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Abstract — The RSA cryptosystem, invented by Ron 
Rivest, Adi Shamir and Len Adleman was first publicized 
in the August 1977 issue of Scientific American.  The 
security level of this algorithm very much depends on 
two large prime numbers. To  check the primality  of large 
number in personal computer is huge time consuming 
using the best known trial d ivision algorithm. The t ime 
complexity for primality testing has been reduced using 
the representation of divisors in  the form of 6n±1. 
According to the fundamental theorem of Arithmetic, 
every number has unique factorization. So to check 
primality, it is sufficient to check if the number is 
divisible by any prime below the square root of the 
number. The set of divisors obtained by 6n±1 form 
representation contains many composites. These 
composite numbers have been reduced by 30k approach. 
In this paper, the number of composites has been further 
reduced using 210k approach. A performance analysis in 
time complexity has been given between  210k approach 
and other prior applied methods. It has been observed that 
the time complexity for primality testing has been 
reduced using 210k approach.  
 
Index Terms — Improved Trial Div ision, RSA 
Algorithm, Primality Checking, Pseudo primes, 210k 
Approach 
 

I.  INTRODUCTION 

The requirements of information security within an  
organization have undergone two major changes in the 
last few decades. With the introduction of the computer 
the lead of automated tools for protecting files and other 
informat ion stored on the computer became evident, 
especially the case for a shared system. The RSA 
algorithm is the most popular and proven asymmetric key 
cryptographic algorithm [1]. The importance of 
asymmetric key  cryptography is that, the private key does 
not to be shared on the network. Only the public key is 
shared [10]. A more formal definit ion of asymmetric 
cryptosystem may be given as: A cryptosystem consisting 
of a set of enciphering transformations {Ee} and a set of 
deciphering transformations {Dd} is called a Public-key 
Cryptosystem or an Asymmetric Cryptosystem if, for 
each key pair (e, d), the enciphering key e, called the 
public key, is made publicly available, while the 

deciphering key d, called the private key, is kept secret. 
The cryptosystem must satisfy the property that it is 
computationally  infeasible to compute d  from e [16]. The 
RSA algorithm first requires two sufficiently large primes 
to be chosen [11]. For this purpose the primality tests on 
the numbers has to be computed. The trial d ivision 
algorithm has been considered which can be used both for 
primality testing and factorization of numbers [12]. The 
time complexity fo r the algorithm has been reduced each 
time with each new approach [4] from slightly higher 
than ½√n to 1/3√n to 4/15√n with the application of 30k 
method [9]. On a modern workstation, and very roughly 
speaking, numbers that can be proved prime v ia trial 
division in one minute do not exceed 13 decimal d igits. 
However the time is reduced and for an 18 decimal d igits 
number, it  takes about 1 hour 5mins. Th is is a  
considerable gain. Also the time is further reduced to 
50mins (not considering the time for finding the 
multip licat ive order) [7]. The t ime is drastically  reduced 
to less than 3 mins.  

The Fermat’s method is very efficient in finding the 
factors of a number which are close to the square root of 
the number. Thus the worst case for trial d ivision is the 
best case for Fermat’s method [15]. In  this regard, 
experiments prove that Fermat’s method is inferior to 
trial division for primality testing as the square of the 
difference increase rap idly. The aim of using Miller-
Rabin algorithm is to check the primality of a given 
number using trial d ivision with the set of primes instead 
of the set of pseudo primes [3] where the number of 
composites increases exponentially. This however also 
proved to be ineffective as an extra overhead occurs in 
separating the primes from composites. On the other hand, 
Miller-Rabin algorithm may be used to first check the 
given number is prime or not. If the given number passes 
the Miller-Rabin test, then it should be checked with trial 
division. The reason is that, if a number fails the Miller-
Rabin  test then the number is surely a composite number. 
But however if it passes the test the number may be prime 
or composite. It is in this case that must be checked with 
trial div ision. 

