
I.J. Computer Network and Information Security, 2014, 11, 56-63
Published Online October 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2014.11.08

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 11, 56-63

Detection Block Model for SQL Injection Attacks

Diksha G. Kumar
Pillai‘s Institute of Information Technology, Navi Mumbai, 410216, India

Email: gautam.diksha@gmail.com

Madhumita Chatterjee
Pillai‘s Institute of Information Technology, Navi Mumbai, 410216, India

Email: mchatterjeee@mes.ca.in

Abstract—With the rapid development of Internet, more

and more organizations connect their databases to the

Internet for resource sharing. However, due to

developers' lack of knowledge of all possible attacks, web

applications become vulnerable to multiple attacks. Thus

the network databases could face multiple threats. Web

applications generally consist of a three tier architecture

where database is in the third pole, which is the most

valuable asset in any organization. SQL injection is an

attack technique in which specially crafted input string is

entered in user input field. It is submitted to server and

result is returned to the user. In SQL injection

vulnerability, the database server is forced to execute

malicious operations which may cause the data loss or

corruption, denial of access, and unauthentic access to

sensitive data by crafting specific inputs. An attacker can

directly compromise the database, and that is why this is

a most threatening web attack. SQL injection attack

occupies first position in top ten vulnerabilities as

specified by Open Web Application Security Project. It is

probably the most common Website vulnerability today.

Current scenarios which provide solutions to SQL

injection attack either have limited scope i.e. can‘t be

implemented across all platforms, or do not cover all

types of SQL injection attacks. In this work we

implement Message Authentication Code (MAC) based

solution against SQL injection attacks. The model works

both on client and server side. Client side implements a

filter function and server side is based on information

theory. MAC of static and dynamic queries is compared

to detect SQL injection attack.

Index Terms—SQL injection, information theory,

entropy, web attacks, database security.

I. INTRODUCTION

SQL Injection Attacks are command-injection attacks

where the attacker injects a malicious SQL query into

back-end database through web application interface. The

back-end database executes the injected SQL statement

and sends the corresponding execution results back to the

attacker. The attacker could submit malicious SQL

commands directly to the back-end database to extract

confidential information or even obtain the root privilege

of database.

SQL Injection (SQLI) is a wide spread vulnerability

commonly found in web-based programs. Exploitations

of SQL injection vulnerabilities lead to harmful

consequences such as authentication bypassing and

leakage of sensitive personal information. It is probably

the most common Website vulnerability found today.

According to web Cohort report almost 92% of web

applications are subjected to some type of attack, among

them 60% are SQLIA. Tools such as firewalls and

Intrusion Detection Systems (IDSs) are ineffective

against SQLIAs, because ports which are open in

firewalls for regular web traffic in the application level

are used to perform SQLIAs.

Many techniques have been proposed to detect SQLI

attacks [15]. These include input character filtering or

input validation [2], hybrid encryption [3], randomization

of SQL keywords [4], translation and validation [5],

statement sequence digest [6], semantic comparison [7],

removal of attributes and comparison[8] etc. However, all

these approaches do not cover up all known SQL

injection attacks and also cannot be implemented across

all platforms [17].

Above mentioned approaches do not detect SQLI

attacks by measuring complexity of the query. As a result,

most of the approaches work well for known malicious

inputs and may not detect unknown attacks [14]. Our

proposed solution is based on the fact that query with

malicious input will change the complexity of the query.

Thus, measuring a query complexity statically and

observing any deviation at runtime should provide us an

indication of the occurrence of an SQLI attack.

This motivation leads us to a technique to detect SQLI

based on complexity of query. Information theory is a

widely used concept to measure the complexity of real

world phenomenon and has been applied to tackle many

network security related problems.

