
I. J. Computer Network and Information Security, 2013, 9, 51-57
Published Online July 2013 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ ijcn is.2013.09.07

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 9, 51-57

Improved Trial Division Technique for Primality
Checking in RSA Algorithm

Kumarjit Banerjee, Satyendra Nath Mandal, San joy Kumar Das
Systems Engineer- Tata Consultancy Services, Dept. of I.T, Kalyani Govt. Engg College, Kalyani, Nad ia (W.B), India

University of Kalyani, Nadia (W.B), India
kumarjit .banerjee@tcs.com, satyen_kgec@rediffmail.com, dassanjoy0810@hotmail.com

Abstract — The RSA cryptosystem, invented by Ron
Rivest, Adi Shamir and Len Adleman was first publicized
in the August 1977 issue of Scientific American. The
security level of this algorithm very much depends on
two large prime numbers. To check the primality of large
number in personal computer is huge time consuming
using the best known trial d ivision algorithm. The t ime
complexity for primality testing has been reduced using
the representation of divisors in the form of 6n±1.
According to the fundamental theorem of Arithmetic,
every number has unique factorization. So to check
primality, it is sufficient to check if the number is
divisible by any prime below the square root of the
number. The set of divisors obtained by 6n±1 form
representation contains many composites. These
composite numbers have been reduced by 30k approach.
In this paper, the number of composites has been further
reduced using 210k approach. A performance analysis in
time complexity has been given between 210k approach
and other prior applied methods. It has been observed that
the time complexity for primality testing has been
reduced using 210k approach.

Index Terms — Improved Trial Div ision, RSA
Algorithm, Primality Checking, Pseudo primes, 210k
Approach

I. INTRODUCTION

The requirements of information security within an
organization have undergone two major changes in the
last few decades. With the introduction of the computer
the lead of automated tools for protecting files and other
informat ion stored on the computer became evident,
especially the case for a shared system. The RSA
algorithm is the most popular and proven asymmetric key
cryptographic algorithm [1]. The importance of
asymmetric key cryptography is that, the private key does
not to be shared on the network. Only the public key is
shared [10]. A more formal definit ion of asymmetric
cryptosystem may be given as: A cryptosystem consisting
of a set of enciphering transformations {Ee} and a set of
deciphering transformations {Dd} is called a Public-key
Cryptosystem or an Asymmetric Cryptosystem if, for
each key pair (e, d), the enciphering key e, called the
public key, is made publicly available, while the

deciphering key d, called the private key, is kept secret.
The cryptosystem must satisfy the property that it is
computationally infeasible to compute d from e [16]. The
RSA algorithm first requires two sufficiently large primes
to be chosen [11]. For this purpose the primality tests on
the numbers has to be computed. The trial d ivision
algorithm has been considered which can be used both for
primality testing and factorization of numbers [12]. The
time complexity fo r the algorithm has been reduced each
time with each new approach [4] from slightly higher
than ½√n to 1/3√n to 4/15√n with the application of 30k
method [9]. On a modern workstation, and very roughly
speaking, numbers that can be proved prime v ia trial
division in one minute do not exceed 13 decimal d igits.
However the time is reduced and for an 18 decimal d igits
number, it takes about 1 hour 5mins. Th is is a
considerable gain. Also the time is further reduced to
50mins (not considering the time for finding the
multip licat ive order) [7]. The t ime is drastically reduced
to less than 3 mins.

The Fermat’s method is very efficient in finding the
factors of a number which are close to the square root of
the number. Thus the worst case for trial d ivision is the
best case for Fermat’s method [15]. In this regard,
experiments prove that Fermat’s method is inferior to
trial division for primality testing as the square of the
difference increase rap idly. The aim of using Miller-
Rabin algorithm is to check the primality of a given
number using trial d ivision with the set of primes instead
of the set of pseudo primes [3] where the number of
composites increases exponentially. This however also
proved to be ineffective as an extra overhead occurs in
separating the primes from composites. On the other hand,
Miller-Rabin algorithm may be used to first check the
given number is prime or not. If the given number passes
the Miller-Rabin test, then it should be checked with trial
division. The reason is that, if a number fails the Miller-
Rabin test then the number is surely a composite number.
But however if it passes the test the number may be prime
or composite. It is in this case that must be checked with
trial div ision.

