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Abstract — In this paper, a chaotic image encryption 

scheme with an efficient permutation–diffusion 

mechanism is constructed, where six generalized 

Bernoulli shift maps and one six-dimensional Arnold map 

are utilized to generate one hybrid chaotic orbit applied to 
disorder the pixel positions in the permutation process 

while four generalized Bernoulli shift maps and one 

Arnold map are employed to yield two random gray value 

sequences to change the gray values by a two-way 

diffusion process. Several merits of the proposed image 

encryption scheme are achieved, including a huge key 

space, good statistical properties resisting statistical 

attack and differential attack, desirable robustness against 

malicious attacks on cipher-images, such as cropping, 

noising, JPEG compression, etc. Experimental results 

have been carried out with detailed analysis to show that 

the proposed scheme can be a potential candidate for 
practical image encryption.  

 

Index Terms — Chaotic system, generalized Bernoulli 

shift map, Arnold map, image encryption scheme  
 

I.  INTRODUCTION 

The applications of chaos in communication and 

cryptography have been an attractive research field since 

1990s [1, 2]. The reason of applying chaos theory in 
cryptography lies in its intrinsic features, such as 

sensitivity to initial conditions and control parameters, 

ergodicity, pseudo-randomness and mixing property, etc. 

In the digital world nowadays, the communications of 

digital products over network occur more and more 

frequently. Therefore it has become urgent to prevent 

them from leakages. The requirements to fulfill the 

security needs of digital images have led to the 

development of effective image encryption algorithms. 

Digital images possess some intrinsic features, such as 

bulk data capacity, redundancy of data, strong correlation 

among adjacent pixels, etc. As a result, traditional 
encryption algorithms, such as DES, RSA [3], are thereby 

not suitable for practical digital image encryption due to 

the weakness of low-level efficiency while encrypting 

images. Fortunately, chaos-based image encryption 

algorithms have shown their superior performance [4-8]. 

Chaotic maps can simulate random behavior in a quite 
impressive way. In particular, chaotic maps are easy to be 

implemented by microprocessors and personal computers. 

Therefore, chaotic cryptosystems generally have high 

speed with low cost, which makes them better candidates 

than many traditional ciphers for multimedia data 

encryption. 

Among the chaos-based encryption schemes, one-

dimensional and two-dimensional chaotic systems, such 

as logistic map [8,9], skew tent map [10], Arnold map 

[7,11], baker map [4], piecewise linear chaotic map 

[12,13], piecewise nonlinear chaotic maps [14] and 

standard map [15-17], were applied widely owing to the 
advantage of simple implementation. However, there are 

fundamental drawbacks in these chaotic systems, such as 

small key space, slow performance speed and weak 

security. As a matter of fact, some chaos-based image 

encryption algorithms have been broken recently [18-22].  

To overcome the aforementioned drawbacks, a novel 

chaos-based image encryption scheme based on 

combination of multiple chaotic systems is constructed in 

this paper. The mixture of several chaotic maps possesses 

a significant achievement because of the following 

special inherent features. Firstly, it is well known that any 

chaotic orbit will eventually become periodic in computer 
realizations with a finite precision. However, for a hybrid 

chaotic system consisting of multiple chaotic maps, these 

periods turn to be so long that one can observe only 

aperiodicity in almost any realistic application. Secondly, 

the combination enhances the security of the proposed 

encryption scheme significantly.  

The proposed image encryption scheme here consists 

of a permutation process and a diffusion process. Thanks 

to the simplicity of generalized Bernoulli shift maps, we 

choose them as the candidates of chaotic maps utilized in 

both the permutation process and the diffusion process. 

Six generalized Bernoulli shift maps are utilized to 
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generate one hybrid chaotic orbit by one six-dimensional 