In this paper, the time complexity of the best known 
trial div ision algorithm so far, has been further reduced 
by 210k approach.  In 210k approach, the divisors in the 
set of pseudo primes have been represented by a set of 
linear polynomials. The coefficients of the polynomials 
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have been computed using the GCD of the numbers 
below square root of the given number to 210.  The 
reason behind it is that the ratio of φ(n)/n is lowest for 
210 compared to other numbers below 210. A table has 
been indicated that the number of possible primes below 
a given number [13]. This approach has reduced the 
number of pseudo primes that is the number of pseudo 
primes are close to the number of primes shown in Table 
1[13]. Finally, a  comparison has been made between 
210k method and other applied methods.  After finding 
the primes, RSA algorithm has been implemented and the 
algorithm has been applied on different types of files with 
different sizes. 

This paper is div ided into the following parts. Article 1 
is the introduction. Article 2 describes the RSA algorithm.  
Article 3 provides the primality checking methods and 
how they can be implemented efficiently. Article 4 
describes the facts and algorithms and also the algorithm 
for finding  square root of a large number expressed as 
string. The Article No. 5 is the implementation. This part 
is the vital part of the project as it distinguishes the 
various algorithms used based on the time complexity. 
Article 6 is the part for future works based on the 
conclusions from this paper. A list of references is 
provided at the end. 

 

II.  RSA ALGORITHM 

The RSA algorithm involves three steps: key  
generation, encryption and decryption. Each step is 
described below in sections A, B and C. 

A. KeyGeneration 
RSA involves a public key and a private key. The 

public key can be known to everyone and is used for 
encrypting messages. Messages encrypted with the public 
key can only be decrypted using the private key. The keys 
for the RSA algorithm are generated the following way: 

Choose two distinct prime numbers p and q. For 
security purposes, the integers p and q should be chosen 
uniformly at random and should be of similar bit-length. 
Prime integers can be efficiently found using a Primality 
test. Compute n = p*q. n is used as the modulus for both 
the public and private keys. Compute the totient: φ(n) = 
(p-1)*(q-1). Choose an integer e such that 1<e< φ(n), and 
e and φ(n) are coprime. e is released as the public key 
exponent. Choosing e [2, 6] having a short addition chain  
results in more efficient encryption. Determine d (using 
modular arithmetic) which satisfies the congruence 
relation d*e ≡ 1(mod φ(n)). d is kept as the private key 
exponent. The public key  consists of the modulus n and 
the public (or encryption) exponent e. The private key 
consists of the modulus n and the private (or decryption) 
exponent d which must be kept secret. 

B. Encryption 
Alice transmits her public key (n,e) to  Bob and keeps 

the private key secret. Bob then wishes to send message 
M to Alice. He first turns M into an integer 0<m< n by 
using an agreed-upon reversible protocol known as a 

padding scheme. He then computes the ciphertext c  
corresponding to: c≡me(mod  n). This can be done quickly  
using the method of exponentiation by squaring. Bob then 
transmits c to Alice [17]. 

C. Decryption 
Alice can recover m from c by using her private key  

exponent d by the following computation: m≡cd(mod n). 
Given m, she can recover the original message M by 
reversing the padding scheme. 

The above decryption procedure works because: 
 

m≡( me)d(mod n) ≡med(mod n). 
 

Now, since e*d=1+k* φ(n),  
 

med≡m1+k*φ(n) ≡m*(mk) φ(n) ≡m(mod n) 
 
The last congruence directly follows from Euler’s 

theorem when m is relatively  prime to n. By using the 
Chinese remainder theorem it can be shown that the 
equations hold for all m. Th is shows that the original 
message is retrieved: 

 
cd≡m(mod n). 