In this paper, the time complexity of the best known
trial div ision algorithm so far, has been further reduced
by 210k approach. In 210k approach, the divisors in the
set of pseudo primes have been represented by a set of
linear polynomials. The coefficients of the polynomials

52 Improved Trial Division Technique for Primality Checking in RSA Algorithm

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 9, 51-57

have been computed using the GCD of the numbers
below square root of the given number to 210. The
reason behind it is that the ratio of φ(n)/n is lowest for
210 compared to other numbers below 210. A table has
been indicated that the number of possible primes below
a given number [13]. This approach has reduced the
number of pseudo primes that is the number of pseudo
primes are close to the number of primes shown in Table
1[13]. Finally, a comparison has been made between
210k method and other applied methods. After finding
the primes, RSA algorithm has been implemented and the
algorithm has been applied on different types of files with
different sizes.

This paper is div ided into the following parts. Article 1
is the introduction. Article 2 describes the RSA algorithm.
Article 3 provides the primality checking methods and
how they can be implemented efficiently. Article 4
describes the facts and algorithms and also the algorithm
for finding square root of a large number expressed as
string. The Article No. 5 is the implementation. This part
is the vital part of the project as it distinguishes the
various algorithms used based on the time complexity.
Article 6 is the part for future works based on the
conclusions from this paper. A list of references is
provided at the end.

II. RSA ALGORITHM

The RSA algorithm involves three steps: key
generation, encryption and decryption. Each step is
described below in sections A, B and C.

A. KeyGeneration
RSA involves a public key and a private key. The

public key can be known to everyone and is used for
encrypting messages. Messages encrypted with the public
key can only be decrypted using the private key. The keys
for the RSA algorithm are generated the following way:

Choose two distinct prime numbers p and q. For
security purposes, the integers p and q should be chosen
uniformly at random and should be of similar bit-length.
Prime integers can be efficiently found using a Primality
test. Compute n = p*q. n is used as the modulus for both
the public and private keys. Compute the totient: φ(n) =
(p-1)*(q-1). Choose an integer e such that 1<e< φ(n), and
e and φ(n) are coprime. e is released as the public key
exponent. Choosing e [2, 6] having a short addition chain
results in more efficient encryption. Determine d (using
modular arithmetic) which satisfies the congruence
relation d*e ≡ 1(mod φ(n)). d is kept as the private key
exponent. The public key consists of the modulus n and
the public (or encryption) exponent e. The private key
consists of the modulus n and the private (or decryption)
exponent d which must be kept secret.

B. Encryption
Alice transmits her public key (n,e) to Bob and keeps

the private key secret. Bob then wishes to send message
M to Alice. He first turns M into an integer 0<m< n by
using an agreed-upon reversible protocol known as a

padding scheme. He then computes the ciphertext c
corresponding to: c≡me(mod n). This can be done quickly
using the method of exponentiation by squaring. Bob then
transmits c to Alice [17].

C. Decryption
Alice can recover m from c by using her private key

exponent d by the following computation: m≡cd(mod n).
Given m, she can recover the original message M by
reversing the padding scheme.

The above decryption procedure works because:

m≡(me)d(mod n) ≡med(mod n).

Now, since e*d=1+k* φ(n),

med≡m1+k*φ(n) ≡m*(mk) φ(n) ≡m(mod n)

The last congruence directly follows from Euler’s

theorem when m is relatively prime to n. By using the
Chinese remainder theorem it can be shown that the
equations hold for all m. Th is shows that the original
message is retrieved:

cd≡m(mod n).