In this paper, we present an information-theoretic

approach to detect SQLI attacks. Proposed system works

both on client and server side. Client side implements a

filter program that checks the length and data type of the

submitted variables, and detect the injection-sensitive

characters and keywords. Client side plays preliminary

examination and gives warning. Server side works in two

phases – training and detection. Entropy of each query

which represents complexity of the query in the

application is calculated statically in training phase and

again dynamically when query is submitted. Message

 Detection Block Model for SQL Injection Attacks 57

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 11, 56-63

Authentication Code (MAC) algorithm is applied on both

static and dynamic entropy. A dynamic query with an

attack alters its intended structure and hence the entropy

level changes significantly which will change the

corresponding MAC value. In contrast, a dynamic query

with benign inputs does not result in any changes of the

MAC value. Attack is detected by comparing MAC

values generated statically and dynamically. Change in

values signals SQL injection. Existing system works

mainly on server side only by including client side we

can save on network traffic and can avoid round trips to

the server. Simple attacks or a typing mistake by user

would be stopped then and there at client side. Proposed

system provides additional security by adding MAC in

the system which provides integrity and authentication

[9]. If an application stores entropy directly then entropy

database becomes vulnerable to attack. Our application

stores MAC of entropy instead of storing entropy directly

which secures the entropy value. Even if the attack is on

MAC database, the entropy value cannot be retrieved

since the MAC encryption key is not known to the

attacker.

The paper is organized as follows: Section II covers

background information on SQLIA. In section III related

work is discussed. In section IV model‘s framework is

discussed in detail along with algorithm and its

advantages. Section V covers implementation and

evaluation. In section VI results are discussed. Section

VII draws the conclusions and discusses limitations and

future work.

II. BACKGROUND OF SQL INJECTION ATTACK

Web-based programs store and retrieve sensitive

information from databases by executing SQL queries,

which include user supplied inputs that are not sanitized

properly before being included in dynamically generated

queries. As a result, the intended structures of dynamic

queries get altered and provides a loophole for SQL

Injection (SQLI) attacks. The consequence of SQLI

attacks could be devastating. Altered queries due to SQLI

attacks might (i) add, delete or modify data (ii) run

additional queries, (iii) insert, update, or delete new tables,

and (vi) create or delete arbitrary tables.

A. Injection Mechanisms and Intention

An attacker can insert SQL command in to user input

field in many different ways like injection through user

input, Injection through cookies, Injection through server

variables, Second-order injection.

As classified by Halfond et al [11] attacks can be

characterized based on the goal, or intent of the attack --

Identifying injectable parameters, performing database

finger-printing, determining database schema, extracting

data, adding or modifying data, performing denial of

service, evading detection, bypassing authentication,

executing remote commands, and performing privilege

escalation.

B. Types of SQL injection Attack

This section presents type of SQLIAs known till date.

Different types of attacks are not preformed in isolation.

To completely attack the system attackers perform attack

in sequence depending on the goal of the attack. Attacker

can first perform interference or logically incorrect attack

for database fingerprinting followed by tautology for

bypassing authentication and then piggy backed or any

other depending on the attack target.

Tautologies

Attack Intent: Bypassing authentication, identifying

injectable parameters, extracting data.

Description: The general goal of a tautology-based

attack is to inject code in one or more conditional

statements so that they always evaluate to true. The

consequences of this attack depend on how the results of

the query are used within the application. The most

common usages are to bypass authentication pages and

extract data. In this type of injection, an attacker exploits

an injectable field that is used in a query‘s WHERE

condition. Transforming the conditional into a tautology

causes all of the rows in the database table targeted by the

query to be returned.

Union Query

Attack Intent: Bypassing Authentication, extracting

data.

Description: In union-query attacks, an attacker

exploits a vulnerable parameter to change the data set

returned for a given query. With this technique, an

attacker can trick the application into returning data from

a table different from the one that was intended by the

developer. Attackers do this by injecting a statement of

the form: UNION SELECT <rest of injected query>.

Because the attackers completely control the

second/injected query, they can use that query to retrieve

information from a specified table. The result of this

attack is that the database returns a dataset that is the

union of the results of the original first query and the

results of the injected second query.

Piggybacked Queries

Attack Intent: Extracting data, adding or modifying

data, performing denial of service, executing remote

commands.

Description: In this attack type, an attacker tries to

inject additional queries into the original query. We

distinguish this type from others because, in this case,

attackers are not trying to modify the original intended

query; instead, they are trying to include new and distinct

queries that ―piggy-back‖ on the original query. As a

result, the database receives multiple SQL queries. The

first is the intended query which is executed as normal;

the subsequent ones are the injected queries, which are

executed in addition to the first. This type of attack can

be extremely harmful. If successful, attackers can insert

virtually any type of SQL command, including stored

58 Detection Block Model for SQL Injection Attacks

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 11, 56-63

procedures, into the additional queries and have them

executed along with the original query. Vulnerability to

this type of attack is often dependent on having a

database configuration that allows multiple statements to

be contained in a single string.