Arnold map and then applied to scramble the pixel 

positions in the permutation process, while four 

generalized Bernoulli shift maps and one Arnold map are 

employed to yield two pseudo-random gray value 

sequences to change the gray values by a two-way 

diffusion process. Although six generalized Bernoulli 

shift maps are used in the permutation process, the 

computation overhead is almost the same as that caused 
by one generalized Bernoulli shift map. The reason is that 

the total iteration times for the six generalized Bernoulli 

shift maps are the same as those for one generalized 

Bernoulli shift map if the few transient iteration times are 

not considered. To improve the sensitivity of the control 

parameters and initial conditions, high dimensional 

Arnold map is employed to integrate the chaotic effects 

of the multiple generalized Bernoulli shift maps. Thanks 

to the good permutation–diffusion mechanism, the 

proposed image encryption scheme possesses a huge key 

space with capacity 32010 , therefore efficiently frustrating 

brute-force attack. Experimental results are carried out 

with detailed analysis to demonstrate also possesses good 

statistical properties to frustrate statistical, differential 

attacks. An additional merit for the proposed scheme is 
its robustness against malicious attacks on the cipher-

images. As far as we know, many image encryption 

schemes are vulnerable to image processing, such as 

cropping, noising, compression, etc. The robustness 

against such a kind of image processing is also important 

for cryptosystems. The opponents would rather tamper 

the cipher-images than analyze them as they are not able 

to perform the cryptanalysis. The robustness test of the 

proposed scheme against malicious attacks, like cropping, 

noising, JPEG compression, is then performed as well. 

All the satisfactory properties make the proposed image 

encryption scheme a potential candidate for practical 
image encryption.  

The rest of the paper is organized as follows. In 

Section II, generalized Bernoulli shift map and Arnold 

map are reviewed briefly. Section III proposes a novel 

image encryption scheme composed of one permutation 

process and one diffusion process based on generalized 

Bernoulli shift maps and Arnold maps. The security of 

the proposed scheme is evaluated via detailed analysis 

and experiments in Section IV. Section V draws some 

conclusions. 

 

II. GENERALIZED BERNOULLI SHIFT MAP AND ARNOLD 

MAP  

A. Generalized Bernoulli shift map 

The Bernoulli shift map 
0 [0 1] [0 1]B      is given 

by  

1 0

2 if [0 1 2)
( ) 2 mod 1

2 1 if [1 2 1]

n n

n n n

n n

x x
x B x x

x x


   
   

    

     (1) 

 

The Bernoulli shift map yields a simple example for an 

essentially nonlinear stretch-and-cut mechanism, as it 

typically generates deterministic chaos. Such basic 

mechanisms are also encountered in more realistic 

dynamical systems. We may remark that „stretch and 

fold‟ or „stretch, twist and fold‟ provide alternative 

mechanisms for generating chaotic behavior. In this paper, 

we shall consider its generalized version shown as  

 

1 ( ) mod1n
n n

x
x T x

a
                                             (2) 

 

where 
1 [0 1]n nx x     are the states of the map, and 

(0 1)a   is the control parameter. As 0 5a   , B  

becomes the regular Bernoulli shift map (1). A typical 

orbit of 
0x  derived from the dynamical system is 

0{ ( ) 0 1 }k

kx B x k     , which is shown in Fig. 1(a) 

for 
00 3731 0 2709a x     . Its waveform is quite 

irregular and indicates that the system is chaotic. The 

bifurcation diagram of the generalized Bernoulli shift 

map is depicted in Fig. 1(b), in which for every control 

parameter, we iterate 600 times to get the corresponding 

orbit points and plot them. It implies that the control 
parameters belonging to (0,1) will make the proposed 

system chaotic. The control parameter a  and the initial 

condition 
0x  can be used as valid cipher keys as the map 

is utilized to design image encryption schemes. There 

exist some good dynamical features in generalized 
Bernoulli shift maps, such as desirable auto-correlation 

and cross-correlation features, see Fig. 1 (c-d) . The 

cross-correlation is calculated between the orbit of 

0 0 2709x    and that of 
0 0 31y   .  

 

 
(a) A typical orbit of generalized Bernoulli shift map with 

00 3731 0 2709a x     . 
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(b) Bifurcation behavior of generalized Bernoulli shift map, 

(0 001 0 995)a     with step 0.005. 

 

 
(c) The auto-correlation 

 

 
(d) The cross-correlation of two different orbits  

Figure 1. Chaotic behavior of generalized Bernoulli shift map. 

 

B. Arnold map 

Arnold map was proposed by V. I. Arnold in the 

research of ergodic theory; and it is commonly known as 

cat face transform [23]. The map is a process of clipping 
and splicing that realign the pixel matrix of digital image. 

