total number of tokens in static 

and dynamic queries. 

SQT = fn(SQ),        DDQt = fn(DDQ)                      (2) 

In algorithm 1, the function f, replaces the values 

within quotes (‗‘) with symbol ‗?‘.  

TABLE I SQLIAS DETECTION SYMBOLS 
Symbo

l 
Description 

I{t,f} 
User input data 

{ t : normal input , f :abnormal input } 

f SQL attribute value removing function  

fn 
Function to calculate total number of tokens in static 

and dynamic query 

SQ Static SQL query 

DQ{t,f}        
Generated dynamic SQL query from user Input 

{ t : normal query , f :abnormal query } 

  
DDQ{t,f

} 

Removed attribute values of dynamic  SQL Query 

{ t : normal query , f :abnormal query } 

SQT Total number of tokens in static query 

DDQT{

t,f}   

Total number of tokens in dynamic quer 

 { t : normal query , f :abnormal query } 

 
In algorithm 2 and algorithm 3, the function fn, 

calculates the total number of tokens in static and 

dynamic queries. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Algorithm fn(SQ,Total_Token_S) 

//SQ is static query 

//Total_Token_S returns the total numbers of tokens 

in a static query 

Input String=SQ; 

Total_Token_S=0;  

Do while( not empty of Input String) { 

Char=Get_Char(Input_String); 

If Char is a space character  

{ 
Total_Token_S++; 

} 

Algorithm 2: Proposed Algorithm for token 

calculation in static query 

Algorithm f(One SQL query) 

Enumerate Quotation_Status= { Quot_Start, 

Quot_End} 

Input String=One SQL query; 

Output_String=Null; 

Do while( not empty of Input String) 

{ 

Char=Get_Token(Input_String); 

If Char is a quotation character and if Char is in 

between Quot_Start and Quot_End 

{ 

Replace Char with ‘?’ 
} 

Else   { 

Add Char to Output_String; 

 }} 

Return Output_String; 

Algorithm 1: Algorithm which removes attributes 

values in a SQL Query 



 Blocking of SQL Injection Attacks by Comparing Static and Dynamic Queries 5 

Copyright © 2013 MECS                                                    I.J. Computer Network and Information Security, 2013, 2, 1-9 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

The following example shows the result of functions f 

and fn. DQ1 is a normal dynamic query and DQ2 is an 
abnormal dynamic query. 

SQ = select * from users where user_id=? and 

password=? 

DQ1 = select * from users where user_id =‘admin‘ and 

password=‘123456‘ 

DDQ1=f(DQ1)=select * from users where user_id=? 

and password=? 

Total number of tokens in dynamic query DDQT1 = 

fn(DDQ1) = 8 

DQ2 = select * from users where user_id=‘‘ or 

‗1‘=‘1‘—and password=‘abc‘ 

DDQ2=f(DQ2)=select * from users where 
user_id=‘??=?—and designation=? 

Total number of tokens in dynamic query DDQT2 = 

fn(DDQ2) = 7 

Following formula is applied regardless of whether a 

query is normal or abnormal. 

If (DDQT=SQT) then// if tokens are same 

If (DDQ=SQ)   // if queries are same 

Then 

Result=Normal 

Else 

Result=Abnormal 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

After removing attribute values this method locates for 
static queries having same number of tokens as in 

dynamic query. Then the dynamic query is compared 

character by character only with that static queries having 

same number of tokens. The technique of comparing 

dynamic queries only with that static queries having same 

number of tokens improves response time. If match is 

found requested dynamic query is valid query otherwise 

it is SQL Injection Attack.   