Stored Procedures

Attack Intent: Performing privilege escalation,

performing denial of service, executing remote

commands.

Description: SQLIAs of this type try to execute stored

procedures present in the database. Today, most database

vendors ship databases with a standard set of stored

procedures that extend the functionality of the database

and allow for interaction with the operating system.

Therefore, once an attacker determines which backend

database is in use, SQLIAs can be crafted to execute

stored procedures provided by that specific database,

including procedures that interact with the operating

system. It is a common misconception that using stored

procedures to write Web applications renders them

invulnerable to SQLIAs. Developers are often surprised

to find that their stored procedures can be just as

vulnerable to attacks as their normal applications.

Additionally, because stored procedures are often written

in special scripting languages, they can contain other

types of vulnerabilities, such as buffer overflows, that

allow attackers to run arbitrary code on the server or

escalate their privileges.

Inference

Attack Intent: Identifying injectable parameters,

extracting data, determining database schema.

Description: In this attack, the query is modified to

recast it in the form of an action that is executed based on

the answer to a true/- false question about data values in

the database. In this type of injection, attackers are

generally trying to attack a site that has been secured

enough so that, when an injection has succeeded, there is

no usable feedback via database error messages [16].

Since database error messages are unavailable to provide

the attacker with feedback, attackers must use a different

method of obtaining a response from the database. In this

situation, the attacker injects commands into the site and

then observes how the function/response of the website

changes. By carefully noting when the site behaves the

same and when its behavior changes, the attacker can

deduce not only whether certain parameters are

vulnerable, but also additional information about the

values in the database. There are two well known attack

techniques that are based on inference. They allow an

attacker to extract data from a database and detect

vulnerable parameters.

Blind Injection: In this technique, the information must

be inferred from the behavior of the page by asking the

server true/- false questions. If the injected statement

evaluates to true, the site continues to function normally.

If the statement evaluates to false, although there is no

descriptive error message, the page differs significantly

from the normally-functioning page.

Timing Attacks: A timing attack allows an attacker to

gain information from a database by observing timing

delays in the response of the database. This attack is very

similar to blind injection, but uses a different method of

inference. To perform a timing attack, attackers structure

their injected query in the form of an if/then statement,

whose branch predicate corresponds to an unknown about

the contents of the database. Along one of the branches,

the attacker uses a SQL construct that takes a known

amount of time to execute, (e.g. the WAITFOR keyword,

which causes the database to delay its response by a

specified time). By measuring the increase or decrease in

response time of the database, the attacker can infer

which branch was taken in his injection and therefore the

answer to the injected question.

Alternate Encodings

Attack Intent: Evading detection.

Description: In this attack, the injected text is modified

so as to avoid detection by defensive coding practices and

also many automated prevention techniques. This attack

type is used in conjunction with other attacks. In other

words, alternate encodings do not provide any unique

way to attack an application; they are simply an enabling

technique that allows attackers to evade detection and

prevention techniques and exploit vulnerabilities that

might not otherwise be exploitable. These evasion

techniques are often necessary because a common

defensive coding practice is to scan for certain known

―bad characters,‖ such as single quotes and comment

operators.

To evade this defense, attackers have employed

alternate methods of encoding their attack strings (e.g.,

using hexadecimal, ASCII, and Unicode character

encoding). Common scanning and detection techniques

do not try to evaluate all specially encoded strings, thus

allowing these attacks to go undetected. Contributing to

the problem is that different layers in an application have

different ways of handling alternate encodings. The

application may scan for certain types of escape

characters that represent alternate encodings in its

language domain. Another layer (e.g., the database) may

use different escape characters or even completely

different ways of encoding. For example, a database

could use the expression char (120) to represent an

alternately-encoded character ―x‖, but char(120) has no

special meaning in the application language‘s context. An

effective code-based defense against alternate encodings

is difficult to implement in practice because it requires

developers to consider of all of the possible encodings

that could affect a given query string as it passes through

the different application layers. Therefore, attackers have

been very successful in using alternate encodings to

conceal their attack strings.

