
I. J. Computer Network and Information Security, 2013, 6, 18-26
Published Online May 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2013.06.03

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 18-26

Enhancing the Discrete Particle Swarm

Optimization based Workflow Grid Scheduling
using Hierarchical Structure

Ritu Garg, Awadhesh Kumar Singh

Computer Engineering Department, National Institute of Technology, Kurukshetra, Haryana, India
ritu.59@gmail.com, aksinreck@rediffmail.com

Abstract — The problem of scheduling dependent tasks

(DAG) is an important version of scheduling, to

efficiently exploit the computational capabilities of grid

systems. The problem of scheduling tasks of a graph onto
a set of different machines is an NP Complete problem.

As a result, a number of heuristic and meta-heuristic

approaches are used over the years due to their ability of

providing high quality solutions with reasonable

computation time. Discrete Particle Swarm Optimization

is one such meta-heuristic used for solving the discrete

problem of grid scheduling, but this method converge to

sub optimal solutions due to premature convergence. To

deal with premature convergence, in this paper we

proposed the design and implementation of hierarchical

discrete particle swarm optimization (H-DPSO) for

dependent task scheduling in grid environment. In H-
DPSO particles are arranged in dynamic hierarchy where

good particles lying above in hierarchy are having larger

influence on the swarm. We consider the bi-objective

version of problem to minimize makespan and total cost

simultaneously as the optimization criteria. The H-DPSO

based scheduler was evaluated under different application

task graphs. Simulation analysis manifests that H-DPSO

based scheduling is highly viable and effective approach

for grid computing.

Index Terms — Task Scheduling, Grid Computing, DAG,

Particle Swarm Optimization

I. INTRODUCTION

Grid computing have emerged as a popular way of

providing high performance computing for solving large

scale problems (e.g. physics, astronomy, biology,

earthquake science etc) with reasonable time, by using

large number of heterogeneous resources available

dynamically. Matching and scheduling of jobs or

workflows in heterogeneous computing environment is

crucial for coordinating the resources and problem

solving. Design and implementation of efficient scheduler

in grid computing is still a challenging problem.

Scheduling in grid computing is the problem considering

the different aspects like the environment (static or

dynamic), type of objectives (resource centric or

application centric), number of objectives (single or

multi-objective), job dependencies (independent or

dependent) etc. In this paper, we consider the scheduling

problem in which 1) expected execution time for each

task on each resource is known prior to execution 2)

performance of individual application is optimized by

considering 3) two conflicting objectives of makespan

and economic cost simultaneously 4) tasks are dependent

having precedence order (workflow) among them

represented by directed acyclic graph (DAG) model.
Grid scheduling problem is well known NP-complete

problem [1], so numerous heuristic and meta-heuristic

search techniques like genetic algorithm (GA),

evolutionary algorithm (EA), simulated annealing (SA),

ant colony optimization (ACO), and particle swarm

optimization (PSO) are used to solve the problem.

Concept of discrete particle swarm optimization [2] is
used to effectively map job scheduling solution to PSO

particle. Hierarchical particle swarm optimization (HPSO)

is another such meta-heuristic proposed by Janson and

Middendorf [3] as a variant of PSO. It has increased

diversity of population and better convergence. Hence, in

this paper, we implemented the efficient grid scheduler

for dependent task grid (workflow) based on hierarchical

discrete particle swarm optimization strategy. Resulting

hierarchical discrete particle swarm optimization (H-

DPSO) based grid scheduler enables concurrent search in

optimization domain and provides solutions with better

convergence. H-DPSO based grid scheduler is evaluated
via different sizes application task graphs.

Rest of the paper is organized as follows. Section 2,

includes the related work. In section 3, we specified the

problem definition. In section 4, we briefly introduced the

particle swarm optimization approach and its variants

available in literature. Section 5, describes the

formulation of hierarchical discrete particle swarm

optimization for multi-objective workflow grid

scheduling. Section 6, discusses the simulation analysis

and finally, section 7 gives the conclusion.

II. RELATED WORKS

 Enhancing the Discrete Particle Swarm Optimization based 19

Workflow Grid Scheduling using Hierarchical Structure

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 18-26

The problem of grid scheduling, for DAG based

(dependent task) task graph, has already been addressed

in literature. Large number of heuristics is proposed

which are commonly categorized as:

 List scheduling algorithms in which tasks are

assigned the priorities and placed in ordered list [4,

5].

 Duplication based algorithms reduces the

makespan by utilizing the idle time of resources
for duplicating some of predecessor tasks [6].