The classical Arnold map is an invertible map described 

by  

 

1

1

1 1
mod 1

1 2

n n n

A

n n n

x x x
T

y y y

     
     
     
          

     

 
   

 
           (3) 

 

where the notation “ x  mod 1” refers to the fractional 

part of a real number x  by adding or subtracting an 

appropriate integer. Therefore ( )n nx y  is confined in the 

unit square 
2[0 1) . The Arnold map is area preserving 

since the determinant of its linear transformation matrix 

is equal to 1; its Lyapunov characteristic exponents are 

the two eigenvalues 
1  and 

2  of the coefficient matrix 

in (3), given by  

 

1 2

1 1
(3 5) 1 (3 5) 1

2 2
          

 

It implies that the map is chaotic since one of the 

Lyapunov characteristic exponents is larger than 1. The 

two-dimensional Arnold map (3) can be extended to N -

dimensional one in the following way  

 

1 1

2 2
mod1A

N N

y x

y x
T

y x

   
   
   
   
   
   

                                        (4) 

 
where  

 

1 1 1 1 1

1 2 2 2 2

1 2 3 3 3

1 2 3 1 1

1 2 3 1

AT

N N

N N

 
 
 
 

  
 
  
   

 

 

The determinant of the matrix for N-dimensional Arnold 
map is 1, therefore the absolute values of some 

eigenvalues should be greater than 1 and the derived 

system is chaotic. In this paper, we utilize the six-

dimensional Arnold map (4) and the two-dimensional 

Arnold map (3) to improve the sensitivity of six 

generalized Bernoulli shift maps in the permutation 

process and that of four generalized Bernoulli shift maps 

in the diffusion process. We will show the integration 

process in Section III. 

 

III. THE PROPOSED IMAGE ENCRYPTION SCHEME  

A. Permutation process 

In this subsection, we propose a permutation process 

to confuse plain-image totally. Assume that the processed 

plain-image is of width W  and height H . In order to 

enlarge the key space and improve the sensitivity of the 
control parameters and initial conditions, we first 

generate 6N   chaotic orbit sequences by six 

generalized Bernoulli shift maps and then integrate them 
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by the six-dimensional Arnold map to form a combined 

sequence. In more details, we set the initial conditions 

( 0) 1x i i N     , and iterate the generalized Bernoulli 

shift maps (1) to yield N  chaotic orbits 

{( ( ) 0 1 1 }x i k k i N         of ( 0) 1x i i N      

with given control parameters 1ia i N    . The 

beginning 
0L  orbit points of each orbit are deleted to 

avoid the transient effect, where 
0L  is a constant, for 

example, 
0 15L   in all the experiments. The truncated 

parts 
0{( ( ) 1 1 }x i k k L i N          are then 

mapped to N  new orbits {( ( ) 1 1 }y i k k i N         

by the N -dimensional Arnold map (18). We rearrange 

all the ( )y i k  values of the orbits to get one new 

combined orbit {( ( ) 1 }z j j    in the manner that 

(( 1) ) ( ) 1 1 2z k N i y i k i N k             . A 

truncated combined orbit ( ) 1 600z k k     is depicted 

in Fig. 2. The truncated sequence ( ) 1 2z k k H W       

is rearranged according to the order from small to large. 

As a result, we also get an index order number for every 

( )z k . The index order number sequence can be applied 

to permute the image pixel positions and therefore can 

confuse the image to get a shuffled image. The 

permutation process is stated as follows.  

 

 
Figure 2. A combined orbit derived from six generalized 

Bernoulli shift maps with control parameters 

(0 27 0 37 0 17 0 32 0 41 0 35)a              and 

(0) (0 39 0 44 0 23 0 61 0 36 0 56)x             . 

 
Step 1. Set the values of the control parameters 

1ia i N     and the initial conditions ( 0) 1x i i N     . 

Let 1H W
N

L      where x    rounds x  to the nearest 

integer towards minus infinity.  