III. RELATED WORK

 Detection Block Model for SQL Injection Attacks 59

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 11, 56-63

The authors in [1] propose a system based on

information theory. It measures query‘s entropy statically

using token probability distribution of a query. During

execution compute the complexity to identify any

changes in entropy measured earlier. Dynamic query with

attack inputs alters its intended structure and hence the

entropy level changes. Based on a summing up report

authors in [2] check for special characters in the

submitted query. If a restricted character is found query is

blocked else query is executed. Proposed method in [3] is

an authentication scheme using hybrid encryption. Query

generated by using encrypted user name and password is

encrypted by applying RSA. In verification query is

decrypted using server‘s private key and username and

password are verified. Finally decrypted user name and

password are checked. Proposed scheme in [4] is based

on randomization and is used to convert the input into a

cipher text. Each input character is given one of four

random values from a sample lookup table. Based on the

next input character, one of these four values is

substituted for a given character. Encrypted values are

checked with database. The method proposed by the

authors in [5] is based on translation and validation. It

retrieves information from SQL database to produce a

corresponding LDAP database. Authors in [6] implement

a technique which is based on statement sequence digest

(SSD). SSD is a profile of SQL statement which can be

calculated using MD5, SHA etc. algorithms.

SQL injection attack is detected by comparing SSD

calculated statically and dynamically. Proposed scheme

in [7] is based on semantic comparison. The semantic

comparison is done by comparing the syntax tree

structure of a query. If the syntax trees at training and run

time are equivalent then the queries are inducing

equivalent semantic actions and query is a safe query else

attack is detected. Authors in [8] propose a simple

method that removes attributes from SQL query. Author

then takes XOR of static and dynamic queries. If result of

XORing is zero there is no attack otherwise attack is

detected.

IV. INFORMATION THEORY BASED FRAMEWORK FOR

SQL INJECTION ATTACK DETECTION

We have implemented a Detection Block model for

SQL injection attack detection. Our model conducts two

checks both on the Client Side and Server Side.

A. Client

According to a summing-up report [2], the sensitive

characters/keywords of the SQL injection attack include:

"exec", "xp_", "sp_", "declare", "Union

","+","//",".."," ;","'","-- ","%"," 0x ", which are not

expected in the general structure query statement. A filter

function is set to filter these characters before the

parameters are uploaded in the query. Client side

implements a filter program that checks the length and

data type of the submitted variables and detect the

injection-sensitive characters and keywords. Figure 1

illustrates the client side framework. Client side plays

preliminary examination and gives warning since all the

people who have submitted the illegal characters could be

SQL injection attackers. However, considering that the

illegal characters may be submitted by user due to typing

mistake, for which the check on the Client Side only

gives a friendly error message and suspends submission.

When user submits a request first it is checked for size if

size is less than the specified maximum size then it is

checked for any forbidden special characters.

Fig. 1. Client side framework

If it passes both the tests request is submitted to server,

else an error message is displayed and request is not

submitted to server.

Client side does not provide solution to all the attacks,

but provides basic security to prevent simple attacks. It is

also helpful in decreasing network traffic. Advantage of

client side is that it reduces CPU cycles since it avoids a

number of round trips to the server. Limitations of client

side are firstly limiting the size of input and restricting

the use of special characters cannot be imposed on user in

all applications. Secondly the protection provided by

client side scripts can be easily bypassed, hence server

side is required for complete security.

B. Server

On server side we implement entropy computational

model which measures the complexity of a given query.

Entropy is defined as the expected value of the

information contained in a message. It is an indicator of

the complexity of the query written by a programmer.

Server side works in two phases training and detection

phase. In training phase we identify static SQL queries

present in the program. Entropy of each query is

calculated which is based on complexity of the query.

Entropy is derived from probability distribution of tokens

present in the query [1]. Next we apply MAC on entropy

calculated from first step. Application of MAC enhances

the security by safeguarding the entropy value. Value of

MAC calculated here is stored in a database.

Detection phase begins with a database query

invocation. When a request is submitted a dynamic SQL

query is invoked. The generated dynamic query is

analysed to compute the entropy and MAC is applied on

calculated entropy. The approach then relies on the

principle that dynamic queries with attack alter its

intended structure and hence the entropy level changes

significantly which will change the corresponding MAC.