 Clustering algorithm reduces the communication

delay by grouping heavily communicating tasks to

the same cluster and assigning them to same

resource. [7]

 Meta-heuristics inspired by natural phenomena

include genetic algorithm [8, 9], simulated

annealing [10], tabu search [11], ant colony

optimization [12], Particle swarm optimization [13]

are also used to address the challenges of the

problem.

Particle swarm optimization introduced by Kennedy
and Eberhart [14] simulates the swarm of birds. Its ability

for global searching has made PSO highly suitable for

optimization. It also has fewer algorithm parameters than

GA and SA. In [15] quality of different solutions found

by ACO, PSO, SA and genetic algorithms were compared.

The results show that PSO is highly efficient and

effective in task scheduling problem. Recent analysis by

[16, 17] observed that classical PSO prematurely

converge to local optimum. [18] Used the PSO for

scheduling workflow applications in distributed

environment. [19] used a fuzzy particle swarm

optimization and Izakian et al. [2] used discrete version
of particle swarm optimization for grid scheduling.

Another method for improving the quality of solution is

hybridization with local search techniques. Discrete

particle swarm optimization hybridized with SA was

proposed in [20] by enhancing the local exploration

ability of PSO to effectively solve the task assignment

problem.

In this work, we proposed the design and

implementation of efficient grid scheduler based on

hierarchical discrete particle swarm optimization. By

using the hierarchical structure particles are arranged in

dynamic hierarchy where good particles lying above in
hierarchy are having larger influence on the swarm. The

changing arrangement of individuals helps preserving

diversity, avoid premature convergence in the early

iterations and promote convergence towards global

optimum. Hierarchical particle swarm optimization

introduced in [3] has been successfully applied in solving

continuous optimization functions. It was also used as an

efficient method for economic load dispatch problem [21].

III. PROBLEM STATEMENT

The purpose of dependent task (workflow) Grid

scheduling is to efficiently assign various precedence

constrained tasks in the workflow to different available

grid resources. We model the task workflow as a directed

acyclic graph (DAG): Let G = (V, E) be a DAG, with V

as the set of vertices representing n different tasks ti (1 ≤ i

≤ n) and E is the set of edges (ti, tj) representing

precedence constraint among these pair of tasks i.e. task ti

is immediate parent to task tj and task tj is immediate

child to task ti. The edge weight eij between task ti and tj

denotes data communication between them. In workflow

structure child task cannot execute until all its parent

tasks have finished their execution. A task without any

predecessor is called an entry task and a task without any

successor is called an exit task.

To compute a schedule, scheduling algorithm requires:

 List of resources available with the grid. Let a set

R represents the m number of resources available

in the grid where each resource rj  R, (1 ≤ j ≤ m).

Resources have varying processing capability

delivered at different prices. So, a Cost vector

requires in which costj specifies cost of using the

resource rj per unit of time.

 Expected time to compute (ETC) matrix, in which

entry ETCij gives estimated execution time to

complete task ti on resource rj. Task execution

time information can be found from the

specifications provided by the user or from the

literature [22, 23]

 Bandwidth linkage between any two resources. A

m × m Data Transfer Time matrix is taken

representing the data transfer time (for a data unit)
between two resources i.e. each entry Bs,t is used

to store the time required to transfer a data unit

from resource rs to rt .

It is necessary to define some attributes before

discussing the objective functions. Let, a task ti is to be

scheduled on resource rj and the attributes ST(ti) and FT(ti)

represent the starting time and finish time of a task t i on

resource rj respectively. These are formally defined as

follows:

max { () }
,()

ST(t) FT t CT
i p p it pred t

p i

 


 (1)

() () i i ijFT t ST t ETC  (2)

where pred(ti) is the set of immediate predecessor tasks of

task ti and CTp,i is the total communication time required

to transfer data units from task tp (scheduled on resource

rs) to task ti (scheduled on resource rj), which is calculated

as follows:

, , p i ij s jCT e B  (3)

For the entry task tentry, the ST is defined by:

() 0entryST t  (4)

20 Enhancing the Discrete Particle Swarm Optimization based

Workflow Grid Scheduling using Hierarchical Structure

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 18-26

For the other tasks in the task graph, the starting time

and finish time are computed recursively, starting from

the entry task, as shown in (1) and (2), respectively.

Instance of the problem is defined by assuming that:

 Every task ti has to be processed on resource rj

until completion

 One resource can execute one task at a time.

 Task execution can start only after the availability

of complete data from all its parent tasks after

ensuring task dependency and data transfer starts

after finishing the execution of the task.