 

D. RSA Conjecture 
The famous RSA conjecture states that Cryptanalyzing  

RSA must be as difficult as factoring. 
However, there is no known proof of this conjecture, 

although the general consensus is that it is valid. The 
reason for the consensus is that the only known method 
for finding  d given e is to apply the extended Euclidean 
algorithm to e and φ(n). Yet to compute φ(n), we need to 
know p and q, namely, to cryptanalyze the RSA 
cryptosystem, we must be able to factor n. To break RSA, 
or rather to recover the plaintext from decrypted text, 
factorization may  not be the only possible way. There are 
several kinds of attacks on RSA. For example an instance 
of chosen ciphertext attack demons treated in paper [18]. 
It is common to take the ascii value of the text  as 
plaintext and encrypt it. The attacker may not have to 
know the private key or do any factorizat ion on n and. He 
simply runs a loop and finds the plain text. The t ime 
complexity  is shown. Another common attack is the short 
private key  exponent attack. In this case, the value of d is 
chosen is small, so that again the attacker can run a loop 
and decrypt the message. The attacks which are discussed, 
the former one may be prevented by using efficient 
padding and the second one may be solved using a short 
public key. The variable padding scheme not only 
removes the weakness of chosen cipertexts, but also 
protects the message from another kind  of attack known 
as the frequency attack. RSA as it  is known that for a 
given plaint text  it will produce the same cipher text  fo r a 
given pair of (n, e). The idea for variable n -padding is to 
completely remove the frequency attack. For the second 
kind of attack, along with choosing large primes p and q, 
one must also choose e to be small. This is because, for 
the fact that e and d satisfies the relation e*d=1+k* φ(n). 
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If one chooses e to be small then, d  will be at the order of 
φ(n)/e. As n is large so is φ(n). Thus it makes d large.  

Both the types of attack do  not involve factorization  of 
n. Now, coming to the difficu lty of factorizat ion of n, the 
primes of RSA algorithm must be chosen carefully so that 
it will be difficult to factor. The obvious thought would 
com to choose the two primes as close as possible. But it  
is also very much prone to factorization using Fermat’s 
method. The number which is hard to factor using trial 
division is as simple for Fermat’s method. Fermat’s 
method acts backwards in comparison to trial d ivision 
which acts forward. The next section describes how 
Fermat’s method works. 

 

III. PRIMALITY CHECKING METHODS  

A. The Fermat’s method 
If one can write n in the form a2 − b2, where a, b  are 

nonnegative integers, then one can immediately factor n 
as (a + b)(a − b ). If a  − b  > 1, then the factorization is 
nontrivial [14]. Further, every factorization of every odd 
number n arises in this way. Indeed, if n is odd and n = uv, 
where u, v are positive integers, then n = a2 − b2 with a  = 
½ (u + v) and b = ½|u − v|. 

For example, consider n = 8051. The first square above 
n is 8100 = 902, and the difference to n is 49 = 72. So  
8051 = (90 + 7)(90 − 7) = 97 · 83. To formalize this as an 
algorithm, we take trial values of the number a from the 
sequence ceil(√n2), ceil(√n2)+ 1, . . . and check whether 
a2−n is a square. If it is, say b2, then we have n = a2−b2 = 
(a+b)(a−b).  

Each iterat ions of Fermat’s method reduces the upper 
bound for trial div ision by √n -√(a2−n). This reduction in  
the upper bound means for less complexity  in  trial 
division as computing the square root every time is very 
very costly operations. The method is effective for 
factorization but poor for primality checking because it 
will always execute the worst case scenario of this 
algorithm. 

B. M iller-Rabin Algorithm 
The Miller–Rabin primality test or Rabin–Miller 

primality test is a primality test: an algorithm which 
determines whether a given number is prime [5]. Its 
original version, due to Gary L. Miller, is deterministic, 
but the determin ism relies on the unproven generalized 
Riemann hypothesis; Michael O. Rab in modified  it  to 
obtain an unconditional probabilistic  algorithm. The 
pseudo code for the algorithm is presented below. 

Algorithm for the Miller-Rabin Probabilistic Primality  
Test 

 
Miller-Rabin(n,t)   
INPUT: An odd integer n > 1 and a positive 

security parameter t   
OUTPUT: the answer “COMPOSITE” or 

“PRIME”   
  

Write n - 1 = 2sr such that r is odd   

Repeat from 1 to t   
Choose a random integer a which satisfies 
 1 < a < n - 1   

  
Compute y = ar mod n   
If y > 1 and y < n-1 then DO   

  
j := 1   
WHILE j < s and y < n - 1 then DO  

  
y := y2 mod n   
if y  = 1 then return(“COMPOSITE”)   
j := j + 1  

  
if y  < n - 1 then return(“COMPOSITE”)  
return(“PRIME”). 
  

