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Abstract — The problem of scheduling dependent tasks 

(DAG) is an important version of scheduling, to 

efficiently exploit the computational capabilities of grid 

systems. The problem of scheduling tasks of a graph onto 
a set of different machines is an NP Complete problem. 

As a result, a number of heuristic and meta-heuristic 

approaches are used over the years due to their ability of 

providing high quality solutions with reasonable 

computation time.  Discrete Particle Swarm Optimization 

is one such meta-heuristic used for solving the discrete 

problem of grid scheduling, but this method converge to 

sub optimal solutions due to premature convergence. To 

deal with premature convergence, in this paper we 

proposed the design and implementation of hierarchical 

discrete particle swarm optimization (H-DPSO) for 

dependent task scheduling in grid environment. In H-
DPSO particles are arranged in dynamic hierarchy where 

good particles lying above in hierarchy are having larger 

influence on the swarm. We consider the bi-objective 

version of problem to minimize makespan and total cost 

simultaneously as the optimization criteria. The H-DPSO 

based scheduler was evaluated under different application 

task graphs. Simulation analysis manifests that H-DPSO 

based scheduling is highly viable and effective approach 

for grid computing.  

 
Index Terms — Task Scheduling, Grid Computing, DAG, 

Particle Swarm Optimization 

 

I.  INTRODUCTION 

Grid computing have emerged as a popular way of 

providing high performance computing for solving large 

scale problems (e.g. physics, astronomy, biology, 

earthquake science etc) with reasonable time, by using 

large number of heterogeneous resources available 

dynamically.  Matching and scheduling of jobs or 

workflows in heterogeneous computing environment is 

crucial for coordinating the resources and problem 

solving. Design and implementation of efficient scheduler 

in grid computing is still a challenging problem.  

Scheduling in grid computing is the problem considering 

the different aspects like the environment (static or 

dynamic), type of objectives (resource centric or 

application centric), number of objectives (single or 

multi-objective),  job dependencies ( independent or 

dependent) etc. In this paper, we consider the scheduling 

problem in which 1) expected execution time for each 

task on each resource is known prior to execution 2) 

performance of individual application is optimized by 

considering 3) two conflicting objectives of makespan 

and economic cost simultaneously 4) tasks are dependent 

having precedence order (workflow) among them 

represented by directed acyclic graph (DAG) model.  
Grid scheduling problem is well known NP-complete 

problem [1], so numerous heuristic and meta-heuristic 

search techniques like genetic algorithm (GA), 

evolutionary algorithm (EA), simulated annealing (SA), 

ant colony optimization (ACO), and particle swarm 

optimization (PSO) are used to solve the problem. 

Concept of discrete particle swarm optimization [2] is 
used to effectively map job scheduling solution to PSO 

particle. Hierarchical particle swarm optimization (HPSO) 

is another such meta-heuristic proposed by Janson and 

Middendorf [3] as a variant of PSO. It has increased 

diversity of population and better convergence. Hence, in 

this paper, we implemented the efficient grid scheduler 

for dependent task grid (workflow) based on hierarchical 

discrete particle swarm optimization strategy.  Resulting 

hierarchical discrete particle swarm optimization (H-

DPSO) based grid scheduler enables concurrent search in 

optimization domain and provides solutions with better 

convergence. H-DPSO based grid scheduler is evaluated 
via different sizes application task graphs. 

Rest of the paper is organized as follows. Section 2, 

includes the related work. In section 3, we specified the 

problem definition. In section 4, we briefly introduced the 

particle swarm optimization approach and its variants 

available in literature. Section 5, describes the 

formulation of hierarchical discrete particle swarm 

optimization for multi-objective workflow grid 

scheduling. Section 6, discusses the simulation analysis 

and finally, section 7 gives the conclusion. 

 

II.  RELATED WORKS 
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The problem of grid scheduling, for DAG based 

(dependent task) task graph, has already been addressed 

in literature. Large number of heuristics is proposed 

which are commonly categorized as:  

 List scheduling algorithms in which tasks are 

assigned the priorities and placed in ordered list [4, 

5]. 

 Duplication based algorithms reduces the 

makespan by utilizing the idle time of resources 
for duplicating some of predecessor tasks [6]. 