The problem of task scheduling in computational grid

is to assign the tasks of an application to suitable resource
after ordering their execution so that task precedence

constraint is satisfied. Here, each scheduling solution is

represented as task assignment string which maps every

task ti onto a suitable resource rj to achieve the desired

objectives after fulfilling the dependency constraint.

Direct encoding method is used to represent task

assignment string. In direct encoding each schedule is

defined as a schedule vector S =[s1, s2,…sno_task], where

every si represents the resource number over which

respective task is assigned, i.e. si[1, no_resources] and
i=1,2,...,no_tasks.

In this paper, we consider the scheduling in grid as the

bi-objective optimization problem with simultaneous

minimization of makespan and total cost. The makespan
is defined as the finishing time of the exit task (or the last

task) of the task graph and total cost represents the

economic cost that an application task graph needs to pay

for resource utilization. Thus the two objectives can be

defined as:

 () ()exitMinimize Time S FT t (5)

, () i jMinimize Cost S C 

 (6)

Subject to () () Cost S B and Time S D 

Where FT(texit) is the finish time of exit task of a task

graph and B is the cost constraint (Budget) and D is the
time constraint (Deadline) required by users for workflow

execution. And Ci,j is cost of executing every task ti on

resource rj.

IV. OVERVIEW OF SOME PARTICLE SWARM OPTIMIZATION

STRATEGIES

A number of PSO strategies are used for grid

scheduling problems in literature. Here, overview of these

strategies and their significant developments are

presented to serve as performance measure for

hierarchical Discrete PSO used in this paper.

A. Canonical PSO

It is population based heuristic introduced by Kenedy

and Eberhart [14] inspired by the bird flocking behavior.

It maintains the swarm of particles, where each particle

represents a potential solution. These particles are flown

through the multi dimensional search space, where

position of each particle is adjusted according to its own

experience and that of its neighbor. Let Xi denote the

position of i
th

 particle in d-dimensional search space

represented as Xi={xi1,xi2,….,xid}. The particle position is

updated by velocity represented as Vi={vi1,vi2,….,vid}.

Based on evaluation function, the particle best position

Pbesti={pbesti1,pbesti2,….,pbestid} and swarm best

position Gbesti= {gbesti1,gbesti2,….,gbestid} is
determined. For next iteration (t+1), particle updates its

position based on individual experience (Pbesti) and

swarm intelligence (Gbest i) by using (7) and (8).

(1) () () () () ()
 . (,) (-) (-) 11 2 2

t t t t t t
V V i j c r Pbest X c r Gbest X

id id id id id id



  

 (7)

(1) (1)t t
idid idX X V

 
  (8)

where c1 and c2 are the cognitive and interaction

coefficients. The higher value of c1 ensures large

deviation of particle in search space while higher value of

c2 specifies the convergence towards its global best. To

have the compromise between exploration and

exploitation, time varying acceleration coefficients
(TVAC) have been introduced by [16]. It is proposed that

c1 decreases linearly over time, while c2 increases

linearly. The values of c1 and c2 at iteration t is evaluated

as

1 1f 1i 1i

t
= (c - c) + c

(max_t)
c

 (9)

2 2f 2i 2i
t

c = (c - c) + c
(max_t)

 (10)

Where c1f, c2f are final values and c1i, c2i are initial values

of coefficients respectively. The random numbers r1 and

r2 are generated independently in range [0, 1].

The parameter ω (inertia weight) controls the

momentum of particles by weighing the contribution of

previous velocity. The value of ω is important to ensure

convergent behavior, and to optimize the tradeoff

between exploration and exploitation. Time varying

inertia weight (TVIW) was introduced in [24]. The higher

value of ω helps in global exploration, so it is desired at
the initial stages while lower values help in local search

and is needed in the later stages. So the inertial weighing

function is utilized as

(max_ -)

 (-) max min min(max_)

t t

t
     (11)

B. Binary PSO

Kennedy and Eberhart [25] introduced the first

discrete version of PSO to operate on binary search space.

For binary PSO, particles represent position in binary

space. Each element of particle’s position vector can take

binary value of 0 or 1. Changes in the particle’s position

 Enhancing the Discrete Particle Swarm Optimization based 21

Workflow Grid Scheduling using Hierarchical Structure

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 18-26

imply a mutation of bits, by flipping a bit from one value

to another. Here velocities are defined in terms of

probabilities that a bit will be in one state or the other.

For updating of velocity (12) is used.