IV.  FACTS DATA AND ALGORITHMS 

A. Fact 1: 
Every prime number is any of the either forms 30k+1, 

30k+7, 30k+11, 30k+13, 30k+17, 30k+19, 30k+23, 
30k+29 apart from 2, 3, 5. The above fact is true for 30k 
approach. This set of linear polynomials can  be reduced 
by using the below set of polynomials in the case of 210k 
approach. Every prime number is any of the either of the 
below forms apart from 2, 3, 5 and 7. 
 
210k+11, 210k+13, 210k+17, 210k+19, 210k+23, 
210k+29, 210k+31, 210k+37, 210k+41, 210k+43, 
210k+47, 210k+53, 210k+59, 210k+61, 210k+67, 
210k+71, 210k+73, 210k+79, 210k+83, 210k+89, 
210k+97, 210k+101, 210k+103, 210k+107, 210k+109, 
210k+113, 210k+121, 210k+127, 210k+131, 210k+137, 
210k+139, 210k+143, 210k+149, 210k+151, 210k+157, 
210k+163, 210k+167, 210k+169, 210k+173, 210k+179, 
210k+181, 210k+187, 210k+191, 210k+193, 210k+197, 
210k+199, 210k+209 
 

Proof: From the div ision algorithm, any integer can be 
expressed in any of the forms. 

For a given number n  
 

n = q*d+r 
 
where q  is the quotient, d is the div isor and r is the 
remainder. Here d is prime. So the set of numbers 
generated as a result of this equation is the set of pseudo 
primes for d if and only if gcd (d,r)=1. 

The set of numbers which cannot be expressed as an 
explicit  product of two  numbers among the above 
numbers, are the set of pseudo primes. The set of primes 
except 2, 3, 5 and 7 is a subset of the pseudo primes.  
Hence proved. 

B. Choosing the value for which set  of pseudo primes are 
generated. 

The number 30 is so chosen so that the ratio  of the 
number o f elements of the set of pseudo primes to the 
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number is least. Another example of such a number is 12 
for which the number of elements of pseudo primes is 4. 
However 4/12 =1/3 =2/6 which is the same as the primes 
expressed as 6k±1. Choosing 12 thus gives us no extra 
advantage. But choosing 30, the ratio is 8/30=4/15<1/3. 
For the number 210, this ratio  is reduced to 4/15*6/7= 
8/35. Th is advantage in turn reduces the time complexity  
shown in the results (Section V).  The table [Table 1] 
shows the number of primes below x defined by the 
function pi(x). 

The data for the below table is taken from the internet 
and is assumed to be correct. Further calculat ions are 
made assuming the correctness of the data provided in 
table I [13]. 

 

 
C. Algorithm for Square root 

1. Take the input number as String 
2. Compute the length of the number. 
3. If the length is odd go to step 5. 
4. If the length is even go to step 6. 
5. Compute the square root of the first dig it using the 

available square root method and add (lengh-1)/2 zeros 
and next go to step 7. 

6. Compute the square root of the first two d igits using 
the available square root method and add (length – 2)/2 
zeros and next go to step 7. 

7. From the second place from left 1 is added and 
multip lied  by itself to  check whether it is greater than the 
given number. Once it is greater the previous number is 
restored and manipulation is done for the next dig it until 
the units’ place arrives. 

D.  Improved Trial division 
1. Take the given number as java.lang.math.BigInteger 

[8]. 

2. Compute the Miller-Rab in test as described the 
algorithm 3.2 

3. If the number fails the Miller-Rabin  test return 
composite. 
   4. If the number passes the Miller-Rabin test go to step 

5. 
5. Compute the modulo with successive values of the 

pseudo prime sets and increasing the count. 
6. Each t ime the modulo is considered below the lower 

bound of square root of n. 
7. If it is zero return composite else return prime. 