 Clustering algorithm reduces the communication 

delay by grouping heavily communicating tasks to 

the same cluster and assigning them to same 

resource. [7] 

 Meta-heuristics inspired by natural phenomena 

include genetic algorithm [8, 9], simulated 

annealing [10], tabu search [11], ant colony 

optimization [12], Particle swarm optimization [13] 

are also used to address the challenges of the 

problem.  

Particle swarm optimization introduced by Kennedy 
and Eberhart [14] simulates the swarm of birds. Its ability 

for global searching has made PSO highly suitable for 

optimization. It also has fewer algorithm parameters than 

GA and SA. In [15] quality of different solutions found 

by ACO, PSO, SA and genetic algorithms were compared. 

The results show that PSO is highly efficient and 

effective in task scheduling problem.  Recent analysis by 

[16, 17] observed that classical PSO prematurely 

converge to local optimum.  [18] Used the PSO for 

scheduling workflow applications in distributed 

environment. [19] used a fuzzy particle swarm 

optimization and Izakian et al. [2] used discrete version 
of particle swarm optimization for grid scheduling. 

Another method for improving the quality of solution is 

hybridization with local search techniques. Discrete 

particle swarm optimization hybridized with SA was 

proposed in [20] by enhancing the local exploration 

ability of PSO to effectively solve the task assignment 

problem.  

In this work, we proposed the design and 

implementation of efficient grid scheduler based on 

hierarchical discrete particle swarm optimization. By 

using the hierarchical structure particles are arranged in 

dynamic hierarchy where good particles lying above in 
hierarchy are having larger influence on the swarm. The 

changing arrangement of individuals helps preserving 

diversity, avoid premature convergence in the early 

iterations and promote convergence towards global 

optimum. Hierarchical particle swarm optimization 

introduced in [3] has been successfully applied in solving 

continuous optimization functions. It was also used as an 

efficient method for economic load dispatch problem [21].  

 

III. PROBLEM STATEMENT 

The purpose of dependent task (workflow) Grid 

scheduling is to efficiently assign various precedence 

constrained tasks in the workflow to different available 

grid resources.  We model the task workflow as a directed 

acyclic graph (DAG): Let G = (V, E) be a DAG, with V 

as the set of vertices representing n different tasks ti (1 ≤ i 

≤ n) and E is the set of edges (ti, tj) representing 

precedence constraint among these pair of tasks i.e. task ti 

is immediate parent to task tj and task tj is immediate 

child to task ti.   The edge weight eij between task ti and tj 

denotes data communication between them. In workflow 

structure child task cannot execute until all its parent 

tasks have finished their execution. A task without any 

predecessor is called an entry task and a task without any 

successor is called an exit task. 

To compute a schedule, scheduling algorithm requires: 

 List of resources available with the grid. Let a set 

R represents the m number of resources available 

in the grid where each resource rj  R, (1 ≤ j ≤ m). 

Resources have varying processing capability 

delivered at different prices. So, a Cost vector 

requires in which costj specifies cost of using the 

resource rj per unit of time.  

 Expected time to compute (ETC) matrix, in which 

entry ETCij gives estimated execution time to 

complete task ti on resource rj. Task execution 

time information can be found from the 

specifications provided by the user or from the 

literature [22, 23] 

 Bandwidth linkage between any two resources. A 

m × m Data Transfer Time matrix is taken 

representing the data transfer time (for a data unit) 
between two resources i.e. each entry Bs,t is used 

to store the time required to transfer a data unit 

from resource rs to rt . 

It is necessary to define some attributes before 

discussing the objective functions. Let, a task ti is to be 

scheduled on resource rj and the attributes ST(ti) and FT(ti) 

represent the starting time and finish time of a task t i on 

resource rj respectively. These are formally defined as 

follows: 

 

max { ( ) }
,( )

ST(t ) FT t CT
i p p it pred t

p i

 


                          (1)  

 

( )  ( )  i i ijFT t ST t ETC                                                                           (2) 

 

where pred(ti) is the set of immediate predecessor tasks of 

task ti and CTp,i is the total communication time required 

to transfer data units from task tp (scheduled on resource 

rs) to task ti (scheduled on resource rj), which is calculated 

as follows: 

 

, ,       p i ij s jCT e B                                                                               (3) 

 

For the entry task tentry, the ST is defined by: 

 

( )   0entryST t                                                                                                    (4) 
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For the other tasks in the task graph, the starting time 

and finish time are computed recursively, starting from 

the entry task, as shown in (1) and (2), respectively. 