V. EXPERIMENT AND EVALUATION 

A. Experimental Result Analysis 

This section shows the results of experiment. The main 

advantage of proposed method is its simplicity. The 

complexity of the algorithm is divided into two parts- 

first token calculation and second searching for dynamic 

query. In token calculation complexity depends upon the 

database we are using because each database has its own 

syntax but this token calculation technique is same for all 

databases. In searching for a query best case occurs when 
the algorithm finds the query in first comparison and the 

worst case occurs when the query is not in the list. The 

complexity for searching is O(n). But the best part of this 

method is that the whole list of static queries is divided 

according to the number of tokens. The dynamic query is 

 

Algorithm fn(DDQ,Total_Token_D) 

//DDQ is a dynamic query generated after removing 

attribute values 

//Total_Token_D returns the total numbers of tokens 

in a dynamic query 

Input String=DDQ; 

Total_Token_D=0;  

Do while( not empty of Input String)  

{ 

Char=Get_Char(Input_String);  
If Char is a space character  

{ 

Total_Token_D++; 

} 

Algorithm 3: Proposed Algorithm for token 

calculation in dynamic query 

N: Total number of fixed SQL queries  

SQi: i ’th static SQL query  

DQi: Dynamic SQL query generated from SQi 

f : Function to delete value of attribute in SQL query 

SQ = {SQ1, . . . , SQn}, 

// Static analysis 

1. For i=1 to N 

2. Get SQi 

3. SQTi=fn(SQi)  //returns total number of  

  tokens in i
th

 static query and store numeric value in 
variable SQTi 

4. End {For} 

 

// Dynamic analysis (running time) 

6. While(Normal & ∀ k ∈ N) 

7. Get DQk with input values 

8. DDQk = f (DQk)  //Remove attribute values 

9.DDQTk=fn(DDQK)  //returns total number of tokens 

in k
th

 dynamic query and store numeric value in 

variable DDQTk 

10.If (DDQTk=SQTk)then  //if number of tokens in 

static and dynamic queries are same 
  If (DDQk=SQk )             //if queries are same 

11. Result = Normal 
12. Else 

13. Result = Abnormal 

14. End {If} 

15. End {While} 

Algorithm 4: Proposed Algorithm for comparison of 

queries 

 



6 Blocking of SQL Injection Attacks by Comparing Static and Dynamic Queries  

Copyright © 2013 MECS                                                    I.J. Computer Network and Information Security, 2013, 2, 1-9 

TABLE II Sample Input SQL Database 

S.No. SQL Statements 

1 Select * from branch 

2 Select emp_code from employee union select emp_code from branch 

3 Select branch_name from branch where emp_code=‘20496‘ 

4 Select emp_code,branch_name,address from branch 

5 Select * from branch where branch_name like ‗S%‘ 

6 Select * from employee where designation=‘PO‘ 

7 Select designation,department,salary from employee where emp_code=‘19961‘ 

8 Select address from branch where branch_name=‘STATE BANK OF PATIALA KAPURTHALA‘ 

9 Select * from employee where salary between ‗20000‘ and ‗50000‘ 

10 Delete from employee where designation=‘APRO‘ 

11 Update employee set designation=‘PO‘ where designation=‘APRO‘ 

12 Update branch set branch_name=‘STATE BANK OF PATIALA‘ where emp-code=‘20496‘ 

13 Create or replace procedure abc(Vdesignation in char)is emp_no number;begin select emp_code into 

emp_no from employee where designation=Vdesignation;insert into branch values(emp_no,‘OFFICE OF 

THE GENERAL MANAGER RAIL COACH FACTORY‘,‘RAIL COACH FACTORY 

KAPURTHALA‘);end; 

14 Select emp_code,branch_name,address from branch where emp_code in(select emp_code from employee 

where designation=‘PO‘) 

15 Select E.emp_code,designation,department,salary,B.emp_code,branch_name, address from employee E 
inner join branch B on E.emp_code=B.emp_code where designation=‘PO‘ 

16 delete from branch where emp_code=‘17589‘ 

17 delete from employee where department=‘DEPARTMENT OF POST‘ 

18 Select branch_name from branch where emp_code=‘20496‘ 

19 Select E.emp_code,designation,department,salary,B.emp_code,branch_name, address from employee E 

right join branch B on E.emp_code=B.emp_code where designation=‘PO‘ 

20 select emp_code,salary from employee where designation like ‘_P%‘ 

21 select avg(salary) from employee group by department having department=‘THE MALL KAPURTHALA‘ 