Step 2. Iterate the generalized Bernoulli shift map (1)  

( 1) ( ( ))x i k T x i k    to get the orbit of ( 0)x i , say 

0{ ( ) 0 1 }x i k k L L       . We choose the truncated 

orbits 
0 0{ ( ) 1 }x i k k L L L        and map them to 

be { ( ) 1 }y i k k L      by the N -dimensional Arnold 

map (4)  

 

0

0

0

(1 )(1 )

(2 )(2 )
mod1

( )( )

A

x k Ly k

x k Ly k
T

x N k Ly N k

    
  

      
  
  

    

 

 

Op[Step 3. Rearrange all the values of 

{ ( ) 1 1 }y i k k L i N          to get one combined 

orbit {( ( ) 1 }z j j N L      given by  

 

(( 1) ) ( ) 1 1 2z k N i y i k i N k L                

 

Step 4. Sort { ( ) 1 }z k k H W      to get one index 

order sequences { ( ) 1 }Iz k k H W     .  

Step 5. Reshape the gray-scale value matrix of the 

processed plain-image A  sized H W  to one vector U  

with length H W ; permute the vector U  by Iz  in the 

following way to get one new vector V : 

 

( ) ( ( )) 1V k U Iz k k H W        

 

Step 6. Reshape V  back to one 2D matrix to yield the 

shuffled image B .  

B. Diffusion process 

Diffusion processes can enhance the resistance to 

statistical attack and differential attack greatly, in which 

the histogram of the cipher-image is fairly uniform and is 

significantly different from that of the plain-image. The 

opponent can not find any useful clues between the plain-

image and the cipher-image and so can not break the 

cryptosystem even after they spend a lot of time and 

effort. The diffusion process is outlined as follows.  

Step 1. Set 
1 2

1H WL     and set the values of the 

control parameters 1 4ib i    , the initial conditions 

1( 0) 1 4x i i     .  

Step 2. Iterate the generalized Bernoulli shift map 

1 1( 1) ( ( ))x i k T x i k     using (1) to get the orbit of 

1( 0)x i , say 
1 0 1{ ( ) 0 1 }x i k k L L       . We choose 

the truncated parts of the orbits, 

1 0 0 1{ ( ) 1 }x i k k L L L       , and map them to be 

1 1{ ( ) 1 }y i k k L      by the two-dimensional Arnold 

map (3)  

 

1 01

1

1 01

(1 )(1 )
1

(2 )(2 )
A

x k Ly k
T k L

x k Ly k

    
       

    
 

1 01

1

1 01

(3 )(3 )
1

(4 )(4 )
A

x k Ly k
T k L

x k Ly k

    
       

    
 

 

The two sequences 
1 1(1 ) (2 )y k y k    are then piled 

together to form a new sequence by  
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1 1 1(2 1) (1 ) (2 ) (2 ) 1TY k y k TY k y k k L              

 

while 
1 1(3 ) (4 )y k y k    are integrated to yield another 

sequence  

 

1 1 1(2 1) (3 ) (2 ) (4 ) 1TZ k y k TZ k y k k L              

 

TY TZ  are truncated to obtain two pseudo-random gray 

value sequences 
1 2( ) ( ) 1 2k k k H W         by  

 

1 2( ) ( ) 255 ( ) ( ) 255

                                       1 2

k TY k k TZ k

k H W

            

     
 

 

where x    rounds x  to the nearest integer towards 

infinity.  

Step 3. The following diffusion function is utilized to 

achieve the pixel gray value diffusion  

 

1 1( ) ( ) {( ( ) ( ))mod 256}

                     ( 1) 1 2

C k k B k k

C k k H W

   

        
 

 

where ( )B k  is the gray value of the current operated 

pixel in the shuffled image which has been rearranged 

according to the order of row or column to a vector with 

length H W , ( 1)C k   is the previous output cipher-

pixel gray value. The diffusion process is well defined as 

the initial condition (0)C  is provided. (0)C  can be set 

to be part of the keys in the diffusion process or can just 

take the value of 
1(0) (1)C   for simplicity.  

Note that the inverse diffusion function is  

 

1 1( ) { ( ) ( ) ( 1) ( )}mod 256

                                                    1 2

B k k C k C k k

k H W

      

     
  

 

The above diffusion process implies that it can not 

influence the pixels before the tampered pixel with a gray 

value change. As a remedy, we here add a reverse 

diffusion process as a supplement to the above diffusion 

process. 
2( ) 1 2k k H W        are utilized to perform 

another round of diffusion on the sequence 

( ) 2 1C k k H W       by step 4.  

