
I. J. Computer Network and Information Security, 2013, 2, 10-20
Published Online February 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2013.02.02

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 2, 10-20

FPGA Based A New Low Power and Self-Timed

AES 128-bit Encryption Algorithm for
Encryption Audio Signal

Bahram Rashidi

Department of Electronic and Computer Engineering, Isfahan University of Technology, IRAN
b.rashidi@ec.iut.ac.ir

Bahman Rashidi

Iran University of Science and Technology, Tehran, IRAN

b_rashidi@comp.iust.ac.ir

Abstract — This paper presents, a low power 128-bit

Advanced Encryption Standard (AES) algorithm based

on a novel asynchronous self-timed architecture for

encryption of audio signals. An asynchronous system is

defined as one where the transfers of information
between combinatorial blocks without a global clock

signal. The self-timed architectures are asynchronous

circuits which perform their function based on local

synchronization signals called hand shake, independently

from the other modules. This new architecture reduced

spikes on current consumption and only parts with valid

data are working, and also this design does not need any

clock pulse. A combinational logic based Rijndael S-Box

implementation for the Substitution Byte transformation

in AES is proposed, its low area occupancy and high

throughput therefore proposed digital design leads to

reduction in power consumption. Mix-columns
transformation is implemented only based on multiply-

by-2 and multiply-by-3 modules with combinational logic.

The proposed novel asynchronous self-timed AES

algorithm is modeled and verified using FPGA and

simulation results from encryption of sound signals is

presented, until original characteristics are preserved

anymore and have been successfully synthesized and

implemented using Xilinx ISE V7.1 and Virtex IV FPGA

to target device Xc4vf100. The achieved power

consumption is 283 mW in clock frequency of 100 MHz.

Index Terms — Low power, self-timed, AES, FPGA,

Combinational Logic.

I. INTRODUCTION

Cryptography is the science of information and

communication security. Cryptography is the science of

secret codes, enabling the confidentiality of

communication through an insecure channel. It protects

against unauthorized parties by preventing unauthorized
alteration of use. It uses a cryptographic system to

transform a plaintext into a cipher text, using most of the

time a key. There exists certain cipher that doesn't need a

key at all. The AES is the winner of the contest, held in

1997 by the US Government, after the data encryption

standard was found too weak because of its small key

size and the technological advancements in processor

power. Fifteen candidates were accepted in 1998 and
based on public comments the pool was reduced to five

finalists in 1999. In October 2000, one of these five

algorithms was selected as the forthcoming standard: a

slightly modified version of the Rijndael. The Rijndael,

whose name is based on the names of its two Belgian

inventors, Joan Daemen and Vincent Rijmen, is a block

cipher, which means that it works on fixed-length group

of bits, which are called blocks. It takes an input block of

a certain size, usually 128, and produces a corresponding

output block of the same size. The transformation

requires a second input, which is the secret key. It is

important to know that the secret key can be of any size
[1]. In modern ages, cryptography development has been

a major concern in the fields of mathematics, computer

science and engineering. One of the main classes in

cryptography today is the symmetric-key cryptography,

where a shared key of a certain size will be used for the

encryption and decryption processes [2]. In this paper, we

propose a power, speed, and performance trade off

analysis for FPGA based implementation of a

Cryptography using novel asynchronous self-timed

architecture without any clock pulse for encryption of the

audio signal. All blocks are design with optimize circuits.

We have focused on the effects that occur especially on
FPGA based implementation. Hardware cryptographic in

FPGAs has the advantage of performance, compared to

any software solution. In recent years, a number of

techniques have been proposed for implementation of

AES algorithm on FPGA, among many FPGA based AES

algorithm implementations have been, A 16-bit AES

architecture for low power and high bit rate applications

has been presented in [3]. The novelty is in breaking the

original 32-bit boundary based AES algorithm into a

scalable architecture to work with 8-bit and 16-bit data

set. Thus offers a choice to the designer to use 8-bit or

16-bit algorithm for area and power efficient FPGA

mailto:b.rashidi@ec.iut.ac.ir
mailto:b_rashidi@comp.iust.ac.ir

FPGA Based A New Low Power and Self-Timed

 AES 128-bit Encryption Algorithm for Encryption Audio Signal 11

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 2, 10-20

implementation. The novelty of the new development is

still around the mix-column design. The complex matrix

multiplication component and standard transformations of

the 32-bit AES algorithm are transformed now to support

16-bit operations as well, simultaneously qualifying for

applications requiring high data rates. The design has

been further embellished by a memory based micro-

programmed controller, which simplifies the control

process of the algorithm and makes the FPGA platform
viable for effective hardware utilization. In [4] a key

scheduling unit is added. The number of clock cycles

required to encrypt a single block has been reduced and

the amount of hardware resources has been optimized.

Dong Chen et al, presents the outer-round only pipelined

architecture for a FPGA implementation of the AES-128

encryption processor. They design uses the block RAM

storing the S-box values and exploits two kinds of Block

RAM. Combine the operations in a single round. In [5],

they propose an area optimized design for the AES, in the

Cipher Block Chaining (CBC) mode. A new efficient

architecture for high-speed advanced AES, using
composite field arithmetic byte substitution implemented

in [6], where higher efficiency is achieved by merging

and location rearrangement of different operations

required in the steps of encryption. An equivalent

optimized sub-pipelined architecture is proposed to

implement the AES, every round including encryption

and decryption needs one clock cycle. The Sub-

Bytes/InvSub-Bytes operation using composite field

arithmetic in GF (2
4
) and block RAMs respectively. In

addition, an efficient key expansion which supports the

output of 128 bits key per cycle and allows key changes

every cycle is also presented by [7]. In [8], Speed is
increased by processing multiple rounds simultaneously

but at the cost of increased area. Algorithmic

optimization techniques have also been used which

includes exclusion of shift row stage and on the fly round

key generation.