A more natural normalization of velocity is done by

using sigmoid function. That is,

(1)
(=

t
ij (t+1)

ij

1
sig V

1+exp(-V)

 (12)

And update of position changes to

(1)
1, ()(1)

0,

t
if sig V rt ijijXij
otherwise

  
  

   (13)

C. Discrete PSO

Another version of discrete particle swarm

optimization was introduced by Izakian et al. [2] for grid

scheduling problem, where swarm of particles represents

the allocation of tasks over available resources. Here,

solutions or task assignment strings are formulated as

m×n matrix, called position matrix where m is the
number of available resources and n is the number of

tasks. Let Xk is the position matrix of k
th

 particle then

(,) {0,1}(,), {1,2,.. }, {1,2,.. }kX i j i j i m j n    (14)

where Xk (i, j) = 1 means that j
th
 task is performed by i

th

resource. Hence, in each column of the matrix only single

element is 1 and others are 0.

Velocity of each particle is also an m×n matrix whose

elements are in range [-Vmax, Vmax]. If Vk is the velocity

matrix of k
th

 particle, then:

(,) [- ,], (,), {1,2,... }, {1,2,..., } max maxV i j V V i j i m j nk    
 (15)

Also, Pbest and Gbest are m×n matrices and their

elements assume value 0 or 1 as in the case of position
matrices. For particle updating, we are first updating

velocity matrix according to (16) and then finally position

matrix is updated using (17).

(1) () () ()
(,) . (,) ((,) - (,)) 11

() ()
 ((,) - (,)) 2 2

t t t t
V i j V i j c r Pbest i j X i j

k k k k

t t
c r Gbest i j X i j

k k




  

(16)

  (1) (1)
1, (,) max (,) 1,2,...(1)

(,)

0,

t t
if V i j V i j i mt k kX i j

k
otherwise

  
   

  
 
 

 (17)

In (17) for each column of position matrix, value 1 is

assigned to the element whose corresponding element has

maximum value in velocity matrix in the respective

column.

D. Hierarchical PSO (H-PSO)

In this novel PSO strategy introduced by Janson and

Middendorf [3], particles are arranged in hierarchy (tree)

to define the neighborhood structure. In hierarchical

particle swarm optimization (H-PSO), root node

represents the best particle and leaf node represents the

worst. Internal nodes are arranged such that particle at
parent position have better fitness value than particles at

the child nodes. The hierarchy is defined by the height (h),

out degree (d) and total number of nodes (n) in the tree.

Based on this structure, each particle is neighbored to

itself and its parent. In each iteration, fitness of all

particles is evaluated first. Then position of every particle

within the hierarchy is updated by comparing its own best

solution Pbestk to the best solution found by the particles

in the child nodes. If best solution of child node Pbestj is

better i.e. (Pbestk < Pbestj), then particles k and j swap

their places in the hierarchy. These comparisons start

from top and proceed in breadth-first traversal. Because
of breadth-first traversal, in each iteration particle can

move down several levels, but it can move up maximally

by one level in the hierarchy. For velocity updating,

particle is influenced with its so far best position

(Cognitive component) and by the best position of its

parent directly above in the hierarchy (Neighborhood best

social component). This means that for particle k the

value of Gbestk equals Pbesti when i is the particle at

parent position of particle k. Only the child particles of

root node will use the global best position in their

velocity update (after at most h iterations). This behavior

of moving towards better particles at parent positions
facilitates better exploration, diversity of solution and not

being trapped in local optima.

V. WORKFLOW GRID SCHEDULING USING HIERARCHAL

DISCRETE PARTICLE SWARM OPTIMIZATION (H-DPSO)

The paper presents the efficient grid scheduler for

dependent task (Workflow) in order to minimize the two

objectives of makespan and total cost simultaneously

under deadline and budget constraints by using H-DPSO.

Hierarchal PSO is very suitable for discontinuous

problems like grid scheduling as it avoids premature

convergence and changing arrangement of particles in the

hierarchy helps in preserving divergence in the search. In

order to control the global and local exploration ability,

high value of branching degree is used in the beginning

as it lead to faster optimization towards the global best

and smaller branching degree afterwards which lead to

better local exploration at the end. To effectively map the

grid scheduling solution to PSO particle, we used

mapping of discrete PSO [2]. The implementation steps

are as follows:

22 Enhancing the Discrete Particle Swarm Optimization based

Workflow Grid Scheduling using Hierarchical Structure

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 18-26

1) Let N is the size of swarm. Randomly initialize the

particles position matrix
 (0)

k
X 1,2,...Nk 

 .

Here every particle
(0)
k

X
as shown in (14)

represents the task assignment string(S) after

fulfilling the dependency constraints.

2) Initialize all particle velocity matrix (
(0)
k

V
)

randomly within range [-Vmax to Vmax] and

personal best of every particle is initialized to

itself i.e.
(0) (0)
k k

Pbest X
.