Step 4. The following diffusion function is utilized to 

achieve more diffusion  
 

2 2( ) ( ) {( ( 1) ( ))mod 256}

                      ( 1) 1 2

D k k C H W k k

D k k H W

      

        
  

 

where (0)D  can be handled as (0)C , it can be set to be 

part of the keys or can just take the value of 
2(1)  for 

simplicity.  

Step 5. Reshape ( ) 1 2D k k H W       to be a 

matrix Q  with height H  and width W . Q  is the 

resulted cipher-image.  

The permutation process and the diffusion process 

constitute the complete image encryption scheme. The 

Lena image and the all-zero image are encrypted and the 

resulted cipher-images are shown in Fig. 3. The key 

parameters are 

 

(0 27 0 37 0 17 0 32 0 41 0 35),

(0) (0 39 0 44 0 23 0 61 0 36 0 56),

a

x

           

           
 

(0 46 0 27 0 41 0 26),b        

1(0) (0 3 0 23 0 43 0 83).x          

 

 
(a) The plain-image Lena 

 

     
(b) The cipher-image of image Lena 

 

 
(c) Histogram of the plain-image Lena 
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(d) Histogram of the cipher-image of Lena 

 

 
(e) The plain-image all-zero 

 

 
(f) The cipher-image of image all-zero 

Figure 3. The encrypted results. 

 

IV. PERFORMANCE AND SECURITY ANALYSIS   

According to the basic principle of cryptology [9], a 

desirable encryption scheme requires sensitivity to cipher 

keys, i.e., the cipher-text should have close correlation 

with the keys. An ideal encryption scheme should have a 

large key space to make brute-force attack infeasible; it 

should also well resist various kinds of attacks like 

statistical attack, differential attack, etc. In this section, 

some security analysis has been performed on the 
proposed image encryption scheme, including the most 

important ones like key sensitivity test, key space 

analysis, statistical analysis, and differential attack 

analysis. All the analysis shows that the proposed image 

encryption scheme is highly secure thanks to its high 

sensitivity of the control parameters and initial conditions 

of the generalized Bernoulli shift maps, large key space, 

and satisfactory permutation-diffusion architecture.  

A. Key space and sensitivity analysis 

The high sensitivity of the cipher-image to initial 
conditions and control parameters is inherent to any 

chaotic system. A good image encryption scheme needs 

to contain sufficiently large key space for compensating 

the degradation dynamics in PC. It should be sensitive to 

cipher keys as well, and thus can effectively prevent 

invaders decrypting original data even after they invest 

large amounts of time and resources. The analysis results 

regarding the sensitivity and the key space are 

summarized as follows. Since the permutation process is 

irrelevant to the diffusion process, the key space consists 

of the cipher keys in both processes. In the permutation 

process, the control parameters 1ia i N     and the 

initial conditions ( 0) 1x i i N      form the cipher 

keys. The cipher keys in the diffusion process consist of 

the initial conditions 
1( 0) 1 4x j j     , the control 

parameters 1 4jb j     for the four generalized 

Bernoulli shift maps. The sensitivity tests with respect to 

all cipher keys have been carried out. The sensitivity is 

generally measured by means of two criteria, namely, 

number of pixels change rate (NPCR) and unified 

average changing intensity (UACI) [10,14]. They are 

defined as  

 

1
NPCR ( ) 100

i j

D i j %
W H 

   


                            (5) 

1 2

1
UACI ( ) ( ) | 100

255
|

i j

C i j C i j %
W H 

    
 

      (6) 

 

where 
1 2C C  are the two cipher-images corresponding to 

two cipher keys with a minor change or two plain-images 

with only one pixel difference, D  is a bipolar array with 

the same size as image 
1C . ( )D i j  is determined as: 

( ) 0D i j   if 
1 2( ) ( )C i j C i j   , otherwise ( ) 1D i j  .  

To verify the sensitivity of key parameter K , the 

original plain-image ( ( ))H WI I i j    is encrypted with 

K p K p K     and K p K   respectively 

while keeping the other key parameters unchanged. Here 

K  is the perturbing value. The corresponding 

encrypted images are denoted by 
1 2 3I I I   respectively. 