D. RSA Conjecture
The famous RSA conjecture states that Cryptanalyzing

RSA must be as difficult as factoring.
However, there is no known proof of this conjecture,

although the general consensus is that it is valid. The
reason for the consensus is that the only known method
for finding d given e is to apply the extended Euclidean
algorithm to e and φ(n). Yet to compute φ(n), we need to
know p and q, namely, to cryptanalyze the RSA
cryptosystem, we must be able to factor n. To break RSA,
or rather to recover the plaintext from decrypted text,
factorization may not be the only possible way. There are
several kinds of attacks on RSA. For example an instance
of chosen ciphertext attack demons treated in paper [18].
It is common to take the ascii value of the text as
plaintext and encrypt it. The attacker may not have to
know the private key or do any factorizat ion on n and. He
simply runs a loop and finds the plain text. The t ime
complexity is shown. Another common attack is the short
private key exponent attack. In this case, the value of d is
chosen is small, so that again the attacker can run a loop
and decrypt the message. The attacks which are discussed,
the former one may be prevented by using efficient
padding and the second one may be solved using a short
public key. The variable padding scheme not only
removes the weakness of chosen cipertexts, but also
protects the message from another kind of attack known
as the frequency attack. RSA as it is known that for a
given plaint text it will produce the same cipher text fo r a
given pair of (n, e). The idea for variable n -padding is to
completely remove the frequency attack. For the second
kind of attack, along with choosing large primes p and q,
one must also choose e to be small. This is because, for
the fact that e and d satisfies the relation e*d=1+k* φ(n).

 Improved Trial Division Technique for Primality Checking in RSA Algorithm 53

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 9, 51-57

If one chooses e to be small then, d will be at the order of
φ(n)/e. As n is large so is φ(n). Thus it makes d large.

Both the types of attack do not involve factorization of
n. Now, coming to the difficu lty of factorizat ion of n, the
primes of RSA algorithm must be chosen carefully so that
it will be difficult to factor. The obvious thought would
com to choose the two primes as close as possible. But it
is also very much prone to factorization using Fermat’s
method. The number which is hard to factor using trial
division is as simple for Fermat’s method. Fermat’s
method acts backwards in comparison to trial d ivision
which acts forward. The next section describes how
Fermat’s method works.

III. PRIMALITY CHECKING METHODS

A. The Fermat’s method
If one can write n in the form a2 − b2, where a, b are

nonnegative integers, then one can immediately factor n
as (a + b)(a − b). If a − b > 1, then the factorization is
nontrivial [14]. Further, every factorization of every odd
number n arises in this way. Indeed, if n is odd and n = uv,
where u, v are positive integers, then n = a2 − b2 with a =
½ (u + v) and b = ½|u − v|.

For example, consider n = 8051. The first square above
n is 8100 = 902, and the difference to n is 49 = 72. So
8051 = (90 + 7)(90 − 7) = 97 · 83. To formalize this as an
algorithm, we take trial values of the number a from the
sequence ceil(√n2), ceil(√n2)+ 1, . . . and check whether
a2−n is a square. If it is, say b2, then we have n = a2−b2 =
(a+b)(a−b).

Each iterat ions of Fermat’s method reduces the upper
bound for trial div ision by √n -√(a2−n). This reduction in
the upper bound means for less complexity in trial
division as computing the square root every time is very
very costly operations. The method is effective for
factorization but poor for primality checking because it
will always execute the worst case scenario of this
algorithm.

B. M iller-Rabin Algorithm
The Miller–Rabin primality test or Rabin–Miller

primality test is a primality test: an algorithm which
determines whether a given number is prime [5]. Its
original version, due to Gary L. Miller, is deterministic,
but the determin ism relies on the unproven generalized
Riemann hypothesis; Michael O. Rab in modified it to
obtain an unconditional probabilistic algorithm. The
pseudo code for the algorithm is presented below.

Algorithm for the Miller-Rabin Probabilistic Primality
Test

Miller-Rabin(n,t)
INPUT: An odd integer n > 1 and a positive

security parameter t
OUTPUT: the answer “COMPOSITE” or

“PRIME”

Write n - 1 = 2sr such that r is odd

Repeat from 1 to t
Choose a random integer a which satisfies
 1 < a < n - 1

Compute y = ar mod n
If y > 1 and y < n-1 then DO

j := 1
WHILE j < s and y < n - 1 then DO

y := y2 mod n
if y = 1 then return(“COMPOSITE”)
j := j + 1

if y < n - 1 then return(“COMPOSITE”)
return(“PRIME”).