In contrast, a dynamic query with benign inputs does not

No No Submit
to

Server

User

Input

Display Error Message and

Transfer to Error Page

Size >

Specified

Special

Character

Yes Yes

60 Detection Block Model for SQL Injection Attacks

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 11, 56-63

result in any change of entropy value and thus MAC

remains unchanged. Thus by comparing MAC calculated

before program deployment and MAC calculated after

query invocation will detect attack. Conversely, a change

in value of MAC signals that entropy has changed.

Entropy will change only if tokens probability

distribution has changed, which implies that a SQL

injection attack has taken place. The advantage of this

approach is that it can detect unknown vulnerabilities

because it is not based on any particular attack input.

Figure 2 illustrates server side framework.

Functionality of each module in server side framework is

explained below:

Fig. 2. Server Side Framework

Training Phase

Program Source code and Server Script Analyzer

During training phase first program source code is

analyzed to find all static queries in the application.

Static Entropy Calculator

After all the queries are revealed entropy of each query

is calculated which is based on probability distribution of

tokens present in the query. Entropy is the average

amount of information required to represent queries in the

application and represents a query‘s complexity. This

entropy should remain intact and any alteration indicates

the presence of malicious inputs.

The entropy (denoted as H) [2] of all the queries

present in the program can be computed as follows:

Q= {q1 ,q2 ,q3……………qn}be set of queries in the

application

Ώ={x1,x2,x3............................xl}set of all tokens present

in a query.
P(x) probability of a token x in query q

Entropy of the query[13] is represented by:

1 2 3,..........................,

1

() (, ,) ()*log ()
n

n i i

i

H q H x x x x P x P x

Entropy calculated here in training phase is represented

as Static entropy.

MAC

A message authentication code (MAC) is a

cryptographic checksum on data that uses a session key to

detect modifications of the data. It is a small fixed-size

block of data that is generated based on a message M of

variable length using secret key K[9] as follows:

MAC = C (K, M)

Applying MAC on entropy provides us authentication

and integrity. MAC is applied on entropy calculated from

previous step. If entropy is stored in database there is a

possibility of attack on entropy database, which if

attacked can compromise the entire security. By applying

MAC on entropy we are enhancing the security. If

attacker attacks MAC database then also entropy can‘t be

revealed from it because key is not known to attacker.

Proposed model implements MAC as follows:

1. Retrieve static entropy (E) from entropy

calculator.

2. Retrieve key (K) form key database.

3. Take hash of entropy and key, we get static

MAC.

MAC (K, E) = H ((K ∥ E)

Static MAC (represented as SMAC) calculated here is

stored in database to be compared later.

Detection Phase

Query Invocation

The detection phase begins when a query is fired for

the application. At runtime when query is invoked

necessary elements are calculated as stated below.

Dynamic Entropy Calculator

It works in the same manner as static entropy

calculator. The entropy calculated here is represented as

dynamic entropy.

MAC

It works in the same manner as MAC in training phase.

MAC calculated over here is represented as dynamic

MAC (DMAC).

Comparison

Ideally, the MAC of the dynamic query should match

with the pre-recorded MAC in the database learned from

the training phase i.e. SMAC. Static MAC and dynamic

MAC are compared here. If SMAC is same as DMAC

there is no injection and query is genuine. If DMAC is

not equal to SMAC that means query is modified, SQL

injection is detected.

Execute

If SMAC and DMAC are same submitted query is

genuine and request is submitted to server. Query is

allowed to execute and result is returned to the sender.

Query
Invocation

Dynamic
Entropy
Calculator

MAC
Dynamic
MAC DB

Program
Source
Code

Server
Script
Analyser

MAC
Static
MAC DB

Static
Entropy
Calculator

DMAC
= SMAC

Key
Generator
& Storage

NO

YES

Execute

Block
Benign Query

SQL IA

Training Phase

Detection Phase

http://searchsecurity.techtarget.com/definition/cryptographic-checksum
http://searchsecurity.techtarget.com/definition/session-key

 Detection Block Model for SQL Injection Attacks 61

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 11, 56-63

Block

If DMAC and SMAC are not same, SQL injection is

detected. The query is blocked i.e. not executed and an

entry is made in blocked ip‘s table in database. For this

danger signal, the server will record the IP address into a

database for future reference, and will transfer the request

to a error message page. Blocking of ip address will not

allow any input from that ip address in future.

Key generation and storage

This module will generate a random key every time.

Generated random key is stored in database. Key value

will be fetched from here for MAC calculation.

