
I. J. Computer Network and Information Security, 2013, 9, 28-36
Published Online July 2013 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ ijcn is.2013.09.04

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 9, 28-36

Analysis of Reconfigurable Processors Using
Petri Net

Hadis Heidari

Department of Computer Engineering, Razi University, Kermanshah, Iran
h.heidari@pgs.razi.ac.ir

Abstract — In this paper, we propose Petri net models for
processing elements. The processing elements include: a
general-purpose processor (GPP), a reconfigurable
element (RE), and a hybrid element (combining a GPP
with an RE). The models consist of many transitions and
places. The model and associated analysis methods
provide a promising tool for modeling and performance
evaluation of reconfigurable processors. The model is
demonstrated by considering a simple example. This
paper describes the development of a reconfigurable
processor; the developed system is based on the Petri net
concept. Petri nets are becoming suitable as a formal
model fo r hardware system design. Designers can use
Petri net as a modeling language to perform high level
analysis of complex processors designs processing chips.
The simulat ion does with PIPEv4.1 simulator. The
simulation results show that Petri net state spaces are
bounded and safe and have not deadlock and the average
of number tokens in first token is 0.9901 seconds. In
these models, there are only 5% errors; also the analysis
time in these models is 0.016 seconds.

Index Terms — Reconfigurable computing, Petri net
analysis, concurrent system.

I. INTRODUCTION

Reconfigurable computing has proven to be promising
technology to increase the performance of certain
algorithms in scientific and engineering applications in
recent years. Any application of iterat ive nature such as
image processing, digital signal processing,
bioinformat ics, cryptography and software defined radio
etc; can be mapped on an FPGA by programming it with
Hardware Descriptive Languages (HDLs). These
applications have certain kernels containing interactions
which are processed in parallel on the processing
elements on an FPGA defined by the HDL programmer.
The same applications can take much longer time, when
they are run on a General Purpose Processor (GPP) which
processes the iterative kernels in a sequential manner.
Traditionally, the grids utilize GPPs as their main
processing elements. Because of incorporation of the REs
in the grid network, there is need for appropriate models
for these new processing elements to investigate the
possibility of their utilizat ion for compute intensive
kernels of the grid applications. Many grid networks,

such as TeraGrid are incorporating reconfigurable
computing resources in addition to general-purpose
processors (GPPs) as processing elements and this
combination offers better performance and higher
flexibility. An approach to achieve high-performance
with flexibility is to utilize collaboration of reconfigurable
computing elements in grid networks.

Petri nets (PNs) provide a graphical tool as well as a
notational method for the formal specification of systems.
Petri nets were first introduced in 1966 to describe
concurrent systems. Every tool applied to the modeling
and analysis of computer systems has its place. Several
design methodologies for embedded systems based on
different formal models have been developed in recent
years. Example is the p roject Moses [1], which is based
on high level Petri nets. Many processes may be
described as a logical sequence of events. This has led the
authors, among others, to the development and use of
Petri nets as a tool for p rocess and condition monitoring
(PCM) [2-5]. Petri net provides powerful qualitative
analysis and quantitive analysis for specify ing behavior
and an executable notation. Petri net have a place in
computer systems performance assessment, ranging
somewhere between analytical queuing theory and
computer simulation. This is due to the nature of Petri
nets and their ability to model concurrency,
synchronization, mutual exclusion, conflict, and systems
state more completely than analytical models but not as
completely as simulations. Petri nets represent computer
systems by providing a mean to abstract the basic
elements of the system and its informat ional flow using
only four fundamental components.

Reconfigurable computing is turning into a suitable
technology for h igh-performance computing in scientific
research. An appropriate Petri net model for
reconfigurable elements along with general purpose
processors is essential for analytical performance
modeling of an applicat ion. There is need for promising
models fo r new processing elements to investigate the
possibility of their utilization for computing intensive
kernels of the applications. The results of simulations can
help in designing a system by saving a significant amount
of time and resources.