This paper is organized as follows. In section II

description of the AES algorithm, Section III discusses

proposed self-timed AES architecture and section IV

comparison of the hardware implementation and chip

utilization taken from Xilinx ISE that verifies the

performance of the proposed work. Section V is the

conclusion.

II. DESCRIPTION OF THE AES ALGORITHM

AES is an iterated block cipher with a fixed block size

of 128 and a variable key length. The different

transformations operate on the intermediate results, called

state. The state is a rectangular array of bytes and since

the block size is 128 bits, which is 16 bytes, the

rectangular array is of dimensions 4x4. The cipher key is
similarly pictured as a rectangular array with four rows.

The number of columns of the cipher key, denoted Nk, is

equal to the key length divided by 32[1]. Description of

mathematical preliminaries AES is explained in [1].

Algorithm Specification

As explained in [9], the length of the input block, the
output block and the State is 128 bits. This is represented

by Nb = 4, which reflects the number of 32-bit words in

the state. The key length is represented by Nk = 4, 6, or 8,

which reflects the number of 32-bit words in the cipher

key. The number of rounds to be performed during the

execution of the algorithm is dependent on the key size.

The number of rounds is represented by Nr, where Nr =

10 when Nk = 4. The AES algorithm uses a round

function that is composed of four different byte-oriented

transformations: 1- byte substitution using a substitution

table (S-box), 2- shifting rows of the state array by
different offsets, 3- mixing the data within each column

of the state array, and 4- adding a round key to the state.

During each round, the following operations are

applied on the state:

1. SubBytes()Transformation

The SubBytes() transformation is a non-linear byte

substitution that operates independently on each byte of

the State using a substitution table (S-box). This S-box,

which is invertible, is constructed by composing two

transformations:

1- Take the multiplicative inverse in the finite field
GF (2

8
).

2- Apply the following affine transformation (over

GF (2)):

For 0≤i<8, where bi is the i
th

 bit of the byte, and ci is

the i
th

 bit of a byte c with the value {63} or {01100011}.

Here and elsewhere, a prime on a variable indicates that
the variable is to be updated with the value on the right.

2. ShiftRows() Transformation
In the ShiftRows() transformation, the bytes in the last

three rows of the State are cyclically shifted over different

numbers of bytes (offsets). The first row, r = 0, is not

shifted. Specifically, the ShiftRows() transformation

proceeds as follows:

Where the shift value shift(r, Nb) depends on the row

number, r, as follows (recall that Nb = 4):

shift(1,4)=1;shift(2,4)=2;shift(3,4)=3.

3. MixColumns() Transformation
The MixColumns() transformation operates on the State

column-by-column, treating each column as a four-term

polynomial. The columns are considered as polynomials

over GF (2
8
) and multiplied modulo x

4
+ 1 with a fixed

polynomial a(x), given by

)1(8mod)7(8mod)6(8mod)5(8mod)4(iiiiiii cbbbbbb

)2(040mod)),((,. bNNrshiftcrcr NcandrforSS
bb

)3(}02{}01{}01{}03{)(23 xxxxa

FPGA Based A New Low Power and Self-Timed

12 AES 128-bit Encryption Algorithm for Encryption Audio Signal

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 2, 10-20

This can be written as a matrix multiplication. Let

4. AddRoundKey() Transformation

In the AddRoundKey() transformation, a Round Key is

added to the State by a simple bitwise XOR operation.

Each Round Key consists of Nb words from the key

schedule. Those Nb words are each added into the

columns of the State, such that

Where [wi] are the key schedule words, and round is a

value in the range 0 ≤ round < Nr.

5. Key Expansion Algorithm

The AES algorithm takes the Cipher Key, K, and

performs a Key Expansion routine to generate a key

schedule. The Key Expansion generates a total of Nb(Nr +

1) words: the algorithm requires an initial set of Nb words,

and each of the Nr rounds requires Nb words of key data

[10]. Fig.1 shows the generation of the first eight words

of the expanded key. The function ''g'' consists of the

following sub-functions [11]:

1. RotWord() performance a one-byte circular left shift

on a word. This means that an input word [b0, b1, b2, b3]

is transformed into [b1, b2, b3, b0].

2. SubWord() perfoms a byte substitution on each byte

of its input word using the S-box.

3. The result of steps 1 and 2 is xored with a round

constant shown in Table I.

Table I: The value r-con[j] in hexadecimal

J 1 2 3 4 5 6 7 8 9 10

Rcon[j] 01 02 04 08 10 20 40 80 1b 36

K0

K1

K2

K3

K4

K5

K6

K7

K8

K9

K10

K11

K12

K13

K14

K15

W0 W1 W2 W3

W4 W5 W6 W7

g

Fig.1: AES Key Expansion Algorithm.

III. PROPOSED SELF-TIMED AES ARCHITECTURE

FPGAs are standard integrated circuits that can be

programmed by a user to perform a variety of complex

logic functions. FPGAs have the capability of being

reconfigurable within a system, which can be a big

advantage in applications that need multiple trial versions

within development, offering reasonably fast time-to-

market. Two major computational areas have found a

natural home in FPGAs: cryptography and bioinformatics.