IV. FACTS DATA AND ALGORITHMS

A. Fact 1:
Every prime number is any of the either forms 30k+1,

30k+7, 30k+11, 30k+13, 30k+17, 30k+19, 30k+23,
30k+29 apart from 2, 3, 5. The above fact is true for 30k
approach. This set of linear polynomials can be reduced
by using the below set of polynomials in the case of 210k
approach. Every prime number is any of the either of the
below forms apart from 2, 3, 5 and 7.

210k+11, 210k+13, 210k+17, 210k+19, 210k+23,
210k+29, 210k+31, 210k+37, 210k+41, 210k+43,
210k+47, 210k+53, 210k+59, 210k+61, 210k+67,
210k+71, 210k+73, 210k+79, 210k+83, 210k+89,
210k+97, 210k+101, 210k+103, 210k+107, 210k+109,
210k+113, 210k+121, 210k+127, 210k+131, 210k+137,
210k+139, 210k+143, 210k+149, 210k+151, 210k+157,
210k+163, 210k+167, 210k+169, 210k+173, 210k+179,
210k+181, 210k+187, 210k+191, 210k+193, 210k+197,
210k+199, 210k+209

Proof: From the div ision algorithm, any integer can be
expressed in any of the forms.

For a given number n

n = q*d+r

where q is the quotient, d is the div isor and r is the
remainder. Here d is prime. So the set of numbers
generated as a result of this equation is the set of pseudo
primes for d if and only if gcd (d,r)=1.

The set of numbers which cannot be expressed as an
explicit product of two numbers among the above
numbers, are the set of pseudo primes. The set of primes
except 2, 3, 5 and 7 is a subset of the pseudo primes.
Hence proved.

B. Choosing the value for which set of pseudo primes are
generated.

The number 30 is so chosen so that the ratio of the
number o f elements of the set of pseudo primes to the

54 Improved Trial Division Technique for Primality Checking in RSA Algorithm

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 9, 51-57

number is least. Another example of such a number is 12
for which the number of elements of pseudo primes is 4.
However 4/12 =1/3 =2/6 which is the same as the primes
expressed as 6k±1. Choosing 12 thus gives us no extra
advantage. But choosing 30, the ratio is 8/30=4/15<1/3.
For the number 210, this ratio is reduced to 4/15*6/7=
8/35. Th is advantage in turn reduces the time complexity
shown in the results (Section V). The table [Table 1]
shows the number of primes below x defined by the
function pi(x).

The data for the below table is taken from the internet
and is assumed to be correct. Further calculat ions are
made assuming the correctness of the data provided in
table I [13].

C. Algorithm for Square root

1. Take the input number as String
2. Compute the length of the number.
3. If the length is odd go to step 5.
4. If the length is even go to step 6.
5. Compute the square root of the first dig it using the

available square root method and add (lengh-1)/2 zeros
and next go to step 7.

6. Compute the square root of the first two d igits using
the available square root method and add (length – 2)/2
zeros and next go to step 7.

7. From the second place from left 1 is added and
multip lied by itself to check whether it is greater than the
given number. Once it is greater the previous number is
restored and manipulation is done for the next dig it until
the units’ place arrives.

D. Improved Trial division
1. Take the given number as java.lang.math.BigInteger

[8].

2. Compute the Miller-Rab in test as described the
algorithm 3.2

3. If the number fails the Miller-Rabin test return
composite.
 4. If the number passes the Miller-Rabin test go to step

5.
5. Compute the modulo with successive values of the

pseudo prime sets and increasing the count.
6. Each t ime the modulo is considered below the lower

bound of square root of n.
7. If it is zero return composite else return prime.

V. RESULTS

A. Number o f composites for each Approach
This section details the results obtained by the use of

the above mentioned technique. The numbers of
composites are computed based the fact obtained from
Table 1. Finally the time required for each are computed
and depicted in the table 3. Comparisons are also made
showing the efficiency of the above ment ioned technique.