In this work, the development of a model, based on the
Petri net is proposed, we proposed theoretical model for
processors using Petri net. We simulated the proposed
models as part of a large network. The simulation results
suggest that the total average error rate for all models is

 Analysis of Reconfigurable Processors Using Petri Net 29

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 9, 28-36

less than 5%, also the analysis time in these models is
0.016 seconds.

The remainder of the paper is organized as follows:
Section II presents related research. Section III introduces
the related terminology. In section IV the proposed
models for processing components are presented. Section
V shows the simulation results. Finally, the conclusion is
provided in Section VI.

II. RELATED WORKS

In this section, we discuss some related work for the
modeling and simulation of reconfigurable processors.

In [6] an analytical model was proposed for
reconfigurable processors using the queuing theory. The
results show that the main limitation of such a system is
the reconfigurable time. The model, however, does not
take into account the modeling of memory modules
which must be considered in real scenarios. Some
developed abstract model for a reconfigurable computer,
[7] focused on the performance model for runtime
reconfigurable hardware accelerators. In a theoretical
analysis, the factors such as speedup, communication and
configuration overheads are considered, but this model
does not consider the utilization of the accelerator in a
network perspective. In [8] was proposed an abstract
model for a reconfigurable computer which utilized both
the GPP and the RE. In [9] a modeling for multiprocessor
system using Petri net proposed, and [10] focused a
model for a system using generalized stochastic Petri nets.

III. DEFINITION AND CONCEPTS

Petri net components are place, transition, arcs, and
token. Places are represented graphically as a circle,
transitions as a bar, arcs as directed line segments, and
tokens as dots (Figure 1). Places are used to represent
possible system components and their state. For example,
a disk drive could be represented using a place, as could a
program or other resource. Transitions are used to
describe events that may result in different system states.
For example, the action of reading an item from a disk
drive or the action of writ ing an item to a disk drive could
be modeled as separate transitions. Arcs represent the
relationships that exist between the transitions and places.
For example, d isk read requests may be put in one place,
and that place may be connected to the transition,
removing an item from a d isk thus indicating that this
place is related to the transition.

Arcs provide a path for the activation of a transition;
tokens are used to define the state of the Petri net.
Tokens in the basic Petri net model are non-descriptive
markers, which are stored in places and are used in
defining Petri net marking [11].

Figure 1: Basic Petri net Component

The marking of a Petri net place by the placement of a

token can be viewed as the statement of the condition of
the place. For example, a simple Petri net with only one
place and one transition is depicted in the Figure 2. The
place is connected to the transition by an arc, and the
transition is likewise connected to the place by a second
arc. The former arc is an input arc, while the latter arc is
an output arc. The placement of a token represents the
active marking of the Petri net state. The Petri net shown
in Figure 2 represents a net that will continue to cycle
forever. A Petri net is shown as a five tuple, M = (P, T, I,
O, MP), where P portrays a set of places, P = {p1, p2,…,
pn}, with one place for each circle in the Petri net graph;
T portrays a set of transitions, T = {t1, t2,…, tm}, with
one place fo r each bar in the Petri net graph; I shows sets
of input functions for all transitions and represents
mapping p laces to transitions; O shows sets of output
functions for all transitions and represents mapping
transitions to places and MP portrays the marking of
places with tokens. The initial marking is referred to as
MP0. For example, the Petri net graph depicted in Figure
3 can be represented using P = {p1, p2, p3,p4}, T = {t1,
t2, t3,t4}, I (t2) = {p4}, I (t3) = {p4}, I (t5) = {p1, p2}, O
(t1) = {p1}, O (t2) = {p2}, O (t3) = {t4}, O (t5) = {p2},
and MP = (0,0,0,0,0). Occam is a programming language
based on communication sequential process concurrent
computation model [12].