C. Algorithm

Client side:

 Input text

 Check for length of input submitted

 Check for injection sensitive characters and

keywords as specified.

 If found sensitive character is found or size

greater than specified return error message.

 Else submit query to server.

Server side:

 Analyze program source code to find all queries.

 For all queries in application calculate entropy

which is called static entropy.

 Apply MAC (Message authentication code) on

static query we get static MAC (SMAC).

 SMAC is stored in db.

 At Runtime when query is invoked. Dynamic

entropy is calculated.

 Apply MAC (Message authentication code) on

dynamic entropy we get dynamic MAC

(DMAC).

 Compare DMAC and SMAC.

 If they are equal query is genuine.

 Else attack is detected, query is not executed. ip

address is blocked and recorded.

D. Advantages

Proposed scheme has various advantages as enlisted

below.

 Client side reduces CPU cycles since it avoids a

number of round trips to the server.

 Can detect all known SQLI attacks.

 Reveals several unknown vulnerabilities.

 Does not rely on the specific type of attack

inputs.

 Does not require tainted data flow analysis or

complex static analysis.

 Can be applied for a wide variety of scripting

languages

 Application of MAC provide additional layer of

security.

V. IMPLEMENTATAION AND EVALUATION

We implement a detection tool for testing SQLI. The

tool accepts .net files and detects attack both on client and

server side. Client side implements a java script file

which filters all SQL injection sensitive characters based

on a summing up report which specifying all SQL

injection sensitive characters. Server side computes

entropy for each queries present in a program. The

entropy information is instrumented in program code and

compared during actual program execution time. We use

split function in .net for parsing and to count the tokens in

a query.

We perform the evaluation in the following two steps.

Client side: Checks for all SQL injection sensitive

characters.

Server side: First, we identify SQL queries in each web

page. Then, we compute the entropy of the queries apply

MAC on entropy and store the MAC in database. In the

second stage, we run the programs by deploying them in

a web server.

Then, we visit the corresponding pages and supply

malicious inputs in the input field of web application. We

notice the instrumented code with entropy information

successfully stops the malicious query execution and logs

a warning.

VI. EXPERIMENTAL RESULT

For testing our application we have considered all

types of SQL injection attack. Response time for

detection is very fast. Table 1 illustrates type of SQL

injection attacks which are detected, blocked and ip

address of attacker is logged in database. In our testing,

we notice client side can detect various attacks. Attack

input is not submitted to server and is stopped at client

side itself.

Table 1. Result for All Type of Attacks

Attack Type Detected Blocked Logged

Tautology Yes Yes Yes

Piggybacked Yes Yes Yes

Union Yes Yes Yes

Alternate encoding Yes Yes Yes

Illegal query Yes Yes Yes

Blind Yes Yes Yes

Timing Yes Yes Yes

Table 2 illustrates result attained from client side for

different attack input. All the malicious query inputs have

been blocked by the framework. Thus, the false negative

rate in our evaluation is zero. But we understand client

side scripting can be easily bypassed. In our model if an

attacker bypasses client side filter attack will be detected

and blocked at server side.

62 Detection Block Model for SQL Injection Attacks

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 11, 56-63

Table 2. Results from client side

Attack Input Result Detected

Piggy

backed

Admin; select * from table

--;

; is not

valid
Detected

Tautolog

y
‗ or 1=1--;

= is not

valid.
Detected

Alternate
encoding

exec(char(0x73687574646
f776e))--

exec is not
valid

Detected

Union
query

‗;union select usr from
test--

select is not
valid.

Detected

Illegal

/incorrect

convert (int,(select usr

from test where usr =‘u‘))

Convert is

not valid
Detected

Blind
admin; or 1=1--;

admin ; or 1=2--;

= is not

valid.
Detected

At server side all types of SQL injection attacks are

detected, blocked and their ip addresses are stored in

database for future reference. Table 3 illustrates result

from server side. When an attack takes place it is detected,

that attack input is not executed and the ip address of

attacker is stored in database and is blocked. Table 3

shows result from server side for different attack type.

Blocking of ip address will not allow any input from that

ip address in future.