B. RSA Example
The following example demonstrates the RSA

algorithm.

P=45310159786437928331, q= 70228961500618843931,
n=p*q =
3182085467228637408294035624555852309161
φ(n) = (p-1)*(q-1) =
3182085467228637408178496503268795536900
Choose e = 757, such that d =
2080756018861526442600205771622263924393

Encryption
Plain text
Improved Trial d ivision with other methods for

primality checking in RSA Algorithm.
Encrypted text

2187717888271082115657598202822593854486
2094957440981465180005425290113127677599
2441552423251817602653936715377315678684
971800371121278542986050073332786589738
2884037197356820817095270609196309664603
2207268391862251396880712252389204064261
772681732471832165569423765746037262090
2802959384322644829963951923881409550112
80357202921803978330368348229338242533
1829647827363985483809677734551794793752
971800371121278542986050073332786589738
1318269330279187339217980874276166483343
1604643270511594169231922413874563065262
761856378431955540348517493691780746615
80357202921803978330368348229338242533

TABLE I. TAKEN FROM
HTTP://PRIMES.U TM.EDU/HOWMANY.SHTML ON 12.09.2012

Sl
No

x pi(x)

1 1 × 101 4
2 1 × 102 25
3 1 × 103 168
4 1 × 104 1,229
5 1 × 105 9,592
6 1 × 106 78,498
7 1 × 107 664,579
8 1 × 108 5,761,455
9 1 × 109 50,847,534

10 1 × 1010 455,052,511
11 1 × 1011 4,118,054,813
12 1 × 1012 37,607,912,018
13 1 × 1013 346,065,536,839
14 1 × 1014 3,204,941,750,802
15 1 × 1015 29,844,570,422,669
16 1 × 1016 279,238,341,033,925
17 1 × 1017 2,623,557,157,654,233
18 1 × 1018 24,739,954,287,740,860
19 1 × 1019 234,057,667,276,344,607
20 1 × 1020 2,220,819,602,560,918,840
21 1 × 1021 21,127,269,486,018,731,928
22 1 × 1022 201,467,286,689,315,906,290
23 1 × 1023 1,925,320,391,606,803,968,923
24 1 × 1024 18,435,599,767,349,200,867,866

 Improved Trial Division Technique for Primality Checking in RSA Algorithm 55

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 9, 51-57

2802959384322644829963951923881409550112
1318269330279187339217980874276166483343
2207268391862251396880712252389204064261131826
9330279187339217980874276166483343
2810315011685597722786164651368617218860
1318269330279187339217980874276166483343
2884037197356820817095270609196309664603
2675437138876851168416256073695826170349
80357202921803978330368348229338242533
1654055379167895797578384756844735038268
1318269330279187339217980874276166483343
789293103987398374790245357507314232978
1779855900031666726072016326828737105399
80357202921803978330368348229338242533
2884037197356820817095270609196309664603
789293103987398374790245357507314232978
1779855900031666726072016326828737105399
772681732471832165569423765746037262090
971800371121278542986050073332786589738
80357202921803978330368348229338242533
2094957440981465180005425290113127677599