So For example, an FPGA can be used in an encryption

scheme to perform the encryption using whatever
encryption algorithm is programmed into it; and the same

chip can be used for multiple rounds of encryption that

combine different encryption algorithms [12]. In this

paper, in order to reduce power consumption, the self-

timed technique has been used. Furthermore, mix-column

transformation is optimized and its implementation is

based only on multiply-by-2 and multiply-by-3 modules.

Self-timed circuits perform their functions by local

synchronization signals call hand shake so total system is

self controlled and does not need any separate control

unit or global clock pulse. This new architecture reduces

spikes on consumed current and only those parts with
valid data are working and clock-less. Thus lead to

reduction in power consumption. Aim is achieve the low

power and high performance hardware implementation of

AES based on self-timed technique.

A) Self-Timed Circuits

As described in [13], most current designs depend on a

global synchronizing signal or clock to make all of the

blocks in the circuit communicate correctly, and smaller

device sizes with increasing chip areas cause the

proportional capacitive loading on the global clock line(s)

to increase. Clock skews from the timing distribution

network require that either the logic circuits meet certain
latency requirements, or that the non overlap times of a

multiphase clocked system be increased, negatively

impacting the time available for computation. Self-timed

circuits with an appropriate handshake protocol can be

used to eliminate the requirement for any global clock in

a system. In place of a global clock, the chip only needs a

reset signal and external handshaking signals to

synchronize its operation. Internally, stages communicate

at their own speed, which is an advantage since the speed

of operation no longer is constrained by the slowest block

in the system as in a clocked system. A self-timed system

is an asynchronous system made up of self-timed blocks.
Instead of synthesizing synchronous circuits, an

alternative solution, especially in the case of large circuits,

is self-timing. As a generic example in [14], consider the

pipelined circuit, to each block, for example number i, are

associated a maximum delay tmax(i) and an average one tav

(i). The latency and throughput of the circuit are equal to

n.TClk And 1/Tclk, respectively where Tclk > max { tmax(0),

tmax(1), … , tmax(n-1)}, that is,

Latency > n.max { tmax(0), tmax(1), … , tmax(n-1)},

Throughout<i/max{tmax(0),tmax(1),…,tmax(n-1)}. (5)

);()()(xSxaxS

b

c

c

c

c

c

c

c

c

Ncfor

S

S

S

S

S

S

S

S

0

02010103

03020101

01030201

01010302

3

,2

,1

,0

,3

,2

,1

,0

)4(0][][][,3,2,1,0,3,2,1,0 bcNroundcccccccc NCforWSSSSbbbb
b

FPGA Based A New Low Power and Self-Timed

 AES 128-bit Encryption Algorithm for Encryption Audio Signal 13

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 2, 10-20

A self-timed version of the same circuit is shown in

Fig.2. If the probability distribution of the internal data

were uniform, in equalities (5) would be substituted by

the following ones:

average latency > tav(0)+tav(1) +… +tav(n-1),

average throughput<1/max{ tav(0)+tav(1)+…+tav(n-1)} (6)

Tmax(0),

tav(0)

Tmax(1),

tav(1)

Tmax(n-1),

tav(n-1)…

R
e
g

R
e
g

R
e
g

En En EnStart Start Start
Done Done Done

Req Req Req Req

Ack Ack Ack Ack

Hand

Shaking

Hand

Shaking

Hand

Shaking

Fig.2: Self-timed pipelined circuit.

Main and important block in self-timed circuits is

interconnecting circuit or hand shake block. Thus we for

digital design and implementation of the hand shake

blocks using combinational logic. Fig.3 shows proposed

hand shake block. Hand shake block should be able to

detect the valid data of pervious block and if request

signal is valid, hand shake block transmits data to next

block. Finally to inform pervious block that transmits is

successfully acknowledge signal is made valid and

pervious block its request signal make invalid thus hand

shake block should include four part one for detect valid
data of pervious block, two part for receive request signal

the previous block three part for asserted enable signal to

register between blocks and four part for active

acknowledge signal to shown data received and transmits

done successfully. As seen in Fig.3 OR & AND logic

gates used until detect valid output data of any block, and

also three multiplexers 2 to 1 is for create en signal,

request signal and acknowledge signal to select „0‟ & „1‟.

x[14]X[15] x[12]X[13] x[10] x[8]X[9]X[11] X[6]X[7] X[4]x[5] X[2] x[0]X[1]X[3]

ENx[14] x[12]X[13] x[10] x[8]X[9]X[11] X[6]X[7] X[4]x[5] X[2] x[0]X[1]X[3]X[15]

vdd

1

0

gnd

1

0

gnd

vdd

1

0

gnd

vdd

re
q
2

a
c
k
2

a
c
k
1

re
q

1

Fig.3: Proposed hand shake block architecture (for 16 bits)

Transformation of data between blocks is based on

hand shake signals (i.e. request and acknowledge). Fig.4

shows proposed self-timed AES algorithm. In Fig.4

proposed architecture is divided to three parts. First part

includes four important transformation s-box, shift rows,

mix-column, and add-round-key. We insert register

between them for pipelining and self-timed. Second part

includes hand shake blocks that receive data of pervious

block and while these are valid hand shake block
transformation data to next block. In this mode system

doesn‟t need any clock signal and communication

between stages is based on a local synchronization called

hand shake, and third part in proposed digital design is

key-expansion. This part, too, acts base on enable signals

of hand shake block. It‟s divided into several sub-stages

to make it possible to exert registers between them. It is

suitable for pipelining. This part, also, has been done for

key-expansion. Hand shake signals can synchronize these

blocks to work simultaneously together.