22 select designation,salary from employee union select branch_name,address from branch 

23 select max(salary) from employee group by designation having designation=‘PO‘ 

24 Select designation from employee where salary=‘9200‘ 

25 Select designation,count(designation) ―no of designations‖ from employee group by designation 

 

TABLE IV Experiment Results 

Total no. of 

Static queries 

No. of inserted 

SQL queries 

Valid SQL 

queries  

Detected SQL 

Injection attacks 

Total time taken 

(milliseconds) 

Average time per 

query 

(milliseconds) 

255 109 48 61 8580 78.7 

 

TABLE V Accuracy Results 

Total no. of inserted queries Total false positives Total false negatives 

48(Valid queries)+61(SQLIAs) 0 0 

 

TABLE VI Performance Analysis 

Total no. of inserted queries Total time taken by base paper 

method (Milliseconds) 

Total time taken by proposed method 

(Milliseconds) 

109 25318 8580 

 

TABLE VII DETECTION AND PREVENTION METHODS OF 

VARIOUS SQLIAS 

Symbols:  ‗ ‘ defines that detection and prevention is possible      

‗ ‘ defines that detection and prevention is partially possible       ‗N/A‘  

Not Applicable       ‗ ‘ defines that detection and prevention is 

impossible      ‗ND‘ defines that attack is not defined 

 

 

 



 Blocking of SQL Injection Attacks by Comparing Static and Dynamic Queries 7 

Copyright © 2013 MECS                                                    I.J. Computer Network and Information Security, 2013, 2, 1-9 

 

 

Compared character by character only with that static 

queries having same number of tokens. This results in 

less number of comparisons.  Table II shows the sample 

database. Table III shows the sample injected SQL 

statements. Table IV, Table V and Table VI shows the 

experimental results. 

B. Comparison of various detection and prevention 

methods by attack types 

Table VII shows the comparison of various detection 
and prevention methods according to various attack types. 

Halfond[11] classified SQL Injection attacks into seven 

major categories- Tautologies, Incorrect queries, Union 

queries, Piggy-Backed queries, Stored procedures, 

Inference and Alternate encodings. As shown in table VII 

one more category of SQLIAs is defined named White 

Space Manipulation Attack which is not defined in any 

other detection and prevention method. In this type of 

attack an attacker can manipulate white spaces to prevent 

an attack from detection. 

V. CONCLUSIONS & RECOMMENDATIONS 

This paper proposes a very simple method to detect 
SQLIAs which compares static SQL queries with 

dynamic SQL queries after removing attribute values. To 

minimize the response time incoming queries are 

compared character by character only with that static 

queries having same number of tokens. In this one more 

attack known as white space manipulation attack other 

than existing classification of SQLIAs is defined and 

detected by proposed method. Removing of attribute 

values makes a SQL query independent of the database. 

So this method is used for any database. Future work will 

focus on to detect other types of attacks like cross site 

scripting attacks. 

ACKNOWLEDGMENT 

The authors also wish to thank many anonymous 

models.  

REFERENCES 

[1] PHP, magic quotes, http: // 

www.php.net/magic_quotes/ . 

[2] C. Gould, Z. Su, P. Devanbu, ―JDBC checker: a 

static analysis tool for SQL/JDBC applications‖, In 

Proceedings of the 26th International Conference on 

Software Engineering, ICSE, 2004, pp. 697–698. 

[3] G. Wassermann, Z. Su, ―An analysis framework for 

security in web applications‖, In Proceedings of the 

FSE Workshop on Specification and Verification of 

Component-Based Systems, SAVCBS, 2004, pp. 70–

78. 
[4]  Paros. Parosproxy.org. http : // 

www.Parosproxy.org/. 