Instance of the problem is defined by assuming that: 

 Every task ti has to be processed on resource rj 

until completion 

 One resource can execute one task at a time.  

 Task execution can start only after the availability 

of complete data from all its parent tasks after 

ensuring task dependency and data transfer starts 

after finishing the execution of the task. 

The problem of task scheduling in computational grid 

is to assign the tasks of an application to suitable resource 
after ordering their execution so that task precedence 

constraint is satisfied. Here, each scheduling solution is 

represented as task assignment string which maps every 

task ti onto a suitable resource rj to achieve the desired 

objectives after fulfilling the dependency constraint. 

Direct encoding method is used to represent task 

assignment string. In direct encoding each schedule is 

defined as a schedule vector S =[s1, s2,…sno_task], where 

every si represents the resource number over which 

respective task is assigned, i.e. si[1, no_resources] and 
i=1,2,...,no_tasks.  

In this paper, we consider the scheduling in grid as the 

bi-objective optimization problem with simultaneous 

minimization of makespan and total cost. The makespan 
is defined as the finishing time of the exit task (or the last 

task) of the task graph and total cost represents the 

economic cost that an application task graph needs to pay 

for resource utilization. Thus the two objectives can be 

defined as: 

 

 ( )  ( )exitMinimize Time S FT t    (5) 

, ( )    i jMinimize Cost S C 
                                 

 (6) 

Subject to ( )    ( )  Cost S B and Time S D 
 

 

Where FT(texit) is the finish time of exit task of a task 

graph and B is the cost constraint (Budget) and D is the 
time constraint (Deadline) required by users for workflow 

execution. And Ci,j is cost of executing every task ti on 

resource rj.  

 

IV. OVERVIEW OF SOME PARTICLE SWARM OPTIMIZATION 

STRATEGIES  

A number of PSO strategies are used for grid 

scheduling problems in literature. Here, overview of these 

strategies and their significant developments are 

presented to serve as performance measure for 

hierarchical Discrete PSO used in this paper.  

A. Canonical PSO  

It is population based heuristic introduced by Kenedy 

and Eberhart [14] inspired by the bird flocking behavior. 

It maintains the swarm of particles, where each particle 

represents a potential solution. These particles are flown 

through the multi dimensional search space, where 

position of each particle is adjusted according to its own 

experience and that of its neighbor. Let Xi denote the 

position of i
th

 particle in d-dimensional search space 

represented as Xi={xi1,xi2,….,xid}. The particle position is 

updated by velocity represented as Vi={vi1,vi2,….,vid}. 

Based on evaluation function, the particle best position 

Pbesti={pbesti1,pbesti2,….,pbestid} and swarm best 

position Gbesti= {gbesti1,gbesti2,….,gbestid} is 
determined. For next iteration (t+1), particle updates its 

position based on individual experience (Pbesti) and 

swarm intelligence (Gbest i) by using (7) and (8). 

 

( 1) ( ) ( ) ( ) ( ) ( )
  . ( , )  (  -  )   (  -  ) 11 2 2

t t t t t t
V V i j c r Pbest X c r Gbest X

id id id id id id



  

                                                                                                                                                  (7) 

( 1) ( 1)t t
idid idX X V

 
                                                                                       (8) 

 

where c1 and c2 are the cognitive and interaction 

coefficients. The higher value of c1 ensures large 

deviation of particle in search space while higher value of 

c2 specifies the convergence towards its global best. To 

have the compromise between exploration and 

exploitation, time varying acceleration coefficients 
(TVAC) have been introduced by [16]. It is proposed that 

c1 decreases linearly over time, while c2 increases 

linearly. The values of c1 and c2 at iteration t is evaluated 

as 

1 1f 1i 1i

t
= (c - c )   + c

(max_t)
c

                         (9) 

2 2f 2i 2i
t

c = (c  - c )  + c
(max_t)

                                            (10) 
 

Where c1f, c2f are final values and c1i, c2i are initial values 

of coefficients respectively. The random numbers r1 and 

r2 are generated independently in range [0, 1]. 

The parameter ω (inertia weight) controls the 

momentum of particles by weighing the contribution of 

previous velocity. The value of ω is important to ensure 

convergent behavior, and to optimize the tradeoff 

between exploration and exploitation. Time varying 

inertia weight (TVIW) was introduced in [24]. The higher 

value of ω helps in global exploration, so it is desired at 
the initial stages while lower values help in local search 

and is needed in the later stages. So the inertial weighing 

function is utilized as          

 
(max_ - )

 (  -  )   max min min(max_ )

t t

t
                           (11) 

 

B. Binary PSO 

Kennedy and Eberhart [25] introduced the first 

discrete version of PSO to operate on binary search space. 