Fig.4: Total block diagram of proposed pipelined and self-timed

AES encryption algorithm.

1. Proposed Implementation of S-Box on FPGA

This paper presents a combinational logic S-Box for

the SubByte transformation in the AES algorithm. Using

combinational logic for implement S-Box has small area

FPGA Based A New Low Power and Self-Timed

14 AES 128-bit Encryption Algorithm for Encryption Audio Signal

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 2, 10-20

occupancy and high throughput, and as compared to the

typical ROM based look up table implementation which

access time is fixed and unbreakable. The SubByte

transformation is computed by taking the multiplicative

inverse in GF (2
8
) followed by an affine transformation

[15].

SubByte:

The Affine Transformation can be represented in
matrix form and it is shown below:

The AT is the Affine Transformation From here, it is

observed that the SubByte transformation involve a
multiplicative inversion operation. This section illustrates

the steps involved in constructing the multiplicative

inverse module for the S-Box using composite field

arithmetic. The multiplicative inverse computation will

first be covered and the affine transformation will then

follow to complete the methodology involved for

constructing the S-Box for the SubByte operation. From

[16], it is stated that any arbitrary polynomial can be

represented as bx + c, given an irreducible polynomial of

x
2
+Ax+B. Thus, element in GF (2

8
) may be represented

as bx+c where b is the most significant nibble while c is

the least significant nibble. From here, the multiplicative
inverse can be computed using the equation below [16].

From [15], the irreducible polynomial that was selected

was x
2
+x +λ. Since A=1 and B=λ, then the equation

could be simplified to the form as shown below;

The above equation indicates that there are multiply,

addition, squaring and multiplication inversion in GF (2
4
)

operations in GF. From this simplified equation, the

multiplicative inverse circuit GF (2
8
) can be produced as

shown in Fig.5.

Fig.5: Multiplicative inversion module for the S-Box.

The legends for the blocks within the multiplicative

inversion module from above are illustrated in Table II:

Table II: Legends for the building blocks within the

multiplicative inversion module.

Isomorphic mapping to composite fields

x
2

Squarer in GF(2
4
)

x
-1

Multiplication inversion in GF(2
4
)

 -1 Inverse isomorphic mapping to GF(2
8
)

x
Multiplication with constant, in GF(2

4
)

Addition operation in GF(2

4
)

 Multiplication operation in GF(2
4
)

2. Isomorphic Mapping and Inverse Isomorphic

Mapping

The multiplicative inverse computation will be done by

decomposing the more complex GF(2
8
) to lower order

fields of GF(2
1
), GF(2

2
) and GF((2

2
)
2
). In order to

accomplish the above, the following irreducible

polynomials are used [15].

Where φ= {10}2 and λ= {1100}2.

Computation of the multiplicative inverse in composite

fields cannot be directly applied to an element which is

based on GF (2
8
). That element has to be mapped to its

composite field representation via an isomorphic function,

δ. Likewise, after performing the multiplicative inversion,

the result will also have to be mapped back from its

composite field representation to its equivalent in GF(2
8
)

via the inverse isomorphic function, δ
-1

. Both δ and δ
-1

can be represented as an 8*8 matrix. Let q be the element

in GF (2
8
), then the isomorphic mappings and its inverse

can be written as δ*q and δ
-1

*q, which is shown in below
[15]. Proposed implementation of the affine

transformation is based on XOR, NOT gates.

The matrix multiplication can be translated to logical

XOR operation. The logical form of the matrices above is

shown below.

As seen in above matrix this block is implementation

based on XOR gates. We for implementation of this block

use minimum number of XOR gates, until proposed

design optimized. Also other blocks in S-box are

1

1

0

0

0

1

1

0

0

1

2

3

4

5

6

7

10001111

11000111

11100011

11110001

11111000

01111100

00111110

00011111

)(

a

a

a

a

a

a

a

a

aAT

122122-1))(()(c)(bx ccAbbAcxcbcABbb

1212-1))()(())((c)(bx cbcbbcxcbcbb

016

146

12347

1267

12357

2357

123467

57

qqq

qqq

qqqqq

qqqq

qqqqq

qqqq

qqqqqq

qq

q

xxGFGF

xxGFGF

xx

222222

2222

22

:))2(()))2(((

)7(:)2())2((

1:GF(2))GF(2

FPGA Based A New Low Power and Self-Timed

 AES 128-bit Encryption Algorithm for Encryption Audio Signal 15

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 2, 10-20

designed with combinational logic implemented with

minimum number of logic gates.

Also proposed implementation of δ
-1

*q is based on

XOR gate. From [16] and [17], any arbitrary polynomial

can be represented by bx+c where b is upper half term

and c is the lower half term. Therefore, from here, a

binary number in GF q can be spilt to qHx+qL. For

instance, if q= {1011}2, it can be represented as {10}2x+

{11}2, where qH is {10}2 and qL = {11}2. Using this idea,
the logical equations for the addition, squaring,

multiplication and inversion can be derived.