 

V. RESULTS 

A. Number o f composites for each Approach 
This section details the results obtained by the use of 

the above mentioned technique. The numbers of 
composites are computed based the fact obtained from 
Table 1. Finally the time required for each are computed 
and depicted in the table 3. Comparisons are also made 
showing the efficiency of the above ment ioned technique. 

B. RSA Example 
The following example demonstrates the RSA 

algorithm. 
 
P=45310159786437928331, q= 70228961500618843931,  
n=p*q = 
3182085467228637408294035624555852309161 
φ(n) = (p-1)*(q-1) = 
3182085467228637408178496503268795536900 
Choose e = 757, such that d = 
2080756018861526442600205771622263924393 
 

Encryption 
Plain text  
Improved Trial d ivision with other methods for 

primality checking in RSA Algorithm. 
Encrypted text  

 
2187717888271082115657598202822593854486 
2094957440981465180005425290113127677599 
2441552423251817602653936715377315678684 
971800371121278542986050073332786589738 
2884037197356820817095270609196309664603 
2207268391862251396880712252389204064261 
772681732471832165569423765746037262090 
2802959384322644829963951923881409550112 
80357202921803978330368348229338242533 
1829647827363985483809677734551794793752 
971800371121278542986050073332786589738 
1318269330279187339217980874276166483343 
1604643270511594169231922413874563065262 
761856378431955540348517493691780746615 
80357202921803978330368348229338242533  

TABLE I. TAKEN FROM 
HTTP://PRIMES.U TM.EDU/HOWMANY.SHTML ON 12.09.2012 

Sl 
No 

x pi(x) 

1 1 × 101 4 
2 1 × 102 25 
3 1 × 103 168 
4 1 × 104 1,229 
5 1 × 105 9,592 
6 1 × 106 78,498 
7 1 × 107 664,579 
8 1 × 108 5,761,455 
9 1 × 109 50,847,534 

10 1 × 1010 455,052,511 
11 1 × 1011 4,118,054,813 
12 1 × 1012 37,607,912,018 
13 1 × 1013 346,065,536,839 
14 1 × 1014 3,204,941,750,802 
15 1 × 1015 29,844,570,422,669 
16 1 × 1016 279,238,341,033,925 
17 1 × 1017 2,623,557,157,654,233 
18 1 × 1018 24,739,954,287,740,860 
19 1 × 1019 234,057,667,276,344,607 
20 1 × 1020 2,220,819,602,560,918,840 
21 1 × 1021 21,127,269,486,018,731,928 
22 1 × 1022 201,467,286,689,315,906,290 
23 1 × 1023 1,925,320,391,606,803,968,923 
24 1 × 1024 18,435,599,767,349,200,867,866 
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2802959384322644829963951923881409550112 
1318269330279187339217980874276166483343 
2207268391862251396880712252389204064261131826
9330279187339217980874276166483343 
2810315011685597722786164651368617218860 
1318269330279187339217980874276166483343 
2884037197356820817095270609196309664603 
2675437138876851168416256073695826170349 
80357202921803978330368348229338242533 
1654055379167895797578384756844735038268 
1318269330279187339217980874276166483343 
789293103987398374790245357507314232978 
1779855900031666726072016326828737105399 
80357202921803978330368348229338242533 
2884037197356820817095270609196309664603 
789293103987398374790245357507314232978 
1779855900031666726072016326828737105399 
772681732471832165569423765746037262090 
971800371121278542986050073332786589738 
80357202921803978330368348229338242533 
2094957440981465180005425290113127677599 