772681732471832165569423765746037262090
789293103987398374790245357507314232978
1779855900031666726072016326828737105399
2884037197356820817095270609196309664603
2802959384322644829963951923881409550112
2810315011685597722786164651368617218860
80357202921803978330368348229338242533
897082554088968940791461829015501971424
2884037197356820817095270609196309664603
971800371121278542986050073332786589738
80357202921803978330368348229338242533
2441552423251817602653936715377315678684
971800371121278542986050073332786589738
1318269330279187339217980874276166483343
2094957440981465180005425290113127677599
1604643270511594169231922413874563065262
761856378431955540348517493691780746615
1318269330279187339217980874276166483343
789293103987398374790245357507314232978
2129855640900820856509773396779314456537
80357202921803978330368348229338242533
2430399895991345806690086588344484585695
1779855900031666726072016326828737105399
772681732471832165569423765746037262090
2430399895991345806690086588344484585695
2677467002691067105871255981026629326523
1318269330279187339217980874276166483343
2675437138876851168416256073695826170349
1443920989383541629663026420844857552213
80357202921803978330368348229338242533
1318269330279187339217980874276166483343
2675437138876851168416256073695826170349
80357202921803978330368348229338242533
2520748065686772398889309293290726794198
985918902304417468083655066925617894933
1708403870386847777879653029653886535352
80357202921803978330368348229338242533
1708403870386847777879653029653886535352
761856378431955540348517493691780746615
1443920989383541629663026420844857552213
2884037197356820817095270609196309664603
971800371121278542986050073332786589738
1318269330279187339217980874276166483343
789293103987398374790245357507314232978
1779855900031666726072016326828737105399
2094957440981465180005425290113127677599
1802345906757163408144528490262651983897

Decrypted text
Improved Trial d ivision with other methods for

primality checking in RSA Algorithm.

C. Time taken in primality checking and time taken for
encryption/decryption

TABLE II
NUMBER OF COMPOSITES IN THE SET OF PSEUDO PRIMES FOR 6K

AND 30K VS. 210K APPROACH
Sl
No

6k Method 30k Method 210k Method
No of

Composites
No of

Composites
No of

Composites
1 1 1 0
2 10 4 1
3 167 101 64
4 2106 1440 1060
5 23743 17077 13269
6 254837 188171 150077
7 2668756 2002090 1621139
8 27571880 20905214 17095691
9 282485801 215819135 177723898

10 2878280824 2211614158 1830661778
11 29215278522 22548619856 18739094905
12 29572542131

7
229058754651 190963516557

13 29872677964
96

2320601129830 193964874887
9

14 30128391582
533

23461724915867 196522011063
44

15 30348876291
0666

23682209624400
0

198726858148
763

16 30540949922
99410

23874283256327
44

200647594468
0364

17 30709776175
679102

24043109509012
436

202335856994
88628

18 30859337904
5592475

24192671237892
5809

203831474283
687715

19 30992756660
56988728

24326089993903
22062

205165661843
7941111

20 31112513730
772414495

24445847064105
747829

206363232545
81938306

21 31220606384
7314601407

24553939718064
7934741

207444159085
409839504

22 31318660466
44017427045

24651993799773
50760379

208424699902
4969807999

23 31408012941
72652936441

2

24741346275059
862697746

209318224655
36053173938

24 31489773356
59841324654

69

24823106689931
7465798803

210135828804
079370560709

56 Improved Trial Division Technique for Primality Checking in RSA Algorithm

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 9, 51-57

VI CONCLUSIONS AND FUTURE WORKS

In this paper, the number of composites is reduced in
the set of pseudo primes, and the numbers have been
produced by this approach is almost close to the number
of exact primes with a g iven range of numbers. As the
number o f composites has been reduced, the performance
of the algorithm has been improved in terms of time
complexity. But the primes cannot be eliminated
completely. It should be investigated the growth pattern
of primes within the pseudo prime set. It will help to
guide us the approach for choosing the optimized
polynomial set for generating pseudo primes. Steps
should also be taken to reduce the complexity of the
exit ing program such as suppressing logs and
intermediate steps to calculate and compute the time
complexity of the algorithm. It also needs investigation
for any improvement may be done regarding the design
pattern of the existing program or software used to
calculate the time.

REFERENCES

[1] Ron L. Rivest, Adi Shamir, and Len Adleman, “A
method for obtain ing digital Signatures and public-
key cryptosystems”, Communications of the ACM
21 (1978), pp 120-126.

[2] Boneh and Durfee, “Cryptanalysis of RSA with
private key d less than n0.292”, IEEETIT: IEEE
Transactions on Informat ion Theory, Volume 46,
Issue 4, Ju l 2000 pp. 1339 – 1349.

[3] C. Pomerance, J. L. Selfridge and Wagstaff, Jr., S. S.,
“The pseudoprimes to 25•109”, Math. Comp.,
35:151 (1980) pp. 1003–1026.