3) The fitness function is used to measure the quality

of solution according the optimization objectives

considered. A solution having good fitness value

has more chance to be passed to next generation.

Here, two objective functions for solution S (an

individual) are defined as:

Makespan objective function:

 () () / f S Time S Dmakespan 
 (18)

Total cost objective function:

 () () / cosf S Cost S Bt  (19)

Time(S) (Makespan) and Cost(S) (Total cost) for

the scheduling solution S respectively are calculated

from (5) and (6) respectively. To handle the deadline

and budget constraints the penalty value is added to

the respective objective function if they violate the

constraint, otherwise not.

Minimizing fmakespan results in increase of fcost and

vice versa. The weighted aggregation is most common

approach to such problems. So, the fitness value of

each individual (solution S) can be estimated as:

 () (1-) () [0, 1]cosF f S f S wheremakespan t    

 (20)

For a solution, smaller value of fitness F represents

that it is a better solution.

4) Arrange all the particles in the tree with branching

degree (d). Evaluate the individuals according to

the fitness function values. To determine the new

position of the particle, compare particle’s own

best solution value
(0)
k

Pbest
 to the best solution

value found by the particles in the child nodes. If

best solution of child node is better than parent

node, then two particles are exchanged. These

comparisons start from top and proceed in

breadth-first traversal.

5) For every kth particle global best i.e.
(0)
k

Gbest
is

chosen to be the jth particle personal best

(0)
j

Pbest
where j is the particle at the parent node

of kth particle.

6) While maximum number of iterations (max_t) has

not been reached Do

a) Update velocity matrix
(t)
k

V (i,j)
according to (16)

and the new position of particle
(t)
k

X
is obtained by

(17).
b) The objective function value is evaluated again

at the new position. If the objective function value

at new position is better than previous best

position then new position is stored as
(t)
k

Pbest .
Now the particle is moved in hierarchal tree as in

step 4 starting from top and
(t)
k

Gbest is updated

accordingly as mentioned in step 5.

c) Increment the loop counter.

VI. SIMULATION RESULTS AND DISCUSSION

We used GridSim [26] toolkit in our experiment to

simulate the scheduling of workflow tasks. GridSim is a

java based toolkit for modeling and simulation of

resource and application scheduling in large-scale parallel

and distributed computing environment such as Grid. It is

flexible to support simulation of grid entities like

resources, users, application tasks, resource brokers or

schedulers and their behavior using discrete events.

A. Simulation Model

To simulate precedence constraint tasks in workflows,

we used the different workflow models represented by

random task graph and task graph corresponding to real

world problems such as Gaussian elimination (GE) and

Fast Fourier Transforms (FFT). We also varied the size of

task graph by taking the different number of tasks. The

resources were 8 computing entities with various price

levels are modeled to simulate heterogeneous

environment of grid. Links between resources are

established through a router so that direct communication

can take place between resources. Computational rating

(Million instructions per second) and computational cost

(in dollars) of each resource is generated randomly where

cost is inversely proportional to computational rating.

In order to generate valid schedule which can meet

both deadline and budget constraints specified by the user,

two algorithms HEFT [5] and Greedy Cost were used to

make the soft constraints of deadline and budget

effectively. HEFT is a time optimization scheduling

algorithm in which workflow tasks are scheduled on

 Enhancing the Discrete Particle Swarm Optimization based 23

Workflow Grid Scheduling using Hierarchical Structure

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 18-26

minimum execution time heterogeneous resources

irrespective of utility cost of resources. So HEFT gives

minimum makespan (Timemin) and maximum total cost

(Costmax) of the workflow schedule. Greedy Cost is a cost

optimization scheduling algorithm in which workflow

tasks are scheduled on cheapest heterogeneous resources

irrespective of the task execution time. Thus Greedy Cost

gives maximum makespan (Timemax) and minimum total

cost (Costmin) of the workflow schedule Thus Deadline (D)

and Budget (B) are specified as:

 - 0.1(-) max max minD Time Time Time (21)

The parameter values for H-DPSO and DPSO was

taken as follows.

 It is common in PSO for discrete problems [1, 2]

to limit the population size between [20, 40].

Thus, in this paper the population size was set to

21.

 Based on parameter sensitivity analysis, we set

c1=2.5→0.5 and c2=0.5→2.5.

 Inertia weight (ω) = 0.9→0.1

 λ=0.5 (to give equal importance to makespan

and total cost).

 We have run each algorithm for 20* m*n

iterations. (Where m is number of machines and

n is number of tasks)

To define the hierarchy in H-DPSO, we have taken

branching degree (d) =4 and height (h) =3 initially for

swarm size of 21. After 40% of iterations we have

reduced the branching degree d equals to 3 and h=4.