Figure 2: Example Perpetual Motion Petri net

t1

p1

arc

Transition t Place p

Token

30 Analysis of Reconfigurable Processors Using Petri Net

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 9, 28-36

Figure 3: Example of Petri net Graph

In this section, some basic definitions and notations of

ordinary PN are described whereas a PN is known as
ordinary when all of its arc weights are 1's. The related
terminology and notations are mostly taken from [13, 14].

Definition 1 (Petri net). A Petri net PN, is a five tuple,
PN = (P, T, I, O, M0) where P = {p1, p2, . . . , p |P|} is a
fin ite set of places, |P| > 0; T = {t1, t2, . . . , t |T|} is a
fin ite set of transitions, |T| > 0; I : T P is the input
function which is a mapping from t ransitions to the sets
of their input places; O : T P is the output function which
is a mapping from transitions to the sets of their output
places; where P T = and P T . For a transition tj T,
I (tj) and O (t j) represent the sets of input and output
places of tj respectively. A place pi P is the input place
of a transition tj if pi I(tj) and the output place of tj if pi
O(tj). The input and output functions can be extended to
map the set of places P into the set of transitions T such
as I: P T and O: P T. Then, I (pi) represent the set of input
transitions of place pi P and O (pi) represents the set of
output transitions of place p i P. The structure of a PN is
defined by a set of places, a set of transitions, an input
function and an output function. A PN structure without
M0 is denoted by N = (P, T, I, O). A PN structure N is
said to be strongly connected if and only if every node xj
P T is reachable from every other node xi P T by a
directed path. A PN structure N is said to be self-loop-
free or pure if and only if tj T, I (tj) O (t j) = , i.e., no
place can be both an input and an output of the same
transition. A marking is a function M: P N (non-negative
integers) and initial marking is denoted by M0. A PN
with given in itial marking is denoted by a pair (N,
M0).The set of all reachable markings from M0 is
denoted by R (M0) which is a definite set of markings of
PN such that, if Mk R (M0).

Definition 2 (Firing rule). The firing rule identifies the
transition enabling and the change of marking. Let M (p i)
be the number of tokens in place pi, then for t j T; tj is
enabled under marking M if and only if p i I (tj) : M (p i)
1. The change of marking M to M0 by firing the enabled
transition tj is denoted by M [tj>M' and defined for each
place pi P by:

M' (pi) =

Definition 3: for PN (N, M0) and M R (M0), let tj
and t1 are enabled at marking M, then tj and t1 are
concurrently enabled at M if and only if M (pi) O (pi)|
for pi I (tj) I (t1). It is noteworthy, if M enables both tj
and t1 then it is not necessarily true that tj and t1 are
concurrently enabled at M. For I (tj) I (t1) = , any
marking which enables tj and t1, enables them
concurrently.

IV. MODELING OF RECONFIGURABLE PROCESSOR USING
PETRI NET

In this section, we describe our proposed models for
reconfigurable processors. Reconfigurable computing
provides much more flexibility than Application -Specific
Integrated Circu its (ASICs) and much more performance
than General-Purpose Processors (GPPs). GPPs,
reconfigurable elements (RE) and hybrid (integration of
GPPs and REs) elements are the main processing
elements.

A. GPP Petri net Model
We have a central processing unit and a memory

module. The steps in the GPP Petri net model are:
1. The tasks are waiting in the CPU queue
2. The tasks are serviced by CPU
3. The tasks are going to the memory queue
4. The tasks are waiting in the memory queue
5. The tasks are serviced by memory
6. The tasks are going to the CPU queue
This operation is repeated. PN model of reconfigurable

processor for a GPP is shown in Figure 4. Corresponding
notations are described in table I and table II.