For binary PSO, particles represent position in binary 

space. Each element of particle’s position vector can take 

binary value of 0 or 1. Changes in the particle’s position 
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imply a mutation of bits, by flipping a bit from one value 

to another. Here velocities are defined in terms of 

probabilities that a bit will be in one state or the other. 

For updating of velocity (12) is used. 

A more natural normalization of velocity is done by 

using sigmoid function. That is, 

 

( 1)
( = 

t
ij (t+1)

ij

1
sig V

1+exp(-V )

                              (12) 

 

And update of position changes to 

 

( 1)
1,   ( )( 1)

 

0,

t
if sig V rt ijijXij
otherwise

  
  

                           (13) 
 

C.  Discrete PSO 

Another version of discrete particle swarm 

optimization was introduced by Izakian et al. [2] for grid 

scheduling problem, where swarm of particles represents 

the allocation of tasks over available resources. Here, 

solutions or task assignment strings are formulated as 

m×n matrix, called position matrix where m is the 
number of available resources and n is the number of 

tasks. Let Xk is the position matrix of k
th

 particle then 

 

( , ) {0,1}( , ), {1,2,.. }, {1,2,.. }kX i j i j i m j n      (14) 

 

where Xk (i, j) = 1 means that j
th
 task is performed by i

th
 

resource. Hence, in each column of the matrix only single 

element is 1 and others are 0. 

Velocity of each particle is also an m×n matrix whose 

elements are in range [-Vmax, Vmax]. If Vk is the velocity 

matrix of k
th

 particle, then: 

 

( , ) [- ,  ],  ( ,  ),  {1,2,... },  {1,2,...,  } max maxV i j V V i j i m j nk    
 (15) 

 

Also, Pbest and Gbest are m×n matrices and their 

elements assume value 0 or 1 as in the case of position 
matrices. For particle updating, we are first updating 

velocity matrix according to (16) and then finally position 

matrix is updated using (17). 

 

( 1) ( ) ( ) ( )
( , )  . ( , )  ( ( , ) -  ( , )) 11

( ) ( )
  ( ( , ) -  ( , )) 2 2

t t t t
V i j V i j c r Pbest i j X i j

k k k k

t t
c r Gbest i j X i j

k k




  
                                                                              

(16)   

 

  ( 1) ( 1)
1,   ( , )  max ( , ) 1,2,...( 1)

( , )  

0,

t t
if V i j V i j i mt k kX i j

k
otherwise

  
   

  
 
 

  (17) 
 

In (17) for each column of position matrix, value 1 is 

assigned to the element whose corresponding element has 

maximum value in velocity matrix in the respective 

column. 

D. Hierarchical PSO (H-PSO)  

In this novel PSO strategy introduced by Janson and 

Middendorf [3], particles are arranged in hierarchy (tree) 

to define the neighborhood structure. In hierarchical 

particle swarm optimization (H-PSO), root node 

represents the best particle and leaf node represents the 

worst. Internal nodes are arranged such that particle at 
parent position have better fitness value than particles at 

the child nodes. The hierarchy is defined by the height (h), 

out degree (d) and total number of nodes (n) in the tree. 

Based on this structure, each particle is neighbored to 

itself and its parent.  In each iteration, fitness of all 

particles is evaluated first. Then position of every particle 

within the hierarchy is updated by comparing its own best 

solution Pbestk to the best solution found by the particles 

in the child nodes. If best solution of child node Pbestj is 

better i.e. (Pbestk < Pbestj ), then particles k and j swap 

their places in the hierarchy. These comparisons start 

from top and proceed in breadth-first traversal. Because 
of breadth-first traversal, in each iteration particle can 

move down several levels, but it can move up maximally 

by one level in the hierarchy. For velocity updating, 

particle is influenced with its so far best position 

(Cognitive component) and by the best position of its 

parent directly above in the hierarchy (Neighborhood best 

social component). This means that for particle k the 

value of Gbestk equals Pbesti when i is the particle at 

parent position of particle k. Only the child particles of 

root node will use the global best position in their 

velocity update (after at most h iterations). This behavior 

of moving towards better particles at parent positions 
facilitates better exploration, diversity of solution and not 

being trapped in local optima. 