Detection/Preventi

on 

Methods 

 

Tautologies Illegal/Incorrect 

Queries 

Union 

Queries 

Piggy 

Backed 

Querie

s 

Stored 

Procedures 

Inference Alternate 

Encoding 

White 

Space 

Manipulati

on Attack 

AMNESIA[6]        ND 

CSSE[15]           ND 

Java Dynamic 

Tainting[14] 

N/A N/A N/A N/A N/A N/A N/A N/A 

SQLCheck[7]        ND 

SQLGuard[8]        ND 

SQLrand[12]        ND 

Tautology 

Checker[3] 
       ND 

Web App. 

Hardening[16] 
       ND 

IDS[10]        ND 

JDBC-Checker[2] N/A N/A N/A N/A N/A N/A N/A N/A 

Java Static 

Tainting[17] 
       ND 

Safe Query 

Objects[18] 
       ND 

Security 

Gateway[19] 

N/A N/A N/A N/A N/A N/A N/A N/A 

SecuriFly[13] N/A N/A N/A N/A N/A N/A N/A N/A 

SQL DOM[20]        ND 

WAVES[21]      N/A  ND 

WebSSARI[22]        ND 

Base paper 

method[23] 
       ND 

Proposed method         



8 Blocking of SQL Injection Attacks by Comparing Static and Dynamic Queries  

Copyright © 2013 MECS                                                    I.J. Computer Network and Information Security, 2013, 2, 1-9 

[5] Yuji Kosuga et al, ―Sania: Syntactic and Semantic 

Analysis for Automated Testing against SQL 

Injection‖, In Computer Security Applications 

Conference, 2007,  pp.107-117. 

[6] Halfond W. G, Orso. A, ―AMNESIA : Analysis and 

Monitoring 

for Neutralizing SQL-Injection Attacks‖, In 

Proceedings of the 20
th

 IEEE/ACM international 

Conference on Automated Software Engineering, 
2005, pp. 174-183. 

[7] Z. Su, G. Wassermann, ―The essence of command 

injection attacks in web applications‖, In Conference 

Record of the 33rd ACM SIGPLAN-SIGACT 

Symposium on Principles of Programming 

Languages, 2006, pp. 372–382. 

[8] Buehrer. G, Weide. B. W, Sivilotti. P A, ―Using 

Parse Tree Validation to Prevent SQL Injection 

Attacks‖, In Proceedings of the 5th international 

Workshop on Software Engineering and Middleware, 

2005, pp. 105-113. 

[9] Wei. K, Muthuprasanna. M, Kothari. S, ―Preventing 
SQL injection attacks in stored procedures‖, In 

Software Engineering Conference   2006. Australian, 

2006, pp. 18-21. 

[10]  F. Valeur, D. Mutz, G. Vigna , ―A Learning-Based 

Approach to the Detection of SQL Attacks‖, In 

Proceedings of the Conference of Detection of 

Intrusions and Malware and Vulnerability 

Assessment, 2005, pp. 123-140. 

[11]  William G.J. Halfond et al, ―A Classification of 

SQL Injection Attacks and Counter measures‖, In  

Proceedings of the Intern. Symposium on Secure 

Software Engineering, 2006, pp. 101-111. 
[12] S. Boyd, A. Keromytis, ―SQLrand:   preventing SQL 

injection attacks‖, In Applied Cryptography and 

Network Security, In LNCS, vol. 3089, 2004, pp. 74-

82. 

[13] M. Martin, B. Livshits, and M. S. Lam, ―Finding 

Application Errors and Security Flaws Using PQL: A 

Program Query Language‖, In Proceedings of the 

20th Annual ACM SIGPLAN conference on Object 

oriented programming systems languages and 

applications, 2005. 

[14] V. Haldar, D. Chandra, and M. Franz, ―Dynamic 

Taint Propagation for Java‖, In Proceedings 21st 
Annual Computer Security Applications Conference, 

2005. 

[15] T.C. Pietraszek, V. Berghe, ―Defending against 

injection attacks through context–sensitive string 

evaluation‖, In Proceeding of Recent Advances in 

Intrusion Detection, in: LNCS, vol. 3858, 2006, pp. 

124–145.  

[16]  A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. 