The NPCR and UACI values are calculated for the 

cipher-image couples 
1 2( )I I  and 

1 3( )I I . The greater 

the NPCR and the UACI, the more sensitive for the 

parameter K . Tables I-II show the results of the 

sensitivity test where the initial key values are set to be 

the following.  
Permutation process: 

initial conditions  

(0) (0 39 0 44 0 23 0 61 0 36 0 56)x               

control parameters  

(0 27 0 37 0 17 0 32 0 41 0 35).a              

Diffusion process: 

initial conditions 
1(0) (0 3 0 23 0 43 0 83)x           
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control parameters (0 46 0 27 0 41 0 26)b           

The variations K  of the considered parameters are 

all set to be 
1610

 in the tests. We apply the proposed 

image encryption scheme one round with only perturbing 

one cipher key K  with the corresponding variation value 

while fixing other parameters.   

 

TABLE I.  RESULTS REGARDING THE SENSITIVITY TO CIPHER KEYS, PART 1:  CALCULATED BASED ON THE CIPHER-IMAGES 
1 2I I . 

K   
1a   

1a   
3a   

4a   
5a   

6a  (1 0)x     

NPCR(%)  99.58  99.61  99.65  99.57  99.59  99.61  99.60   

UACI(%)  33.36  33.43  33.53  33.47  33.63  33.46  33.41  

K   (2 0)x    (3 0)x    (4 0)x    (5 0)x    (6 0)x    
1b  

2b   

NPCR(%)  99.58  99.63  99.62  99.59  99.63 99.25 99.26  

UACI(%) 33.60  33.43  33.47  33.43  33.33  33.57  33.57  

K   
3b   

4b   
1(1 0)x    

1(2 0)x    
1(3 0)x    

1(4 0)x    

NPCR(%) 99.16  99.23  99.20  99.26  99.18  99.20   

UACI(%)  33.31  33.65  33.35  33.50  33.47  33.55   

 
TABLE II.   RESULTS REGARDING THE SENSITIVITY TO CIPHER KEYS, PART 2: CALCULATED BASED ON THE CIPHER-IMAGES 

1 3I I . 

K   
1a   

1a   
3a   

4a   
5a   

6a  (1 0)x     

NPCR(%)  99.61  99.64  99.58  99.60  99.58  99.59  99.59  

UACI(%)  33.40  33.38  33.57  33.48  33.15  33.54  33.52  

K   (2 0)x    (3 0)x    (4 0)x    (5 0)x    (6 0)x    
1b  

2b   

NPCR(%)  99.63  99.62  99.62  99.61  99.62 99.14 99.26  

UACI(%)  33.44  33.53  33.45  33.46  33.47  33.28  33.45  

K   
3b   

4b   
1(1 0)x    

1(2 0)x    
1(3 0)x    

1(4 0)x    

NPCR(%)  99.16  99.17  99.16  99.29  99.07  99.14   

UACI(%)  33.46  33.52  33.39  33.56  33.15  33.33   

 

We also set the perturbing value K  from 110  to 
1610

 

and perform the sensitivity tests. The results are depicted 

in Fig. 4 which are the simulation results for 

6 2(5 0)a x b    and 
1(2 0)x  . The results in Tables I-II and 

Fig. 4 imply that all the control parameters and the initial 

conditions are strongly sensitive. Although the initial 

conditions and the control parameters for the four 

generalized Bernoulli shift maps in the diffusion process 

are less sensitive than those in the permutation process, 

the resulted NPCR values are all more than 99.1%. 

  

 
(a) 

 
(b) 

Figure 4. NPCR and UACI between cipher-images with small 

changes of keys: (a) the NPCR values and (b) the UACI values. 

 

It implies from the results that the key space is 
16 20 320(10 ) 10 , which is huge enough to make brute-

force attack infeasible. As a matter of fact, the key space 

increases as long as the number of generalized Bernoulli 

shift maps increases. The key space will generally 

become 
3210  times larger if the number of generalized 

Bernoulli shift maps increased by 1. The sensitivity test 

can also be demonstrated visually, for example, see 
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Figs. 5-6. In Fig. 5, the image encrypted by the key 

1 0 27 (3 0) 0 23a x       has 99.58% of difference from 

the image encrypted by the key 16

1 0 27 10a    , 

(3 0) 0 23x    the encrypted image with the key 

1 0 27 (3 0) 0 23a x       has 99.59% of difference from 

the encrypted image with the key 
16

1 0 27 (3 0) 0 23 10a x        .  Fig. 6 shows the 

encrypted image by 
1 30 27 (5 0) 0 36 0 41a x b         , 

1(4 0) 0 83x     can not be decrypted with only one of the 

keys
1 3 10 27 (5 0) 0 36 0 41 (4 0) 0 83a x b x              

perturbed by a minor variation 1610 . For example, Fig. 