B.Proposed Model for Reconfigurable Processing
Elements

The proposed model for a RE consists of a
reconfigurable processor, memory module, and a
reconfigurable module. The steps in the reconfiguration
elements could be summarized as follows:

1. The tasks are waiting in the reconfigurable
processor queue

2. The tasks are waiting in the reconfigurable module
queue

3. The tasks are serviced by reconfigurable processor
4. The tasks are serviced by reconfigurable module
5. The tasks are going to the memory queue
6. The tasks are wait ing in the memory modules queue
7. The tasks are serviced by memory modules
8. The tasks are going to reconfigurable processor

queue or is going to reconfigurable module
This operation is repeated. PN model of

reconfigurable processor for a RE is shown in Figure 5.

t2

t5

t3

p1 p4

p3

p2

M (pi) – 1 for every pi I (tj),

M (pi) + 1 for every pi O (tj),

M (pi) otherwise

 Analysis of Reconfigurable Processors Using Petri Net 31

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 9, 28-36

Corresponding notations are described in table III and
table IV.

C.Proposed Model for a Hybrid Processing Element
The proposed model fo r a hybrid processing element

consists of a GPP and a RE. The steps in the
reconfiguration elements could be summarized as follows:

1. The tasks are waiting in the CPU queue
2. The tasks are waiting in the reconfigurable

processor queue
3. The tasks are waiting in the reconfigurable

module queue

4. The tasks are serviced by CPU
5. The tasks are services by reconfigurable

processor
6. The tasks are services by reconfigurable module
7. The tasks are going to the memory queue
8. The tasks are wait ing in the memory modules

queue
9. The tasks are serviced by memory modules
10. The tasks are going to CPU queue or

reconfigurable processor queue or reconfigurable
module queue.

Figure 4: Petri net Model for a GPP

TABLE I. NOTATION FOR THE PN OF THE FIGURE 4

Place Description
p1 Tasks entered in CPU queue
p2 Waiting in the CPU queue
p3 Waiting in the CPU queue completed
p4 Serviced by CPU
p5 Serviced by CPU completed
p6 Tasks are going to another queue
p7 Tasks are going to another queue completed
p8 Tasks are waiting in the memory queue
p9 Tasks are waiting in the memory queue completed
p10 Tasks are serviced by memory
p11 Tasks are serviced by memory completed
p12 Tasks are going to CPU queue
p13 Tasks are going to CPU queue completed

t1 t2
p2 p3 p4 p5 p6 p7 t3 t4 t5

t6

p1

t7

t8

t9

t10

t11

t12
 p8

p9

p10

p11

p12

p13

Controllable transitions

Hierarchical Places

Waiting in the CPU queue Serviced by CPU Tasks are going to another queue

Tasks are waiting in the memory queue Tasks are serviced by memory Tasks are going to CPU queue

32 Analysis of Reconfigurable Processors Using Petri Net

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 9, 28-36

Figure 5: Petri net Model for a RE

This operation is repeated. PN model of reconfigurable

processor for a hybrid processing element is shown in
Figure 6. Corresponding notations are described in table
V and table VI. Colored Petri nets add another dimension
to tokens as well as to selection criteria used in
determining firing by the addition of d ifferent token types.

Tokens can represent different functions. We can use
different tokens to represent operating system calls or
different classes of jobs. These different tokens can then
be used to determine which transition of mult iple
transitions available operates.

TABLE II. NOTATION ABOUT TRANSITION OF THE FIGURE 4

Transition Description
t1 Start entered tasks in the CPU queue
t2 End waiting in the CPU queue
t3 Start serviced by CPU
t4 End serviced by CPU
t5 Start tasks are going to another queue
t6 End tasks are going to another queue
t7 Start tasks are waiting in the memory queue
t8 End tasks are waiting in the memory queue
t9 Start tasks are serviced by memory
t10 End tasks are serviced by memory
t11 Start tasks are going to CPU queue
t12 End tasks are going to CPU queue

t1 t2
p2 p3 p4 p5 p6 p7 t3 t4 t5

t6

p1

t7

t8

t9

t10

t11

t12

 p8

p9

p10

p11

p12

p13

Controllable transitions

Hierarchical Places

Tasks are waiting in the reconf igurable module queue

Tasks are serviced by reconf igurable processor

Tasks are serviced by reconf igurable
module

Tasks are going to another queue Tasks are waiting in the memory modules queue

t13 t14
p14 p15

t15 t16
p16 p17

Tasks are serviced by memory
modules

Tasks are going to reconfigurable processor queue or is going to
reconf igurable module