3. Squaring in GF(24)

Let k =q
2
, where k and q is an element in GF(2

4
),

represented by the binary number of {k3k2k1k0}2 and

{q3q2q1q0}2 respectively.

The x
2
 term can be modulo reduced using the

irreducible polynomial from (7), x
2
+x+φ. By setting

x
2
=x+φ and replacing it into x

2
. Doing so yields the new

expressions below.

The expression above is now decomposed to GF(2
2
).

Decomposing kH and kL further to GF(2) would yield the

formula to compute squaring operation in GF(2
4
).

Using the irreducible polynomial from (7) x
2
 +x+1,

and setting it to x
2
=x+1, x

2
 is substituted and the new

expression is obtained.

The kL term is also decomposed in the similar manner

as shown below.

As was done earlier, the x
2
 term can be substituted

since x
2
=x+1. For the case of x

3
, it can be obtained by

multiplying x
2
 by x. That is, x

3
=x(x) +x=x

2
+x.

Substituting for x
2
, x

3
=x+1+x. The two x terms cancel

out each other, leaving only x
3
=1. Performing this

substitution to the above expression yields the following.

From equations (8) and (9), the formula for computing

the squaring operation in GF (2
4
) is acquired as shown

below.

(10)

4. Multiplication with constant, λ

Let k = qλ, where k= {k3k2k1k0}2, q= {q3q2q1q0}2 and

λ= {1100}2 are elements of GF(2
4
).

Modulo reduction can be performed by substituting

x
2
=x+φ using the irreducible polynomial in (7) to yield

the expression below.

The kH and kL terms can be further broken down to GF

(2).

Substituting x
2
=x+1, would then yield the following.

02456

46

12347

12345

12456

156

26

1567

1

qqqqq

qq

qqqqq

qqqqq

qqqqq

qqq

qq

qqqq

q

2

2

01230123)(k LH

qq

LH

kk

qxqqqqqkxkkkkk

LHLH

222222

Lk LHLLHLHH qxqqxqqxqqxq

22
)(k LH qxq

)2(k 2222
GFqqxq

LH K

LH

k

H

2

23

2

23

2

H)()(k qxqqqqH

2

2

3

2

22323

22

3Hk qxqqxqqxqqxq

23H)1(k qxq

)8()2()(k 32323 GFqqxqkx

2

012

2

23

22

L)(}10{)(k qqqqbq LH

2

012

2

23L)()0}1({)(k qxqxqxq

2

012

22

01010

22

1

2

23232

22

3L

)(}10{)(

))((k

qqqxqqxqqxq

xqxqqxqqxq

0

2

12

3

Lk qxqxqxqH

0123L)1()1(k qxqxqq

)9()2()()(k 0131201 GFqqqxqqkx

33k q

232k qq

121k qq

0130k qqq

LH
LHLH qq

LH

kk

qqqqkxkkkkk

0011k 01230123

))((k LHLH xqxq

xqxq HLHH)(k

)2(k 2GFqxqq

LH k

HL

k

HLHH

HLHH qq Hk

)11)(()11)((k 201223 qqqq

)1)(()1)((k 0123H xqxqxqxq

001

2

1223

2

3H)()(k qxqqxqqxqqxq

FPGA Based A New Low Power and Self-Timed

16 AES 128-bit Encryption Algorithm for Encryption Audio Signal

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 2, 10-20

The same procedure is taken to decompose kL to GF
(2).

Again, the x
2
 term can be substituted since x

2
=x+1.

Likewise, x
3
 is also substituted with x

3
=1,

From equations (11) and (12) combined, the formula

for computing multiplication with constant λ is shown

below:

5. GF(24) Multiplication

Let k = qw, where k= {k3 k2 k1 k0}2, q = {q3 q2 q1

q0}2 and w = {w3w2w1w0}2 are elements of GF(2
4
).

Substituting the x
2
 term with x

2
 = x + φ yields the

following.

Equation (14) is in the form GF (2
2
). It can be observed

that there exist addition and multiplication operations in

GF (2
2
). Addition in GF (2

2
) is but bitwise XOR operation.

Multiplication in GF (2
2
), on the other hand, requires

decomposition to GF (2) to be implemented in hardware.
Also, it the expression would be too complex if equation

(14) were to be broken down to GF (2). Thus, the formula

for multiplication in GF (2
2
) and constant φ will be

derived instead.

6. GF(22) Multiplication

Let k=qw, where k = {k1 k0}2, q={q1q0}2 and w

={w1w0}2 are elements of GF(2
2
).

The x
2
 term can be substituted with x

2
=x+1 to yield the

new expression below:

The equation above can now be implemented in

hardware as multiplication in GF(2) involves only the use

of AND gates. That we use from AND gate for its

implementation.

The formula for computing multiplication in GF(2) is

as follows:

Proposed hardware implementation of this block is

based on XOR, AND gate.

The hardware implementation above differs from the

(16) for the computation of k1. It can be proven that the

implementation above for computing k1 would result to

the expression in (16), as shown below:

7. Multiplication with constant φ
Let k=qφ, where k ={k1k0}2, q ={q1q0}2 and φ ={10}2

are elements of GF(2
2
).