[4] Mandal N. Satyendra, Banerjee Kumarjit, Maiti
Biswajit, Palchaudhury J. , “Modified Trail d ivision
for Implementation of RSA Algorithm with Large
Integers”, Int. Journal Advanced Networking and
Applications Volume: 01, Issue: 04, Pages: 210-216
(2009)..

[5] Michael O. Rabin, “Probabilistic algorithm for
testing primality”, Journal of Number Theory,
Volume 12 Issue no. 1, pp. 128–138 (1980)..

TABLE III
COMPARISON BETWEEN TIMES FOR PRIME CHECK OF THE

PREVIOUS ALGORITHM AND WITH THIS DETERMINISTIC APPROACH
(TIME VERY LARGE MOSTLY GREATER THAN 2 HOURS IS NOT

MENTIONED)
Dig
its

Prime [1] [2] 6k 30k 210k

3 101 < 1 < 1 <1 <1 <1
3 751 < 1 < 1 <1 <1 <1
4 1201 < 1 < 1 <1 <1 <1
4 9091 < 1 < 1 <1 <1 <1
5 10753 < 1 < 1 <1 <1 <1
5 76801 < 1 < 1 <1 <1 <1
6 160001 < 1 < 1 <1 <1 <1
6 980801 < 1 < 1 <1 <1 <1
7 1146881 < 1 < 1 <1 <1 <1
7 9011201 < 1 < 1 <1 <1 <1
8 12600001 < 1 < 1 <1 <1 <1
8 99328001 < 1 < 1 <1 <1 <1
9 104857601 < 1 < 1 <1 <1 <1
9 756100001 < 1 < 1 <1 <1 <1

10 1027200001 < 1 < 1 <1 <1 <1
10 9524994049 1 < 1 <1 <1 <1
11 10256250001 1 < 1 <1 <1 <1
11 97656250001 2 1 <1 <1 <1
12 100907200001 2 1 <1 <1 <1
12 947147262401 3 2 <1 <1 <1
13 1079916250001 5 2 <1 <1 <1
13 9982699110401 8 6 <1 <1 <1
14 1212375000000

1
10 9 <1 <1 <1

14 8777078800000
1

25 25 1 < 1 < 1

15 1017026948628
49

53 54 2 1 1

15 9443774090444
81

113 88 6 4 4

16 1136591040000
001

127 106 6 4 4

16 9502720000000
001

305 257 19 14 12

17 1213600000000
0001

702 518 22 16 14

17 9534827397120
0001

1410 1110 63 47 40

18 1006632960000
00001

1630 1126 65 48 41

18 9088000000000
00001

3990 2980 198 146 125

19 1000000000000
000003

~ ~ 208 153 132

19 9999999999999
999961

~ ~ 693 502 426

20 1000000000000
0000051

~ ~ 728 506 429

20 9999999999999
9999989

~ ~ 2861 2120 1816

21 1000000000000
00000039

~ ~ 2969 2139 1891

21 9999999999999
99999899

~ ~ ~ ~ 6901

22 1000000000000
000000117

~ ~ ~ ~ 6902

TABLE IV
TIME TO ENCRYPT AND DECRYPT DIFFERENT TYPES OF FILES

Size of file Type of
file

Time to encrypt
in secs

Time to decrypt
in secs

1 KB txt 2 1
10 KB txt 12 6

14.5 KB gif 18 8
44.1 KB mp3 51 22
100 KB doc 97 42
100 KB txt 123 54
121 KB pdf 150 65
427 KB jpg 590 226
1 MB doc 1054 450
1 MB txt 1225 595

47.7 MB VOB 6325 2787

 Improved Trial Division Technique for Primality Checking in RSA Algorithm 57

Copyright © 2013 MECS I.J. Computer Network and Information Security, 2013, 9, 51-57

[6] M. Wiener, “Cryptanalysis of short rsa secret
exponents”, IEEE Transactions on Informat ion
Theory 36 (1990), pp.553-558.