Shirley, D. Evans, ―Automatically hardening web 

application using precise tainting information‖, In 

Twentieth IFIP International Information Security 

Conference, in: LNCS, vol. 181, 2005, pp. 295–307. 
[17] V.B. Livshits, M.S. Lam, ―Finding security errors in 

Java programs with static analysis‖, In Proceedings 

of the 14th Usenix Security Symposium, 2005, pp. 

271–286. 

[18] W. R. Cook and S. Rai, ―Safe Query Objects: 

Statically Typed Objects as Remotely Executable 

Queries‖, In Proceedings of the 27th Intern. Conf. on 

Software Engineering, 2005, pp. 97–106.  

[19]  D. Scott, R. Sharp, ―Abstracting application-level 

web security‖, In Proceedings of the 11th 

International Conference on the World Wide Web, 
2002, pp. 396–407. 

[20]  R. McClure and I. Kr¨uger, ―SQL DOM: Compile 

Time Checking of Dynamic SQL Statements‖, In 

Proceedings of the 27
th

 Intern. Conf. on Software 

Engineering , 2005, pp. 88–96. 

[21] Y. Huang, S. Huang, T. Lin, C. Tasi, ―Web 

application security assessment by fault injection and 

behavior monitoring‖, In Proceedings of the 12
th

 

International Conference on World Wide Web, 2003, 

pp. 148–159. 

[22] Y. Huang, F. Yu, C. Hang, C.H. Tsai, D.T. Lee, S.Y. 

Kuo, ―Securing web application code by static 
analysis and runtime protection‖, In Proceedings of 

the 12th International World Wide Web Conference 

ACM, 2004, pp. 40–52. 

[23] Inyong Lee, Soonki Jeong, Sangsoo Yeo, Jongsub 

Moon, ―A novel method for SQL injection attack 

detection based on removing SQL query attribute 

values‖, In Center for Information Security 

Technologies, Korea University, 2011, pp. 136-713. 

[24] Jeom-Goo Kim , ―Injection Attack Detection using 

the Removal of SQL Query Attribute Values‖, In 

IEEE, 2011. 

[25] W. G. Halfond and A. Orso, ―Combining Static 
Analysis and Runtime Monitoring to Counter SQL-

Injection Attacks‖, In       Proceedings  of the Third 

Intern. ICSE Workshop on Dynamic Analysis 

(WODA 2005), 2005, pp. 22–28. 

[26] Stephen Thomas, Laurie Williams, ―Using 

Automated Fix Generation to Secure SQL 

Statements‖, In Third International Workshop on 

Software Engineering for Secure Systems, 2007, pp. 

287-293. 

[27] V. Shanmughaneethi et al, ―Securing Web 

Applications with Service Based SQL Injection 

Detection‖, In International Conference on Advances 
in Computing, Control and Telecommunication 

Technologies, 2009, pp. 702-704. 

 

 

 
Ms. Jaskanwal Minhas is working as an Assistant 

Professor with the Department of Computer Science and 

Engineering,  S B B S Institute of  Engineering and 

Technology, Jalandhar. Before joining S B B S Institute 

of Engineering and Technology, Jalandhar she did her 

Bachelor of Technology with honours from R I E T, 

Phagwara  
 

Mr. Raman Kumar (er.ramankumar@aol.in) is 

working as an Assistant Professor with the Department of 



 Blocking of SQL Injection Attacks by Comparing Static and Dynamic Queries 9 

Copyright © 2013 MECS                                                    I.J. Computer Network and Information Security, 2013, 2, 1-9 

Computer Science and Engineering,  D A V Institute of  

Engineering and Technology, Jalandhar.  

Before joining D A V Institute of Engineering and 

Technology, Jalandhar, He did his Bachelor of 

Technology with honours in Computer Science and 

Engineering from Guru Nanak Dev University; Amritsar 

(A 5 Star NAAC University). He did his Master of 

Technology with honours Computer Science and 

Engineering from Guru Nanak Dev University; Amritsar 
(A 5 Star NAAC University). His major area of research is 

Cryptography, Security Engineering and Information 

security. He has published many papers in refereed 

journals and conference proceedings on his research areas. 