Substitute the x
2
 term with x

2
=x+1, yield the

expression below:

From (17), the formula for computing multiplication

with φ can be derived and is shown below:

8. Multiplicative Inversion in GF(24)

00112233H)()1()()1(k qxqqxqqxqqxq

)()(k 0123011233H qqqqxqqqqqq

)11()2()()(k 01230223 GFqqqqxqqkx

HHqLk

)10)(11)((k 2223L qq

))(1)((k 23L xxqxq

xqxqxqxq 2

2

3

2

2

3

3Lk

xqxqxqq 2323L)1()1()1(k

)12()()(k 233223L qqqxqqq

)2()()(k 2301 GFqxqkx

023k qq

01232k qqqq

31k q

)13(k 20 q

))((

kkk 0123012301

k

23

H

LHLH

wwqq

LH

k

wxwqxq

wwwwqqqqkxkkk

lHLHL

LLHLLHHH wqxwqwqxwq)()(k 2

LLHLLHHH wq)xwqw(q))(xw(qk

)14()GF(2wqwq

)xwqwqw(qkxkk

2

LLHH

HLLHHHLH

)wx)(wqx(q)w)(wq(q)k(kk 010101010101 kxk

000110

2

11 wqxwqxwqxwqk

00011011 wqxwqxwq1)(xwqk

(15)GF(2))wqw(q

)xwqwqw(qkxk

0011

01101101

0110111 wqwqwqk

)16(wqwqk 00110

)wq()w(w)(k 0001011 qq

)()()()()(k 00000110111 wqwqwqwqwq

)wq()w(q)(k 0110111 wq

)(x)qx(q))(10q(qkxkk 0120101
xqxq 0

2

11k

xx 01 q)1(qk

)17()2()q()q(k 101 GFxq

011 qqk

10 qk

FPGA Based A New Low Power and Self-Timed

 AES 128-bit Encryption Algorithm for Encryption Audio Signal 17

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 2, 10-20

In [18] has derived a formula to compute the

multiplicative inverse of q. The inverses of the individual

bits can be computed from the equation below [18].

Proposed implementation of these equations are based

on XOR, AND gates.

9. Proposed Implementation of Shift Rows on FPGA

In proposed implementation of Shift Rows, 16*8-bit

registers have been used, after shift operation each output

byte was placed in new position according to AES
algorithm. 16*8-bit registers be used as one of the 128-bit

registers in self-timed architecture.

10. Proposed Implementation of Mix-Column on FPGA

Mix-column transformation is one important and

complex block of AES algorithm, because in this

transformation, multiplication operation is significant

operation, and multiplication by one number

(multiplication by X) is very complex also power

consumption and utilized hardware for implementation

on FPGA is high. Thus we should design and implement

it with minimum power consumption and reduce utilized
hardware. Thus we implement multiplication by 2 and 3

with combinational logic until achieve minimum

hardware and simple architecture. Also we implement

Mix-column transformation use of the parallel processing

technique. Thus 128-bit input data enter then are divided

into sixteen 32-bit groups as described by the Mix-

column transformation algorithm, this groups are fed into

sixteen stages and any multiplication is independent of

other multiplication operation. Proposed implementation

of architecture mix-column block based on

multiplication-by-3 and multiplication-by-2 and XOR

gates are shown in Fig.6.

Multiplication

by 2

Multiplication

by 3

Multiplication

by 2

Multiplication

by 3

Multiplication

by 3

Multiplication

by 3

I[127:120]

I[119:112]

I[111:104]

I[103:96]

I[127:120]

I[119:112]

I[111:104]

I[103:96]

I[31:24]

I[23:16]

I[15:8]

I[7:0]

o[127:120]

o[119:112]

o[7:0]

.

.

.

Fig.6: Proposed implementation of mix-column based on
multiplication-by-3 and multiplication-by-2.

and in three part of proposed method (Fig.4) that is key-

expansion block we proposed two new block in this

implementation include:

1. K-to-w block

The k-to-w is for implementation of below equation
according to key-expansion block:

151413123

1110982

76541

32100

W

W

W

W

kkkk

kkkk

kkkk

kkkk

2. outkey block

The outkey block is implemented for final stage of the

key-expansion that in below proposed verilog code of this

block is shown in below:

module outkey_1(b,a);

input[159:0]b;

output[127:0]a;

wire[127:0]a;

 assign a[127:96]=(b[159:128]^b[31:0]);

 assign a[95:64]=(b[127:96]^a[127:96]);

 assign a[63:32]=(b[95:64]^a[95:64]);

 assign a[31:0]=(b[63:32]^a[63:32]);

endmodule

In this verilog code b[31:0] is output of the function

''g'' in key-expansion.

2031233

1

3 qqqqqqqq

21203023123

1

2 qqqqqqqq qqqq

10220131233

1

1 qqqqqqqq qqqq

01012122

0301313023123

1

0 qqqqqqqq

qqqqqqqq

qqqqqq

FPGA Based A New Low Power and Self-Timed

18 AES 128-bit Encryption Algorithm for Encryption Audio Signal

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 2, 10-20

3. R-con[j]

The R-con[j] block is for implementation Table I. in

below proposed code for this block is shown:

Begin

case(sel)

 4'b0001:b5[7:0]=8'b00000001;

 4'b0010:b5[7:0]=8'b00000010;

 4'b0011:b5[7:0]=8'b00000100;

 4'b0100:b5[7:0]=8'b00001000;

 4'b0101:b5[7:0]=8'b00010000;

 4'b0110:b5[7:0]=8'b00100000;

 4'b0111:b5[7:0]=8'b01000000;

 4'b1000:b5[7:0]=8'b10000000;
 4'b1001:b5[7:0]=8'b00011011;

 4'b1010:b5[7:0]=8'b00110110;

endcase

end

This block is based on LUT according to Table I.

