INFORMATION CHANGE THE WORLD

International Journal of Computer Network and Information Security(IJCNIS)

ISSN: 2074-9090 (Print), ISSN: 2074-9104 (Online)

Published By: MECS Press

IJCNIS Vol.5, No.8, Jun. 2013

MUSIC 2D-DOA Estimation using Split Vertical Linear and Circular Arrays

Full Text (PDF, 1275KB), PP.12-18


Views:133   Downloads:4

Author(s)

Yasser Albagory,Amira Ashour

Index Terms

Linear array, Circular array, DOA Techniques, MUSIC algorithm

Abstract

In this paper, the MUSIC 2D-DOA estimation is estimated by splitting the angle into elevation and azimuth components. This technique is based on an array that is composed by a vertical uniform linear array located perpendicularly at the center of another uniform circular array. This array configuration is proposed to reduce the computational burden faced in MUSIC 2D-DOA estimation where the vertical array is used to determine the elevation DOAs (θs) which are used subsequently to determine the azimuth DOAs (∅s) by the circular array instead of searching in all space of the two angles in the case of using circular array only. The new Split beamformer is investigated and the performance of the MUSIC 2D-DOA under several signal conditions in the presence of noise is studied.

Cite This Paper

Yasser Albagory,Amira Ashour,"MUSIC 2D-DOA Estimation using Split Vertical Linear and Circular Arrays", IJCNIS, vol.5, no.8, pp.12-18,2013. DOI: 10.5815/ijcnis.2013.08.02

Reference

[1] M.L. Bencheikh, Y. Wang, "Joint DOD-DOA estimation using combined ESPRIT-MUSIC approach in MIMO radar", Electronics Letters, Volume 46, issue15, 22 July 2010, p. 1081 – 1083.

[2] N.J. Li, J.F. Gu, P. Wei, "2-D DOA estimation via matrix partition and stacking technique", EURASIP J Adv Signal Process 2009(53), 1–8 (2009)

[3] M.D. Zoltowski, M. Haardt, C.P. Mathews, "Closed-form 2-D angle estimation with rectangular arrays in element space pr beamspace via unitary ESPRIT", IEEE Trans Signal Process44(1), 316–328 (1996)

[4] C.P. Mathews, M.D. Zoltowski, "Eigenstructure techniques for 2-D angle estimation with uniform circular arrays", IEEE Trans Signal Process 42(9), 2395–2407 (1994). Publisher Full Text 

[5] M. Pesavento, J.F. Böhme, "Direction of arrival estimation in uniform circular arrays composed of directional elements", Proc Sensor Array and Multichannel Signal Processing Workshop, 503–507 (2002)

[6] R. Goossens, H. Rogier, "A hybrid UCA-RARE/Root-MUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling", IEEE Trans Antennas Propag 55(3), 841–849 (2007)

[7] T.T. Zhang, Y.L. Lu, H.T. Hui, "Compensation for the mutual coupling effect in uniform circular arrays for 2D DOA estimations employing the maximum likelihood technique", IEEE Trans Aerosp Electron Syst 44(3), 1215–1221 (2008)

[8] W. Buhong, H. Hontat, L. Mookseng, "Decoupled 2D direction of arrival estimation using compact uniform circular arrays in the presence of elevation-dependent mutual coupling", IEEE Trans Antennas Propag 58(3), 747–755 (2010)

[9] J. Xie, Z. He, H. Li and J. Li, "2D DOA estimation with sparse uniform circular arrays in the presence of mutual coupling", EURASIP Journal on Advances in Signal Processing 2011, 2011:127.

[10] F. L. Liu, "Study on parameter estimation algorithms for mulitpath signals in wireless networks", Doctoral Dissertation, Northeastern University, Shenyang, China, 2005.

[11] Y. T. Wu, G. S. Liao and H. C. So, "A fast algorithm for 2-D direction-of-arrival estimation", Signal Processing, vol.83, pp.1827-1831, 2003.

[12] T. Kuroda, N. Kikuma and N. Inagaki, "DOA estimation and pairing method in 2D-ESPRIT using triangular antenna array", Electronics and Communications, vol.86, no.6, pp.59-68, 2003.

[13] L. Wei, and Y. Hua, A further remark on the shifted cross array for estimating 2-D directions of wave arrival, IEEE Transactions on Signal Processing, vol.40, no.1, pp.493-497, 1993.

[14] Y. M. Chen, J. H. Lee and C. C. Yeh, "Two-dimensional angle-of-arrival estimation for uniform plannar arrays with sensor position errors", IEE Proceedings, vol.140, no.2, pp.37-42, 1993.

[15] C. P. Mathews, and M. D. Zoltowski, "Eigenstructure techniques for 2-D angle estimation with uniform circular arrays", IEEE Transactions on Signal Processing, vol.42, no.9, pp.2395-2407, 1994.

[16] T. H. Liu, and J. M. Mendel, "Azimuth and elevation direction finding using arbitrary array geometries", IEEE Transactions on Signal Process, vol.46, no.7, pp.2061-2065, 1998.

[17] Y. Dong, Y. T. Wu and G. S. Liao, "A novel method for estimating 2-D DOA", Journal of Xidian University, vol.30, no.5, pp.569-573, 2003.

[18] T. Kuroda, N. Kikuma and N. Inagaki, "DOA estimation and pairing method in 2D-ESPRIT using triangular antenna array", Electrons and Communications, vol.86, no.6, pp.1505-1513, 2003.

[19] A. J. Van der Veen, P. B. Ober and E. F. Deprettere, "Azimuth and elevation computation in high resolution DOA estimation", IEEE Transactions on Signal Processing, vol.40, no.7, pp.1828-1832, 1992.

[20] T. Filik and T. Engin Tuncer, "2-D Paired Direction-Of-Arrival Angle Estimation With Two Parallel Uniform Linear Arrays", International Journal of Innovative Computing, Information and Control Volume 7, Number 6, pp. 3269-3279, June 2011

[21] Y. Hua, T.K. Sarkar, D.D. Weiner, "An L-shaped array for estimating 2-D directions of wave arrival", IEEE Trans. Antennas Propagation 39 (2) (1991) 143–146.

[22] Q. Cheng, Y. Hua, "Further study of the pencil-MUSIC algorithm", IEEE Trans. Aerospace Electronic Systems 32 (1) (1996) 284–299.

[23] Ping TAN, "Study of 2D DOA Estimation for Uniform Circular Array in Wireless Location System", International Journal of Computer Network and Information Security, 2010, 2, 54-60.

[24] M. Dessouky, H. Sharshar, Y. Albagory, "Efficient sidelobe reduction technique for small-sized concentric circular arrays", Progress In Electromagnetics Research, PIER 65, 187-200, 2006.