Finally after 70% of iterations, we have reduced d=2 and

h=5. We have done so, because high value of branching

degree at the start performs better as all the particles are
close to top particle in the hierarchy. Which result in

better exploration in the beginning, but as branching

degree is reduced it leads to better exploitation at the end.

To decrease the branching degree of the tree

corresponding to swarm of particles, we removed the sub-

tree with best fitness value. The removed nodes are then

evenly appended to the bottom of hierarchy.

B. Test Suit1

In this test suit, we used the workflow model

represented by randomly generated task graph (Random).

The size of random task graph was varied by considering

the different number of nodes as 10, 20, 40, 60, 80 and

100. The computation cost of each task is selected

randomly by the normal distribution with the mean equal

to the twice of specified average computation cost of the

graph. The cost of each edge was selected randomly from

the normal distribution with mean equal to the product of

average computation cost and the communication to

computation ratio (CCR). Here CCR is taken as 0.5 to

represent the computation intensive application.

The results obtained with H-DPSO and DPSO

algorithms corresponding to the first test suit chosen at

different size random graph structure are shown in Table

I. The makespan, total cost and their fitness values are

shown averaged over 10 trials. Table I. clearly specifies

that H-DPSO based grid scheduler performs better than

DPSO. In H-DPSO, changing arrangement of particles

help preserving diversity in search, results in better

exploration which ultimately leads to better optimization.

Fig. 1 Shows the performance (fitness values) of each

method during the search process for the case of random

task graph at number of nodes=40. Similar results have

been produced for random task graph at different number

of nodes considered (Not shown due to similarity). At the

start of search process, degree of branching is high so it

optimizes faster. As the degree of branching is reducing,

algorithm maintains the ability to search wider areas

around the better solutions (at parent positions) which

improves further the objective function value in the

optimization process.

Figure 1: Illustrates the performance of H-DPSO and DPSO

algorithms during the search process (Random Task Graph at

n=40)

C. Test Suit 2

In this test suit, we generated task graphs

corresponding to real life problems such as Gaussian

Elimination (GE) and Fast Fourier Transform (FFT). The

structure of these task graphs is fixed. In Gaussian

Elimination algorithm [27] a parameter matrix size (m) is

considered and number of tasks is defined on the basis of

m as (m
2
+m-2)/2. We have taken m as 4, 6, 8, 10, 12, and

14, thus number of tasks considered for GE task graph is

9, 20, 35, 54, 77, 104 respectively. In FFT task graph,

corresponding to input vector size m, there are 2*m-1

recursive call tasks and 2m log m butterfly operation

tasks (where m is 2
k

for any integer k). Thus number of

tasks considered for FFT is 15, 39, and 95 respectively.

Table II-III shows the results obtained for each algorithm

at different graph structures corresponding to GE and

FFT. It can be observed that H-DPSO based grid

scheduler outperforms the DPSO. Fig. 2-3 Shows the

performance progress (fitness values) of each method

during the search process for the case of GE at number of
nodes=35 and FFT at number of nodes=39 respectively.

 - 0.1(-)max max minB Cost Cost Cost
 (22)

24 Enhancing the Discrete Particle Swarm Optimization based

Workflow Grid Scheduling using Hierarchical Structure

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 18-26

It is clear that H-DPSO optimizes faster at the start of

search progress and further speed increases after the

reduction of branching degree of hierarchal tree structure.

Figure 2: Illustrates the performance of H-DPSO and DPSO

algorithms during the search process (GE Task Graph at n=35)

Figure 3 Illustrates the performance of H-DPSO and DPSO

algorithms during the search process (FFT Task Graph at n=39)