 

V. WORKFLOW GRID SCHEDULING USING HIERARCHAL 

DISCRETE PARTICLE SWARM OPTIMIZATION (H-DPSO) 

The paper presents the efficient grid scheduler for 

dependent task (Workflow) in order to minimize the two 

objectives of makespan and total cost simultaneously 

under deadline and budget constraints by using H-DPSO. 

Hierarchal PSO is very suitable for discontinuous 

problems like grid scheduling as it avoids premature 

convergence and changing arrangement of particles in the 

hierarchy helps in preserving divergence in the search. In 

order to control the global and local exploration ability, 

high value of branching degree is used in the beginning 

as it lead to faster optimization  towards the global best 

and smaller branching degree afterwards which lead to 

better local exploration at the end. To effectively map the 

grid scheduling solution to PSO particle, we used 

mapping of discrete PSO [2]. The implementation steps 

are as follows: 
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1) Let N is the size of swarm. Randomly initialize the 

particles position matrix
 (0)

k
X 1,2,...Nk 

 . 

Here every  particle
(0)
k

X
as shown in (14) 

represents the task assignment string(S) after 

fulfilling the dependency constraints.  

2) Initialize all particle velocity matrix (
(0)
k

V
) 

randomly within range [-Vmax to Vmax] and 

personal best of every particle is initialized to 

itself i.e. 
(0) (0)
k k

Pbest X
. 

3) The fitness function is used to measure the quality 

of solution according the optimization objectives 

considered. A solution having good fitness value 

has more chance to be passed to next generation. 

Here, two objective functions for solution S (an 

individual) are defined as: 

Makespan objective function:   

 

 ( )  ( ) /   f S Time S Dmakespan 
                          (18) 

 

Total cost objective function:   

 

 ( )  ( ) /   cosf S Cost S Bt                  (19) 

 

Time(S) (Makespan) and Cost(S) (Total cost) for 

the scheduling solution S respectively are calculated 

from (5) and (6) respectively. To handle the deadline 

and budget constraints the penalty value is added to 

the respective objective function if they violate the 

constraint, otherwise not.  

Minimizing fmakespan results in increase of fcost and 

vice versa. The weighted aggregation is most common 

approach to such problems. So, the fitness value of 

each individual (solution S) can be estimated as: 

 

  ( )  (1- )  ( ) [0,  1]cosF f S f S wheremakespan t    

                                                                                                       (20) 

 

For a solution, smaller value of fitness F represents 

that it is a better solution. 

4) Arrange all the particles in the tree with  branching 

degree (d). Evaluate the individuals according to 

the fitness function values.  To determine the new 

position of the particle, compare particle’s own 

best solution value 
(0)
k

Pbest
 to the best solution 

value found by the particles in the child nodes. If 

best solution of child node is better than parent 

node, then two particles are exchanged. These 

comparisons start from top and proceed in 

breadth-first traversal.  

5) For every kth particle global best i.e. 
(0)
k

Gbest
is 

chosen to be the jth particle personal best 

(0)
j

Pbest
where j is the particle at the parent node 

of kth particle. 

6) While maximum number of iterations (max_t) has 

not been reached Do 

a) Update velocity matrix 
(t)
k

V (i,j)
according to (16) 

and the new position of particle 
(t)
k

X
is obtained by 

(17).  
b) The objective function value is evaluated again 

at the new position. If the objective function value 

at new position is better than previous best 

position then new position is stored as
(t)
k

Pbest . 
Now the particle is moved in hierarchal tree as in 

step 4 starting from top and 
(t)
k

Gbest is updated 

accordingly as mentioned in step 5. 

c) Increment the loop counter. 
 

VI. SIMULATION RESULTS AND DISCUSSION 

We used GridSim [26] toolkit in our experiment to 

simulate the scheduling of workflow tasks. GridSim is a 

java based toolkit for modeling and simulation of 

resource and application scheduling in large-scale parallel 

and distributed computing environment such as Grid. It is 

flexible to support simulation of grid entities like 

resources, users, application tasks, resource brokers or 

schedulers and their behavior using discrete events. 