772681732471832165569423765746037262090 
789293103987398374790245357507314232978 
1779855900031666726072016326828737105399 
2884037197356820817095270609196309664603 
2802959384322644829963951923881409550112 
2810315011685597722786164651368617218860 
80357202921803978330368348229338242533 
897082554088968940791461829015501971424 
2884037197356820817095270609196309664603 
971800371121278542986050073332786589738 
80357202921803978330368348229338242533 
2441552423251817602653936715377315678684 
971800371121278542986050073332786589738 
1318269330279187339217980874276166483343 
2094957440981465180005425290113127677599 
1604643270511594169231922413874563065262 
761856378431955540348517493691780746615 
1318269330279187339217980874276166483343 
789293103987398374790245357507314232978 
2129855640900820856509773396779314456537 
80357202921803978330368348229338242533 
2430399895991345806690086588344484585695 
1779855900031666726072016326828737105399 
772681732471832165569423765746037262090 
2430399895991345806690086588344484585695 
2677467002691067105871255981026629326523 
1318269330279187339217980874276166483343 
2675437138876851168416256073695826170349 
1443920989383541629663026420844857552213 
80357202921803978330368348229338242533 
1318269330279187339217980874276166483343 
2675437138876851168416256073695826170349 
80357202921803978330368348229338242533 
2520748065686772398889309293290726794198 
985918902304417468083655066925617894933 
1708403870386847777879653029653886535352 
80357202921803978330368348229338242533 
1708403870386847777879653029653886535352 
761856378431955540348517493691780746615 
1443920989383541629663026420844857552213 
2884037197356820817095270609196309664603 
971800371121278542986050073332786589738 
1318269330279187339217980874276166483343 
789293103987398374790245357507314232978 
1779855900031666726072016326828737105399 
2094957440981465180005425290113127677599 
1802345906757163408144528490262651983897 
 

Decrypted text  
Improved Trial d ivision with other methods for 

primality checking in RSA Algorithm. 

C. Time taken in primality checking and time taken for 
encryption/decryption 

TABLE II 
NUMBER OF COMPOSITES IN THE SET OF PSEUDO PRIMES FOR 6K 

AND 30K VS. 210K APPROACH 
Sl 
No 

6k Method 30k Method 210k Method 
No of 

Composites 
No of 

Composites 
No of 

Composites 
1 1 1 0 
2 10 4 1 
3 167 101 64 
4 2106 1440 1060 
5 23743 17077 13269 
6 254837 188171 150077 
7 2668756 2002090 1621139 
8 27571880 20905214 17095691 
9 282485801 215819135 177723898 

10 2878280824 2211614158 1830661778 
11 29215278522 22548619856 18739094905 
12 29572542131

7 
229058754651 190963516557 

13 29872677964
96 

2320601129830 193964874887
9 

14 30128391582
533 

23461724915867 196522011063
44 

15 30348876291
0666 

23682209624400
0 

198726858148
763 

16 30540949922
99410 

23874283256327
44 

200647594468
0364 

17 30709776175
679102 

24043109509012
436 

202335856994
88628 

18 30859337904
5592475 

24192671237892
5809 

203831474283
687715 

19 30992756660
56988728 

24326089993903
22062 

205165661843
7941111 

20 31112513730
772414495 

24445847064105
747829 

206363232545
81938306 

21 31220606384
7314601407 

24553939718064
7934741 

207444159085
409839504 

22 31318660466
44017427045 

24651993799773
50760379 

208424699902
4969807999 

23 31408012941
72652936441

2 

24741346275059
862697746 

209318224655
36053173938 

24 31489773356
59841324654

69 

24823106689931
7465798803 

210135828804
079370560709 
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VI CONCLUSIONS AND FUTURE WORKS 

In this paper, the number of composites is reduced in  
the set of pseudo primes, and the numbers have been 
produced by this approach is almost close to the number 
of exact primes with a g iven range of numbers. As the 
number o f composites has been reduced, the performance 
of the algorithm has been improved in terms of time 
complexity. But the primes cannot be eliminated 
completely. It should be investigated the growth pattern 
of primes within the pseudo prime set. It will help to 
guide us the approach for choosing the optimized 
polynomial set for generating pseudo primes. Steps 
should also be taken to reduce the complexity of the 
exit ing program such as suppressing logs and 
intermediate steps to calculate and compute the time 
complexity  of the algorithm. It also needs investigation 
for any improvement may be done regarding the design 
pattern of the existing program or software used to 
calculate the time.  
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