6(c) shows that the image encrypted by 
3 0 41b    is not 

correctly decrypted by using the perturbed key 
16

3 0 41 10b    .  

 

 
(a) 16

1 0 27 10 (3 0) 0 23a x        

 

 
(b)Difference image between  Fig.5 (b) and Fig.3 (b)   

 

 
(c) Encrypted image with 16

1 0 27 (3 0) 0 23 10a x         

 

 
(d) Difference image between Fig. 5(c) and Fig. 3 (b)  

Figure 5. Key sensitive test: result I. 

 

  
(a)plain-image Boat  

 
(b) encrypted image with 

1 3 10 27 (5 0) 0 36 0 41 (4 0) 0 83a x b x               

 

(c) decrypted image with only 
3b  replaced by 160 41 10   
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(d) decrypted image with only 
1(4 0)x   replaced by 160 83 10   

  

(e) decrypted image with only 
1a  replaced by 

160 27 10   

 

(f) decrypted image with only (5 0)x   replaced by 160 36 10   

Figure 6. Key sensitive test: result II. 

 

B. Statistical analysis 

Shannon pointed out in his masterpiece [35] the 

possibility to solve many kinds of ciphers by statistical 

analysis. Therefore, passing the statistical analysis on 

cipher-image is of crucial importance for a cryptosystem. 

Indeed, an ideal cryptosystem should be robust against 

any statistical attack. In order to prove the security of the 

proposed encryption scheme, the following statistical 

tests are performed.  

(i) Histogram. Encrypt the image Lena with one round, 
and then plot the histograms of plain-image and cipher-

image as shown in Figs. 3(c)-(d), respectively. Fig. 3(d) 

shows that the histogram of the cipher-image is fairly 

uniform and significantly different from the histogram of 

the original image and hence it does not provide any 

useful information for the opponents to perform any 

statistical analysis attack on the encrypted image.  

(ii) Correlation of adjacent pixels. To test the 

correlation between two adjacent pixels, the following 

performances are carried out. First, we select 6000 pairs 

of two adjacent pixels randomly from an image and then 

calculate the correlation coefficient of the selected pairs 

using the following formulae:  
 

( )

( ) ( )

Cov x y
Cr

D x D y


   

1

1

( , ) ( ( ))( ( ))
T

i iT

i

Cov x y x E x y E y


     

21 1

1 1

( ) ( ) ( ( ))
T T

i iT T

i i

E x x D x x E x
 

       

 

where x y  are the gray-scale values of two adjacent 

pixels in the image and T  is the total pairs of pixels 

randomly selected from the image. The correlations of 

two adjacent pixels in the plain-image and in the cipher-

image are shown in Table III.  

 
TABLE III.   CORRELATION COEFFICIENTS OF TWO ADJACENT 

PIXELS IN TWO IMAGES. 

  plain-image    cipher-image   

Horizontal  0.9435 0.0028  

Vertical  0.9680 0.0032  

Diagonal  0.9157  0.0100  

 

The correlation distribution of two horizontally 

adjacent pixels in the plain-image and that in the cipher-

image are shown in Fig. 7.  

 

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

Figure 7. Correlations of two adjacent pixels in the plain-image 
and in the cipher-image: (a), (c), (e) are for the plain-image; 

(b),(d),(f) are for the cipher-image. 
 

(iii) Information entropy analysis. The entropy is the 

most outstanding feature of randomness. The entropy 

( )H m  of a message source m  can be measured by  

 
1

0

( ) ( ) log( ( ))
L

i i

i

H m p m p m




   

 

where L  is the total number of symbols m , ( )ip m  

represents the probability of occurrence of symbol 
im  

and log denotes the base 2 logarithm so that the entropy is 

expressed in bits. For a random source emitting 256 

symbols, its entropy is ( ) 8H m   bits. For the 

encrypted image of Lena, the corresponding entropy is 

7.9969 bits. This means that the cipher-image is close to a 

random source and the proposed algorithm is secure 

against the entropy attack.  