A. Simulation Model 

To simulate precedence constraint tasks in workflows, 

we used the different workflow models represented by 

random task graph and task graph corresponding to real 

world problems such as Gaussian elimination (GE) and 

Fast Fourier Transforms (FFT). We also varied the size of 

task graph by taking the different number of tasks. The 

resources were 8 computing entities with various price 

levels are modeled to simulate heterogeneous 

environment of grid. Links between resources are 

established through a router so that direct communication 

can take place between resources. Computational rating 

(Million instructions per second) and computational cost 

(in dollars) of each resource is generated randomly where 

cost is inversely proportional to computational rating. 

In order to generate valid schedule which can meet 

both deadline and budget constraints specified by the user, 

two algorithms HEFT [5] and Greedy Cost were used to 

make the soft constraints of deadline and budget 

effectively. HEFT is a time optimization scheduling 

algorithm in which workflow tasks are scheduled on 
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minimum execution time heterogeneous resources 

irrespective of utility cost of resources. So HEFT gives 

minimum makespan (Timemin) and maximum total cost 

(Costmax) of the workflow schedule. Greedy Cost is a cost 

optimization scheduling algorithm in which workflow 

tasks are scheduled on cheapest heterogeneous resources 

irrespective of the task execution time. Thus Greedy Cost 

gives maximum makespan (Timemax) and minimum total 

cost (Costmin) of the workflow schedule Thus Deadline (D) 

and Budget (B) are specified as: 

 
   -  0.1(   -  ) max max minD Time Time Time  (21) 

 

 

 
The parameter values for H-DPSO and DPSO was 

taken as follows.  

 It is common in PSO for discrete problems [1, 2] 

to limit the population size between [20, 40]. 

Thus, in this paper the population size was set to 

21.  

 Based on parameter sensitivity analysis, we set 

c1=2.5→0.5 and c2=0.5→2.5. 

 Inertia weight (ω) = 0.9→0.1 

 λ=0.5 (to give equal importance to makespan 

and total cost).  

 We have run each algorithm for 20* m*n 

iterations. (Where m is number of machines and 

n is number of tasks) 

To define the hierarchy in H-DPSO, we have taken 

branching degree (d) =4 and height (h) =3 initially for 

swarm size of 21. After 40% of iterations we have 

reduced the branching degree d equals to 3 and h=4. 

Finally after 70% of iterations, we have reduced d=2 and 

h=5. We have done so, because high value of branching 

degree at the start performs better as all the particles are 
close to top particle in the hierarchy.  Which result in 

better exploration in the beginning, but as branching 

degree is reduced it leads to better exploitation at the end. 

To decrease the branching degree of the tree 

corresponding to swarm of particles, we removed the sub-

tree with best fitness value. The removed nodes are then 

evenly appended to the bottom of hierarchy. 

B. Test Suit1 

In this test suit, we used the workflow model 

represented by randomly generated task graph (Random). 

The size of random task graph was varied by considering 

the different number of nodes as 10, 20, 40, 60, 80 and 

100. The computation cost of each task is selected 

randomly by the normal distribution with the mean equal 

to the twice of specified average computation cost of the 

graph. The cost of each edge was selected randomly from 

the normal distribution with mean equal to the product of 

average computation cost and the communication to 

computation ratio (CCR). Here CCR is taken as 0.5 to 

represent the computation intensive application.  

The results obtained with H-DPSO and DPSO 

algorithms corresponding to the first test suit chosen at 

different size random graph structure are shown in Table 

I. The makespan, total cost and their fitness values are 

shown averaged over 10 trials. Table I. clearly specifies 

that H-DPSO based grid scheduler performs better than 

DPSO. In H-DPSO, changing arrangement of particles 

help preserving diversity in search, results in better 

exploration which ultimately leads to better optimization. 

Fig. 1 Shows the performance (fitness values) of each 

method during the search process for the case of random 

task graph at number of nodes=40. Similar results have 

been produced for random task graph at different number 

of nodes considered (Not shown due to similarity). At the 

start of search process, degree of branching is high so it 

optimizes faster. As the degree of branching is reducing, 

algorithm maintains the ability to search wider areas 

around the better solutions (at parent positions) which 

improves further the objective function value in the 

optimization process.     
 