TABLE I. RESULTS OBTAINED BY GRID SCHEDULER BASED ON H-DPSO AND DPSO FOR RANDOM TASK GRAPH

Tasks H-DPSO DPSO

Makespan Total Cost Fitness Value Makespan Total Cost Fitness Value

10 228 546.06 0.5176884 235 564.50 0.5267853

20 356.0 1201.10 0.5072802 469.0 1236.0 0.5376753

40 612.5 2185.70 0.5034564 695.5 2292.50 0.5387854

60 735 4125.60 0.5146758 745.5 4165.40 0.5302341

80 680 4243.09 0.5063554 698.5 4323.20 0.5352855

100 756 5897.43 0.5067867 767 6123.04 0.5365489

TABLE II. RESULTS OBTAINED BY GRID SCHEDULER BASED ON H-DPSO AND DPSO FOR GAUSSIAN ELIMINATION TASK GRAPH

Tasks H-DPSO DPSO

Makespan Total Cost Fitness Value Makespan Total Cost Fitness Value

09 200.0

536.6 0.5126238 202.0 545.4 0.5218458

20 344.0 1208.10 0.5072802 469.0 1224.0 0.5308406

35 605.5 2164.70 0.5045184 683.5 2278.60 0.533731

54 710 3956.60 0.5140406 714.5 4002.40 0.5412110

77 659 4196.09 0.5086454 670.5 4370.6 0.5352855

104 745 5768.40 0.5074564 756 5990.3 0.5383455

TABLE III. RESULTS OBTAINED BY GRID SCHEDULER BASED ON H-DPSO AND DPSO FOR FAST FOURIER TASK GRAPH

Tasks H-DPSO DPSO

Makespan Total Cost Fitness Value Makespan Total Cost Fitness Value

15 263.0 964.80 0.5116733 290.0 971.89 0.5210113

39 514.0 2081.80 0.5068972 541.0 2158.7 0.52497711

95 691.0 5351.39 0.5055008 702.0 5449.09 0.5259126

 Enhancing the Discrete Particle Swarm Optimization based 25

Workflow Grid Scheduling using Hierarchical Structure

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 18-26

VII. CONCLUSION

Task scheduling decision i.e allocating tasks to

resources is crucial in grid computing. The work is

motivated by the successful implementation of PSO

based scheduler in literature. In this study, we have

presented the implementation of hierarchical discrete

particle swarm optimization (H-DPSO) based scheduler

for workflow (dependent task) applications in grid

environment. We considered the two conflicting

objectives of minimization of execution time (makespan)

and total cost simultaneously. The H-DPSO based grid

scheduling is evaluated using randomly generated task

graphs and task graphs corresponding to real world

problems like Gaussian Elimination and Fast Fourier

Transforms and compared with discrete particle swarm

optimization (DPSO) based grid scheduling. The

simulation results, exhibit that H-DPSO performs better

for workflow grid task scheduling in comparison to

DPSO.

REFERENCES

[1] Ullman J: NP-complete Scheduling Problems,

Journal of Computer and System Sciences. 1975,

vol.10, pp. 384-393.

[2] Izakian H, Ladani BT, Zamanifar K, Abraham A: A

novel particle swarm optimization approach for grid

job scheduling, in Proceedings of the Third

International Conference on information Systems,

Technology and Management, Springer: Heidelberg,

Germany, 2009, pp. 100-110.
[3] Janson S and Middendorf M: A Hierarchical Particle

Swarm Optimizer and Its Adaptive Variant, IEEE

Transactions on Systems, Man, Cybernatics. Vol.35

(6), 2005, pp.1272-1282.

[4] Braun T D, Siegal H J, Beck N: A comparison of

Eleven Static Heuristics for Mapping a Class of

independent Tasks onto Heterogeneous Distributed

Computing Systems, Journal of Parallel and

Distributed Computing, Vol. 61, 2001, pp. 810-837.

[5] Haluk T, Hariri S, Wu MY: Performance-Effective

and Low-Complexity Task Scheduling for

Heterogeneous Computing, IEEE Transactions on
Parallel and Distributed Systems, Vol. 13, 2002, pp.

260-274.

[6] Bajaj R and Agrawal D P: Improving Scheduling of

Tasks in a Heterogeneous Environment, IEEE

Transactions on Parallel and Distributed Systems,

Vol. 15, 2004, pp. 107-118.

[7] Geras A: A Comparison of Clustering Heuristics for

Scheduling Directed Acyclic Graphs on

Multiprocessors, In J. of Parallel and Distributed

Computing, Vol. 16, No.4, 1992, pp. 276-291.

[8] Subrata R, Zomaya Y A, Landfeldt B: Artificial life

techniques for load balancing in computational grids,

Journal of Computer and System Sciences, Vol. 73,

2007, pp. 1176-1190.

[9] Yu J and Buyya R: Scheduling Scientific Workflow

Applications with Deadline and Budget constraints

using Genetic Algorithms, Scientific Programming

Journal, Vol. 14(1), 2006, pp. 217-230.

[10] Attiya G, Hamam Y: Task allocation for maximizing

reliability of distributed systems: A simulated

annealing approach, Journal of Parallel and
Distributed Computing, Vol. 66, 2006, pp.1259 –

1266.

[11] Chen WH, Lin CS: A hybrid heuristic to solve a task

allocation problem, Computers & Operations

Research, Vol. 27, 2000, pp. 287-303.

[12] Ritchie G, Levine J: A fast, effective local search for

scheduling independent jobs in heterogeneous

computing environments, Technical report, Centre

for Intelligent Systems and their Applications,

School of Informatics, University of Edinburgh,

2003.