C. Differential attack 

In general, attackers may make a slight change (e.g., 

modify only one pixel) of the plain-image to find out 
some meaningful relationships between the plain-image 

and the cipher-image. If one minor change in the plain-

image will cause a significant change in the cipher-image, 

then the encryption scheme will resist the differential 

attack efficiently. To test the influence of only one-pixel 

change in the plain-image over the whole cipher-image, 

two common measures NPCR and UACI, given by Eq. (5) 

and Eq. (6) respectively, are used. In this case, NPCR 

measures the percentage of different pixels numbers 

between the two cipher-images whose plain-images only 

have one-pixel difference; UACI measures the average 

intensity of differences between the two cipher-images. 
They indicate the sensitivity of the cipher-images to the 

minor change of plain-image. To resist difference attacks, 

the values of NPCR and UACI should be large enough. 

The test of the plain-image is Lena. We randomly select 

10 pixels and change the gray values with a difference of 

1, for example, we replace the gray value 66 of the pixel 

at position ((98,49) by 67, and get the NPCR=99.83%, 

UACI=41.31%. The numerical results are shown in Table 

IV. The mean values of the ten NPCR and UACI values 

are 99.77% and 38.16% respectively. We observe from 

Table IV that the two measure values are exceptionally 

good undergoing only one round of encryption.  
 

TABLE IV.  RESULTS OF NPCR AND UACI TESTS OF LENA. 

Position  (98,49) (235,108) (248,14) (41,197) (45,34)  

NPCR(%)  99.83 99.76  99.71  99.95 99.75   

UACI(%)  41.43  29.36  37.63  48.40  36.60   

Position  (36,255) (178,248) (120,220) (102,156) (216,36)  

NPCR(%)  99.72  99.75  99.75  99.61  99.85   

UACI(%)  30.01  39.42  41.32  35.16  42.42   
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D. Resistance to cipher-image attacks 

Cipher-image attacks mean that the opponent performs 

image processing like cropping, noising, compression, etc. 

on the cipher-image. The opponent can just damage the 

cipher-images if he does not need to know the secret. In 

such a case, the cryptosystem‟s robustness against such a 

kind of malicious attacks is very important. A secure 

encryption scheme should consider the robustness against 

cipher-image attacks. The results of tests to cipher-image 
attack are shown in Figs. 8-9, demonstrating that the 

proposed image encryption scheme is strongly robust 

against cropping, salt & pepper nosing, JPEG 

compression. Especially the proposed scheme resists 

cropping attack effectively.  

 

  
(a) 

 

 
(b) 

 

 
(c)  

 
(d) 

Figure 8. Resistance to cipher-image attacks, part I. (a), (c) are 

the cropped cipher-images; (b),(d) are the corresponding 
decrypted images from (a), (c) respectively. 

 

  
(a) 

 
(b) 

 
(c)  



32 A Secure and Robust Image Encryption Scheme Based on  

 Mixture of Multiple Generalized Bernoulli Shift Maps and Arnold Maps 

Copyright © 2013 MECS                                                I.J. Computer Network and Information Security, 2013, 7, 21-33 

 
(d) 

Figure 9. Resistance to cipher-image attacks, part II. (a), (c)are 

the cipher-images attacked by salt & pepper noising (intensity 

0.1) and JPEG compression (quality=80) respectively; (b), (d) 
are the corresponding decrypted images from (a), (c) 

respectively. 

 

V. CONCLUSIONS  

An efficient image encryption scheme based on 
multiple generalized Bernoulli shift maps and Arnold 

maps is proposed in the paper. The proposed scheme can 

shuffle the plain-image efficiently in the permutation 

process. An effective two-way diffusion process is also 

designed to change the gray values of the whole image 

pixels. Security analysis including key sensitivity analysis, 

key space analysis, statistical attack analysis and 

differential attack analysis are performed numerically and 

visually. The robustness test of the proposed scheme 

against malicious attacks, like cropping, noising, JPEG 

compression, is also performed. All the experimental 

results show that the proposed encryption scheme is 
secure thanks to its huge key space, its high sensitivity to 

the cipher keys and plain-images and its strong 

robustness resisting malicious image processing. All the 

desirable properties make the proposed scheme a 

potential candidate for encryption of multimedia data 

such as images, audios and even videos. 
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