 
Figure 1:  Illustrates the performance of H-DPSO and DPSO 

algorithms during the search process (Random Task Graph at 

n=40) 

 

C. Test Suit 2 

In this test suit, we generated task graphs 

corresponding to real life problems such as Gaussian 

Elimination (GE) and Fast Fourier Transform (FFT). The 

structure of these task graphs is fixed. In Gaussian 

Elimination algorithm [27] a parameter matrix size (m) is 

considered and number of tasks is defined on the basis of 

m as (m
2
+m-2)/2. We have taken m as 4, 6, 8, 10, 12, and 

14, thus number of tasks considered for GE task graph is 

9, 20, 35, 54, 77, 104 respectively. In FFT task graph, 

corresponding to input vector size m, there are 2*m-1 

recursive call tasks and 2m log m  butterfly operation 

tasks (where m is 2
k 

for any integer k). Thus number of 

tasks considered for FFT is 15, 39, and 95 respectively. 

Table II-III shows the results obtained for each algorithm 

at different graph structures corresponding to GE and 

FFT. It can be observed that H-DPSO based grid 

scheduler outperforms the DPSO. Fig. 2-3 Shows the 

performance progress (fitness values) of each method 

during the search process for the case of GE at number of 
nodes=35 and FFT at number of nodes=39 respectively. 

   -  0.1(   -  )max max minB Cost Cost Cost
 (22)   
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It is clear that H-DPSO optimizes faster at the start of 

search progress and further speed increases after the 

reduction of branching degree of hierarchal tree structure. 

 

 
Figure 2: Illustrates the performance of H-DPSO and DPSO 

algorithms during the search process (GE Task Graph at n=35) 

 

 
Figure 3 Illustrates the performance of H-DPSO and DPSO 

algorithms during the search process (FFT Task Graph at n=39) 

TABLE I.  RESULTS OBTAINED BY GRID SCHEDULER BASED ON H-DPSO AND DPSO FOR RANDOM TASK GRAPH 

Tasks H-DPSO DPSO 

Makespan Total Cost Fitness Value Makespan Total Cost Fitness Value 

10 228 546.06 0.5176884 235 564.50 0.5267853 

20 356.0 1201.10 0.5072802 469.0 1236.0 0.5376753 

40 612.5 2185.70 0.5034564 695.5 2292.50 0.5387854 

60 735 4125.60 0.5146758 745.5 4165.40 0.5302341 

80 680 4243.09 0.5063554 698.5 4323.20 0.5352855 

100 756 5897.43 0.5067867 767 6123.04 0.5365489 

 

TABLE II.  RESULTS OBTAINED BY GRID SCHEDULER BASED ON H-DPSO AND DPSO FOR GAUSSIAN ELIMINATION TASK GRAPH 

Tasks H-DPSO DPSO 

Makespan Total Cost Fitness Value Makespan Total Cost Fitness Value 

09 200.0 

 

536.6 0.5126238 202.0 545.4 0.5218458 

20 344.0 1208.10 0.5072802 469.0 1224.0 0.5308406 

35 605.5 2164.70 0.5045184 683.5 2278.60 0.533731 

54 710 3956.60 0.5140406 714.5 4002.40 0.5412110 

77 659 4196.09 0.5086454 670.5 4370.6 0.5352855 

104 745 5768.40 0.5074564 756 5990.3 0.5383455 

 

TABLE III.  RESULTS OBTAINED BY GRID SCHEDULER BASED ON H-DPSO AND DPSO FOR FAST FOURIER TASK GRAPH 

Tasks H-DPSO DPSO 

Makespan Total Cost Fitness Value Makespan Total Cost Fitness Value 

15 263.0 964.80 0.5116733 290.0 971.89 0.5210113 

39 514.0 2081.80 0.5068972 541.0 2158.7 0.52497711 

 
95 691.0 5351.39 0.5055008 702.0 5449.09 0.5259126 
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VII. CONCLUSION 

Task scheduling decision i.e allocating tasks to 

resources is crucial in grid computing. The work is 

motivated by the successful implementation of PSO 

based scheduler in literature. In this study, we have 

presented the implementation of hierarchical discrete 

particle swarm optimization (H-DPSO) based scheduler 

for workflow (dependent task) applications in grid 

environment. We considered the two conflicting 

objectives of minimization of execution time (makespan) 

and total cost simultaneously. The H-DPSO based grid 

scheduling is evaluated using randomly generated task 

graphs and task graphs corresponding to real world 

problems like Gaussian Elimination and Fast Fourier 

Transforms and compared with discrete particle swarm 

optimization (DPSO) based grid scheduling. The 

simulation results, exhibit that H-DPSO performs better 

for workflow grid task scheduling in comparison to 

DPSO. 
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