Tasks are waiting in the reconfigurable processor queue

 Analysis of Reconfigurable Processors Using Petri Net 33

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 9, 28-36

Figure 6: Petri net Model for a hybrid processing element

TABLE III. NOTATION FOR THE PN OF THE FIGURE 5

Places Description
p1 Tasks entered in the reconfigurable processor queue
p2 Tasks are waiting in the reconfigurable processor queue
p3 Tasks are waiting in the reconfigurable processor queue completed
p4 Tasks are waiting in the reconfigurable module queue
p5 Tasks are waiting in the reconfigurable module queue completed
p6 Tasks are served by reconfigurable processor
p7 Tasks are served by reconfigurable processor completed
p8 Tasks are served by reconfigurable module
p9 Tasks are served by reconfigurable module completed
p10 Tasks are going to another queue
p11 Tasks are going to another queue completed
p12 Tasks are waiting in the memory module queue
p13 Tasks are waiting in the memory module queue completed
p14 Tasks are serviced by memory modules
p15 Tasks are serviced by memory modules completed
p16 Tasks are going to reconfigurable processor queue or is going to reconfigurable module
p17 Tasks are going to reconfigurable processor queue or is going to reconfigurable module completed

t1 t2
p2 p3 p4 p5 p6 p7 t3 t4 t5

t6

p1

t7

t8

t9

t10

t11

t12

 p8

p9

p10

p11

p12

p13

Controllable transitions

Hierarchical Places

t13 t14
p14 p15

t15 t16
p16 p17

t17

t18

t19

t20

p18

p19

p20

p21

Tasks are waiting in the CPU queue Tasks are waiting in the reconfigurable processor queue

Tasks are waiting in the reconfigurable module queue

Tasks are serviced by the CPU Tasks are serviced by the reconfigurable processor

Tasks are going to another queue Tasks are waiting in the memory modules queue

Tasks are serviced in the memory modules

34 Analysis of Reconfigurable Processors Using Petri Net

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 9, 28-36

TABLE IV. NOTATION ABOUT TRANSITION OF THE FIGURE 5
Transition Description

t1 Start entered tasks in the reconfigurable processor queue
t2 End tasks are waiting in the reconfigurable processor queue
t3 Start tasks are waiting in the reconfigurable module queue
t4 End tasks are waiting in the reconfigurable module queue
t5 Start tasks are serviced by reconfigurable processor
t6 End tasks are serviced by reconfigurable processor
t7 Start tasks are serviced by reconfigurable module
t8 End tasks are serviced by reconfigurable module
t9 Start tasks are going to another queue
t10 End tasks are going to another queue
t11 Start tasks are waiting in the memory modules queue
t12 End tasks are waiting in the memory modules queue
t13 Start tasks are serviced by memory modules
t14 End tasks are serviced by memory modules
t15 Start tasks are going to reconfigurable processor queue or is going to reconfigurable module
t16 End tasks are going to reconfigurable processor queue or is going to reconfigurable module