[7] Banerjee Kumarjit, Mandal N. Satyendra,
Palchaudhury J, Banerjee Abhishek, “A
Deterministic Approach in Trial Division with
Pseusdoprimes for RSA Implementation with Large
Numbers”, IJCSES International Journal of
Computer Sciences and Engineering Systems, Vol.5,
No.1, January 2011.

[8] Guicheng Shen, Bingwu Liu, Xuefeng Zheng,
“Research on Fast Implementation of RSA with
Java”, Nanchang, P. R. China, May 22-24, 2009, pp.
186-189.

[9] Banerjee Kumarjit , Mandal Satyendra Nath, Das
Sanjoy Kumar, “A Comparative Study of Different
Techniques for Prime Testing in Implementation of
RSA”, ISSN No. 2229-6611, IEMCON 2012, Vol. 2,
No. 2, pp 42-47.

[10] David M. Burton, “Elementary Number Theory (2nd
ed)”, pp 175-181, Universal Books Stall, New Delh i,
(2004).

[11] Whitfield Diffie and Martin E. Hellman, “New
directions in cryptography”, IEEE Transactions on
Information Theory IT-22, no. 6, 1976, pp644-654.

[12] Tatsuaki Okamoto and Shigenori Uchiyama, “A new
public key cryptosystem as secure as factoring”,
Lecture notes in Computer Science 1403 (1998),
308-318. MR 1 729 059.

[13] The Prime Pages-prime number research, records
and resources, available at
http://primes.utm.edu/howmany.shtml last accessed
12.09.2012.

[14] Richard Crandall and Carl Pomerance, “Prime
Numbers A Computational (Second Edition)”, pp.
83-113 and pp 173-179 and pp 225-227,Springer
ISBN-10: 0-387-25282-7,New York(2005).

[15] Song. Y Yan, “Cryptanalytic Attacks on RSA”,pp
55-93 and pp 149-187,Springer ISBN-13: 978-0-387-
48741-0,New York (2008).

[16] Hinek M. Jason, “Cryptanalysis of RSA and Its
Variants”, pp 8-10 and pp 17-23, CRC Press, New
York (2010).

[17] Mollin A. Richard, “RSA and Public-Key
Cryptography”, pp 53-108, CRC Press LLC, New
York (2003).

[18] Mandal N. Satyendra, Banerjee Kumarjit,
Palchaudhury J., Implementation of RSA Algorithm
with variab le n-padding technique and Miller-Rabin
test for Auto-generated Large keys from System
Date, Proceedings of the 5th National Conference;
INDIACom-2011.

Satyendra Nath Mandal (23/10/1975)
has received his B.Tech & M.Tech in
Computer Science & Engineering from
university of Calcutta, West Bengal
India. He is now working as an
assistant professor in department of
Information Technology at Kalyani
Govt. Engg. College , Kalyani , Nadia,

West Bengal, India. His field of research areas includes
cryptography & network Security, fuzzy logic, Art ificial
Neural Network, Genetic Algorithm etc. He has about 35
research papers in national and International conferences.
His six research papers have been published in
International journal.

Kumarjit Banerjee (27/08/1986) has
received his B. Tech degree in
Computer Science and Engineering
form West Bengal University of
Technology, West Bengal, India. His
field of interest includes Image
Processing, Number Theory and

Artificial Intelligence. He has published six papers in
international Conference. His two research papers have
been published in International journal.

Dr. Sanjoy Das is presently working
as a Scientific Officer of Department
of Engineering And Technological
Studies at University of Kalyani,
Kalyani, Nad ia, West Bengal India-
741235

	kumarjit.banerjee@tcs.com, satyen_kgec@rediffmail.com, dassanjoy0810@hotmail.com
	I. Introduction
	II. RSA algorithm
	III. PRimality checking methods

	Write n - 1 = 2sr such that r is odd
	Compute y = ar mod n
	IV. Facts data and algorithms
	V. RESULTS
	The following example demonstrates the RSA algorithm.
	Encryption
	Plain text
	Encrypted text
	Decrypted text
	VI CONclusions and future works
	References