4. Rot-word block
As already explained in section key-expansion, the

Rot-word block is performance a one-byte circular left

shift on a word. As for count number of round we use of

a counter, this counter has been used to detect tenth round

and also for address lines of R-con block because this

block is implementation based on LUT. In every tenth

round, its output signal multiplexers select line, which is

connected to a causes data to bypass the mix column

block i.e. until data in this stage after shift rows block

enter to add-roundkey block instead mix-column block

according to AES algorithm.

5. Encryption Audio Signal on Proposed

Implementation

The development of encryption systems for voice is in

turn a lot more difficult and mostly not satisfying

achievable with analogue techniques. Due to that problem,

much pioneering work for many digital capabilities was

performed while inventing a system to provide secure

voice communications. As outlaid before, encryption

often refers to digital technologies, in fact, if we hear

about data security and encryption in context with

modern technologies, we barely talk about something else

but digital encryption. “Digital encryption” can be seen as
a much stronger method of protecting speech

communications than “analogue scrambling”. The big

advantage of digital encryption is that it does not matter

what kind of signal is encrypted. That makes digital

encryption quite powerful because we can create one

standard to handle e.g. text, audio, video and every other

kind of data. Certainly, digital encryption takes always

the same start point, the analogue to digital conversation,

however in voice encryption things are a bit different

since there are two different ways to go after this

[19].This proposed architecture is to provide a good and

efficient method for hiding the data from hackers and
sending to a destination in a safe manner. This proposed

system will not change the size of the data even after

encoding and also suitable for any type of audio file

format. The quality of sound depends on the size of the

audio which the user selects and length of the message.

The quality of the sound in the encrypted audio file can

be increased. There are number of ways that this project

could be extended. Its performance can be upgraded to

higher levels in practical conditions. In this

implementation, for application of proposed design we do

encryption of the sound. Hex codes of samples audio
signal are obtained from MATLAB then these Hex codes

are given to the proposed designed AES encrypting, and

encrypted data of the sound obtained. Fig.7 shows

original audio signal and encrypted audio signal,

therefore, it does not provide any indication to employ

any statistical attack on the sound under consideration.

Fig.7: Original audio signal and encrypted audio signal.

IV. COMPARISON

We designed a low power AES algorithm based on

novel asynchronous self-timed architecture for encryption

of audio signals until original characteristics are

preserved anymore. In this paper, proposed method has

been writed with verilog hardware description language.

The proposed Low Power Self-Timed AES 128-Bit

Encryption Algorithm was synthesized and implemented

using Xilinx ISE V7.1 and Virtex IV FPGA to target

device xc4vfx100 also power is analized using Xilinx

XPower analyzer. And for simulation we use of

MATLAB7.2. Table III shows the comparison between
power consumption, numbers of LUTs, numbers of Slices

and FFs and the type of device that has been used in

different articles and proposed method, Table IV show

the power consumption of proposed method and other

works.

Table III: Summary of hardware characteristic obtained of

proposed method and other works.

AES algorithm Device Slices FFs LUTs

[20] open scheme Virtex PRO 6910 --- ---

[20] DOR+K

Scheme
Virtex PRO 2439 --- ---

[3] Xc2v1000 228 --- ---

[21] Xc3s200ft256 1643 975 3055

[22] Xcvp70 2389 2827 4401

[6] p=9 Xc2v6000-6 10662 --- ---

[6] p=5 Xc2v6000-6 7884 --- ---

FPGA Based A New Low Power and Self-Timed

 AES 128-bit Encryption Algorithm for Encryption Audio Signal 19

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 2, 10-20

[23] xc4vlx85 8901 --- ---

[8] Optimized

Area
--- 1468 --- ---

[8] Optimized

Speed
--- 18855 --- ---

Proposed method Xc4vf100 2856 949 4743

Table IV: Summary of data obtained from power consumption

of our proposed method and other works.

V. CONCLUSION

In this paper, a new low power and self-timed

architecture for AES algorithm with encryption of audio

signals is proposed. Different approaches are using in

proposed method, until reduced power consumption

include; using a novel asynchronous self-timed technique

based on a proposed new architecture. This new

architecture reduced spikes on current consumption and

only parts with valid data are working and this design is

clock-less, also a combinational logic based S-Box for the
SubByte transformation is discussed and its internal

operations are explained. As compared to the typical

ROM based lookup table, thus power consumption

reduction. We applied proposed new self-timed AES

algorithm for encryption of audio signals until original

characteristics are preserved anymore.

REFERENCES

[1] Jagadev, Vivek Senapati, “Advanced Encryption

Standard (AES) Implementation ”, Thesis for the

degree of Bachelor of Technology in National

Institute of Technology, Rourkela May, 2009.
[2] Issam Mahdi Hammad, “Efficient Hardware

Implementations For The Advanced Encryption

Standard (AES) Algorithm” Master Thesis,

Dalhousie University Halifax, Nova Scotia 2010.

[3] Habibullah Jamal et al, “Low Power Area Efficient

High Data Rate 16-bit AES Crypto Processor”, The

18th International Conference on Microelectronics

(ICM) 2006, pp. 186-189.