TABLE V. NOTATION ABOUT TRANSITION OF THE FIGURE 6

Places Description
p1 Tasks entered in the CPU queue
p2 Tasks are waiting in CPU queue
p3 Tasks are waiting in the CPU queue completed
p4 Tasks are waiting in the reconfigurable processor queue
p5 Tasks are waiting in the reconfigurable processor queue completed
p6 Tasks are waiting in the reconfigurable module queue
p7 Tasks are waiting in the reconfigurable module queue completed
p8 Tasks are served by CPU
p9 Tasks are served by CPU completed
p10 Tasks are served by reconfigurable processor
p11 Tasks are served by reconfigurable processor completed
p12 Tasks are served by reconfigurable module
p13 Tasks are served by reconfigurable module completed
p14 Tasks are going to another queue
p15 Tasks are going to another queue completed
p16 Tasks are waiting in the memory module queue
p17 Tasks are waiting in the memory module queue completed
p18 Tasks are serviced by memory modules
p19 Tasks are serviced by memory modules completed
p20 Tasks are going to CPU queue or reconfigurable processor queue or is going to reconfigurable module queue
p21 Tasks are going to CPU queue or reconfigurable processor queue or is going to reconfigurable module queue completed

TABLE VI. NOTATION ABOUT TRANSITION OF THE FIGURE 6

Transition Description
t1 Start entered tasks in the CPU queue
t2 End tasks are waiting in the CPU queue
t3 Start tasks are waiting in the reconfigurable processor queue
t4 End tasks are waiting in the reconfigurable processor queue
t5 Start tasks are waiting in the reconfigurable module queue
t6 End tasks are waiting in the reconfigurable module queue
t7 Start tasks are serviced by CPU
t8 End tasks are serviced by CPU
t9 Start tasks are serviced by reconfigurable processor

t10 End tasks are serviced by reconfigurable processor
t11 Start tasks are serviced by reconfigurable module
t12 End tasks are serviced by reconfigurable module
t13 Start tasks are going to another queue
t14 End tasks are going to another queue
t15 Start tasks are waiting in the memory modules queue
t16 End tasks are waiting in the memory modules queue
t17 Start tasks are serviced by memory modules
t18 End tasks are serviced by memory modules
t19 Start tasks are going to CPU queue or reconfigurable processor queue or is going to reconfigurable module
t20 End tasks are going to CPU queue or reconfigurable processor queue or is going to reconfigurable module

 Analysis of Reconfigurable Processors Using Petri Net 35

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 9, 28-36

V. SIMULATION AND EXPERIMENT

The open queuing model in our prev ious work was
validated by computing the average response time results
using Maple v.13 analytically and compared with those
generated experimentally using OMNeT++ simulator.
The service rate of GPP (µGPP) varies between 1 and 80,
whereas the speedup of RE is taken as 5, Therefore, the
service rate of RE was set to 5xµGPP. Generally, a RE
requires a reconfiguration fo r a set of incoming tasks. In
our experiments we assumed that, for each 1000
incoming tasks, one reconfiguration i s needed. The total
average error for GPP and RE models for all arrival rates
is 2.86% and 2.67%, respectively. These percentage
values of error were calcu lated by dividing total sum of
error rates for each model by the respective arrival rates.
The simulation results for average response time fo r all
two models are in accordance with the average response
time results computed analytically within a range of less
than 5% relat ive error.

The proposed models were validated by computing the
analysis time using PIPEv4.1 simulator. The simulat ion
result shows that Petri net state spaces are bounded and
safe and have not deadlock. The average of number
tokens in first token is 0.9901 seconds. In these models,
there are only 5% errors; also the analysis time in these
models is 0.016 seconds. The Petri net invariant analysis
results are provided in the table VII.

TABLE VII. PETRI NET INVARIENT ANALYSIS RESULTS

In our models, there are sixteen p laces, p0 is first place,

and the average number of tokens in each place is
depicted in bellow. The simulat ion results are depicted in
the table VIII. The average number of tokens in first
place is 0.9901, the average number of tokens in another
places is zero. The simulat ion result in our models is
shown that there is 95% confidence interval.