[13] Grosan C, Abraham A, and Helvik B: Multi-
objective Evolutionary Algorithms for Scheduling

Jobs on Computational Grids, IADIS International

Conference, Applied Computing 2007, Salamanca,

Spain, Nuno Guimares and Pedro Isaias (Eds.), ISBN

978-972-8924-30-0, 2007, pp. 459-463.

[14] Izakian H, Ladani B T, Zamanifar K, Abraham A: A

novel particle swarm optimization approach for grid

job scheduling, in Proceedings of the Third

International Conference on information Systems,

Technology and Management, Springer: Heidelberg,

Germany,2009, pp. 100-110.

[15] Xhafa F, Abraham A: Metaheuristics for Scheduling
in Distributed Computing Environments. ISBN: 978-

3-540-69260-7, 2008.

[16] Ratnaweera A, Halgamuge SK and Watson H C:

Self-organizing hierarchical particle swarm optimizer

with time-varying acceleration coefficients, IEEE

Trans. Evol. Comput., Vol. 8, no. 3,2004, pp. 240-

255.

[17] Chen CC: Hierarchical Particle Swarm Optimization

for Optimization Problems, Tamkang Journal of

Science and Engineering, Vol. 12 (3), 2009, pp. 289-

298.

[18] Abraham A, Liu H and Zhao M: Particle swarm
scheduling for workflow applications in distributed

computing environments, Metaheuristics for

Scheduling: Industrial and Manufacturing

Applications, Studies in Computational Intelligence,

Springer Verlag, Germany, 2008, pp. 327-342.

[19] Abraham A, Liu H, Zhang W, Chang TG:

Scheduling Jobs on Computational Grids Using

Fuzzy Particle Swarm Algorithm, Springer Verlag

Berlin Heidelberg, 2006, pp. 500-507.

[20] Chen RM: Application of Discrete Particle Swarm

Optimization for Grid Task Scheduling Problem,

Advances in grid computing, 2011, DOI:
10.5772/13950.

[21] Chaturvedi K T, Pandit M and Srivastava L: Self-

Organizing Hierarchical Particle Swarm

26 Enhancing the Discrete Particle Swarm Optimization based

Workflow Grid Scheduling using Hierarchical Structure

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 6, 18-26

Optimization for Nonconvex Economic Dispatch,

IEEE Transactions on Power Systems, Vol. 23(3)

2008, pp. 1079-1087.

[22] Jang SH, Wu X, Taylor V, Mehta G, Vahi K and

Deelman E: Using performance prediction to allocate

grid resources. GriPhyN Technical report 2004-25,

2004.

[23] Jarvis SA, Spooner DP, Keung HNLC, Cao J, Saini

S, Nudd GR: Performance prediction and its use in
parallel and distributed computing systems, Future

Generation Computer System Vol. 22(7), 2006, pp.

745-754.

[24] Shi Y and Eberhart RC: Empirical study of particle

swarm optimization, in Proc. IEEE Int. Congr.

Evolutionary Computation, Vol. 3, 1999, pp. 101-

106.

[25] Kennedy J, Eberhart RC: A discrete binary version

of the particle swarm algorithm, IEEE international

conference on Systems, Man, and Cybernetics, 1997,

pp. 4104 - 4108.

[26] Buyya R, Murshed M: GridSim: A Toolkit for
Modeling and Simulation of Grid Resource

Management and Scheduling",

http://www.buyya.com/gridsim, Vol. 14, 2002, pp.

1175-1220.

[27] Wu M, Gajski D: Hypertool: A programming aid for

message passing system, IEEE Transactions on

Parallel and Distributed Systems, Vol. 1, 1990, pp.

330-343.

Ritu Garg received B.Tech degree in Computer Science

from Punjab Technical University, Jalandhar, India in
2001. She received M.Tech in the area of Computer

Science from Kurukshetra University, Kurukshetra in

2006. Currently, she is pursuing Ph.D in the area of

Resource Management in Grid Computing from National

Institute of Technology, Kurukshetra, India. Her research

interests include Grid Computing, Scheduling and Fault

Tolerance.

Prof. Dr. Awadhesh Kumar Singh received B. E.

degree in Computer Science & Engineering from

Gorakhpur University, Gorakhpur, India in 1988. He

received M.E. and Ph.D (Engg) in the same area from
Jadavpur University, Kolkata, India. Currently, he is

Associate Professor in the Department of Computer

Engineering, National Institute of Technology,

Kurukshetra, India. His present research interest is mobile

distributed computing systems.