[4] Yulin Zhang, Xinggang Wang, “Pipelined

Implementation of AES Encryption Based on FPGA”,

2010 IEEE, pp. 170-173.

[5] Dong Chen et al, “Efficient Architecture and
Implementations of AES”, 2010 3rd International

Conference on Advanced Computer Theory and

Engineering (ICACTE), V6, pp. 295-298.

[6] M.R.M. Rizk, M.Morsy, “Optimized Area and

Optimized Speed Hardware Implementations of AES

on FPGA”, 2007 IEEE, pp. 207-217.

[7] Ghada Farouk Naiem et al, “An Efficient

Implementation of CBC Mode Rijndeal AES on

anFPGA”,25
th

 National Radio Science Conference

(NRSC),March 1820, 2008, Faculty of Engineering,

Tanta Univ, Egypt, pp. 1-8.

[8] Swinder Kaur, Prof. Renu Vig, “Efficient
Implementation of AES Algorithm in FPGA Device”,

International Conference on Computational

Intelligence and Multimedia Applications 2007, pp.

179-187.

[9] Amir Ahmed Khan, “Implementation Of High Speed

AES Algorithm On FPGA”, B.E. (EL) Project

Report Batch 2003-04, University of Engineering &

Technology Karachi.

[10] Federal Information Processing Standards

Publication (FIPS PUBS) 197, “Announcing The

Advanced Encryption Standard (AES)”, November

26, 2001.
[11] William stallings, “Cryptography and Network

Security” Pearson Printice Hall, Printed in the United

State of America, Fourth Edition 2006 Pearson

Education.

[12] “FPGAs: Field-Programmable Gate Arrays for

Configurable Computing” written August, 2001 by D.

Gaasterland for CMSC 411, Computer Systems

Architecture, University of Maryland.

[13] Gordonm.Jacobs, Robertw. Brodersen, “A fully

Asynchronous digital signal processor using self-

timed circuits”, IEEE journal of solid-state circuts,

vol, 25, no.6, 1990.
[14] Jean-Pierre Deschamps et al, “Synthesis of

Arithmetic Circuits”, Published by John Wiley &

Sons, Inc. Published simultaneously in Canada, 2006.

[15] Akashi Satoh et al, “A Compact Rijndael Hardware

Architecture with S-Box Optimization”, Springer-

Verlag Berlin Heidelberg, 2001.

[16] Vincent Rijmen, “Efficient Implementation of the

Rijndael S-Box”, Katholieke Universiteit Leuven,

Dept. ESAT. Belgium.

[17] Tim Good, Mohammed Benaissa, “Very Small

FPGA Application-Specific Instruction Processor for

AES.”, IEEE Transactions on Circuits and Systems,
Vol. 53, No. 7, 2006.

[18] Xinmiao Zhang , Keshab K. Parhi, “High-Speed

VLSI Architectures for the AES Algorithm”, IEEE

Transactions on Very Large Scale Integration(VLSI)

Systems, Vol. 12, No. 9, Septemper 2004.

[19] Markus Albert Brandau,” Implementation of a real-

time voice encryption system”, Master Thesis,

Universitat Politècnica de Catalunya EUETIT, 2008

[20] Jason Van Dyken, José G. Delgado-Frias, “FPGA

schemes for minimizing the power-throughput trade-

off in executing the Advanced Encryption Standard

algorithm” Journal of Systems Architecture 56 (2010)
116–123

[21] Qitao Zhang, “On a Hardware Implementing Method

of the Optimized AES Encryption Algorithm”, 2010

Freque

ncy

(MHZ)

Proposed

method

[20]

open

scheme

[20]

DOR+K

Scheme

[24]

5 43 mw
235.

45mw

138.2

1mw

25 93mw --- ---
885

mw

50 156mw --- --- ---

75 220mw --- --- ---

100 283mw --- --- ---

FPGA Based A New Low Power and Self-Timed

20 AES 128-bit Encryption Algorithm for Encryption Audio Signal

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 2, 10-20

Second International Conference on MultiMedia and

Information Technology, pp. 82-84.

[22] Monica Liberatori et al, “AES-128 Cipher. High

Speed, Low Cost FPGA Implementation”, 2007

IEEE, pp. 195-198.

[23] Issam Hammad et al, “High-Speed AES Encryptor

with Efficient Merging Techniques”, IEEE

Embedded Systems Letters, Vol. 2, NO. 3,

SEPTEMBER 2010, pp. 67-71.
[24] Roohi banu, Tanya vladimirova,” fault-tolerant

encryption for space applications”, IEEE

Transactions on Aerospace and Electronic Systems

Vol. 45, NO. 1 JANUARY 2009.

Bahram Rashidi, was born in 1986 in

Boroujerd-Lorestan, Iran. He received

his B.SC. Degree in Electrical

Engineering from the Lorestan

University, Iran, in 2009 and he

received his M.SC. in the Tabriz
university, Iran also he is now Ph.D.

student in Isfahan University of technology, respectively.

His research interests include digital signal processing,

DSP processors, computer vision, modeling with

hardware description languages VHDL and VERILOG,

He now continues on his interest in digital circuits

with research in embedded microprocessor systems

and VLSI digital chip design.

Bahman Rashidi, received his B.SC.

Degree in Computer Engineering from
the Science & Technology Sepahan

Isfahan University, Iran, in 2009 and he

is now M.SC. in the Iran University of

Science and Technology, ,Tehran, IRAN,

respectively. He has accepted and

published 2 refereed conference papers. His research

interests include Computer Architecture, Computer

vision, Distributed System, Cloud Computing.