TABLE VIII. PETRI NET INVARIENT ANALYSIS RESULTS

Place Average number of
tokens

95% confidence
interval (+/-)

P0 0.9901 0
P1 0 0
P2 0 0
P3 0 0
P4 0 0
P5 0 0
P6 0 0
P7 0 0
P8 0 0
P9 0 0
P10 0 0

P11 0 0
P12 0 0
P13 0 0
P14 0 0
P15 0 0

VI. CONCLUSIONS

In this paper, based on Petri net model, we proposed
Petri net models for the p rocessing element. The
proposed models can be useful in implementing the real
grid networks with RE as one of the processing elements.
In our models, the average of number tokens in first token
is 0.9901 seconds and there are only 5% erro rs, also the
analysis time in these models is 0.016 seconds.

REFERENCES

[1] “The Moses Project”.
http://www.t ik.ee.ethz.ch/~moses/

[2] S.K. Yang, T.S. Liu, A Petri-net approach to early
failure detection and isolation for preventive
maintenance, Quality and Reliability Engineering
International 14 (1998) 319–330.

[3] P.W. Prickett, R.I. Grosvenor, Non-sensor based
mach ine tool and cutting process condition
monitoring, International Journal of COMADEM 2
(1) (1999) 31–37.

[4] A.D. Jennings, D. Nowatschek, P.W. Prickett, V.R.
Kennedy, J.R. Turner, R.I. Grosvenor, Petri net
Based Process Monitoring, in : Proceedings of
COMADEM, Houston, USA, 3–8 December 2000,
MFPT Society,, Virgin ia, 2000.

[5] P. Prickett, R. Grosvenor, A Petri-net based machine
tool failure diagnosis system, Journal o f Quality in
Maintenance Engineering 18 (30) (1995) 47–57.

[6] F. Lotfifar, S. Shahhiseini, “Performance Modeling
of Part ially Reconfigurable Computing Systems”, In
Proc. of the 6th IEEE/ACS International Conference
Systems and Applications (AICCSA), pp. 94-99,
2008.

[7] G. Wang, et al., "A Performance Model for Run-
Time Reconfigurable Hardware Accelerator", In
Proc. of the 8th International Symposium on
Advanced Parallel Processing Technologies (APPT),
pp. 54-66, 2009.

[8] U. Vishkin, et al., "Handbook of Parallel Computing:
Models, Algorithms and Applicat ions", in the
chapter “A Hierarchical Performance Model for
Reconfigurable Computers”, CRC Press, 2007.

[9] Tabak, D. Lewis, "Petri net representation of
decision models”, IEEE Trans, on S. M. C, pp 812-
818, 1989.

[10] M. A. Marsan et al., "Modeling with generalized
stochastic Petri nets", in Wiley Series in Parallel
Computing. New York: Wiley, 1995.

[11] Computer systems performance evaluation and
prediction, P.J. Fourier and H.E. Michel, Dig ital
press 2003.

http://www.tik.ee.ethz.ch/~moses/�

36 Analysis of Reconfigurable Processors Using Petri Net

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 9, 28-36

[12] C. A. R, Hoare, Communication Sequential
Processes, Prentice-Hall, 1985.

[13] T. Murata, Petri net analysis and application,
Proceedings of IEEE 77 (1989) 541-580.

[14] J.L. Peterson, Petri net Theory and the Modeling of
Systems, Prentice-Hall, Englewood Cliffs, NJ, 1981.

AUTHO RS’ PROFILE

Hadis Heidari is currently a M.Sc.
student in Razi University of
Kermanshah, Iran. She obtained her B.S.
in Computer Engineering from the same
University in 2011. She was the first rank
of students in Computer Engineering in
the Razi University. Her research
interests are in the fields of operating

systems, computer networks, reconfigurable computing
and image processing.

	I. Introduction
	II. Related works
	III. definition and concepts
	IV. modeling of reconfigurable processor using petri net
	C.Proposed Model for a Hybrid Processing Element
	V. Simulation and experiment
	VI. Conclusions
	References

	Authors’ Profile