Table 3. Result from Server Side (D-Detected, B-Blocked, L-Logged)

Attack

Type
Input 1 Input2 Result

Piggy
backed

Admin; select * from
table --;

Drop database
Diksha --;

D.B.L

Tautol

ogy
‗ or 1=1--; ‗ or a=a--; D.B.L

Alterna

te
encodi

ng

exec(char(0x7368757
4646f776e))--

exec(char(0x579757
578889341e))--

D.B.L

Union

query

‗;union select usr from

test--

‗; union select

entropy from
blocked_entropy

D.B.L

Illegal

/incorr
ect

convert (int,(select usr

from test where usr
=‘u‘))

convert(int,(select

usr from test))
D.B.L

Blind

admin; or 1=1--;

admin ; or 1=2--;

‗ or 2=2--;

‗ or 2=3--;
D.B.L

Timing

‗ and ASCII
(SUBSTRING ((select

top 1 name from

test),1,1)) > X
WAITFOR 5 --

‗ and ASCII
(SUBSTRING((sele

ct top 1 name from

bl_entropy),1,1)) >
X WAITFOR 10 --

D.B.L

Results obtained are explained below:

Attack type: Piggy backed, Tautology, Alternate

Encoding, Union query, Timing Attack

Since Piggy backed, Tautology, Union query, Alternate

encoding all require addition of extra key words as shown

in table 1, because of addition of new keywords

probability distribution of token are changed. Hence

entropy changes and corresponding MAC value also

changes therefore attack is detected.

Attack type: Illegal /Logically Incorrect, Blind

In this category of attack attacker intentionally gives

incorrect input to gain information from error message

returned from the SQL server. In our approach if

malicious input is found then the input is not submitted to

the SQL server. In this case error message is retuned at

detection phase not form SQL server , which is a simple

error message and does not reveals any information of

the database.

VII. CONCLUSION

SQL injection is defined as one of the most serious and

common web security threat that needs attention to

provide secure web applications. Exploitations of SQLI

vulnerabilities result in compromise of database, which is

a valuable asset of an organization. Thus, SQLI

mitigation needs to be considered seriously. Our model

applies concept of information theory for attack detection.

Entropy is defined as information content of a query

written by a programmer which should remain intact.

When a malicious input alters the static nature of the

query, the complexity value changes. We apply MAC on

entropy; we compare the statically computed MAC with

that of dynamically computed MAC. The deviation

indicates the presence of SQLI in a query. The prevention

and block model of SQL injection attack mentioned in

this paper checks the legality based on the information

submitted, conducts two checks both on the Client Side

and Server Side, and as long as any of the two checks

does not pass, the information submitted will not be

executed at the server.

Future Scope

Currently, our approach does not address the SQLI in

stored procedures as it requires our approach to be

extended at the database script level. Our future work

includes extending the model to stored procedures. We

also plan to apply our developed model for detecting

other web-based attacks such as cross-site scripting.

ACKNOWLEDGEMENT

Our thanks to the experts who have contributed

towards study of the SQL injection. We sincerely thank

our colleagues and friends.

REFERENCES

[1] Hossain Shahriar, Mohammed Zulkernine, ―Information

Theoretic Detection of SQL Injection Attacks‖

Proceedings of 14th International Symposium on High

Assurance System Engineering, 2012.

[2] Qian XUE, Peng HE, ―On Defense and Detection of SQL

SERVER Injection Attack‖. Proceedings of International

Conference on Security Systems, 978-1-4244-6252-0/11/

IEEE, 2011, pg 324-330.

[3] Indrani Balasundaram, E.Ramaraj ―An Authentication

Scheme for Preventing SQL Injection Attack Using

Hybrid Encryption (PSQLIAHBE‖ (ISSN 1450-216X

Vol.53 No.3 (2011), pp.359-368).

[4] Srinivas Avireddy, Varalakshmi Perumal, Narayan

Gowraj, Ram Srivatsa Kannan, Prashanth‖ Random4: An

 Detection Block Model for SQL Injection Attacks 63

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 11, 56-63

Application Specific Randomized Encryption Algorithm

to prevent SQL injection‖ Proceedings of 11th

International Conference on Trust, Security and Privacy in

Computing and Communications, IEEE, 2012, p1327-

1335.

[5] Kai-Xiang Zhang, Chia-Jun Lin, Shih-Jen Chen, Yanling

Hwang‖ TransSQL: A Translation and Validation-based

Solution for SQL-Injection Attacks‖ Proceedings of First

International Conference on Robot, Vision and Signal

Processing, IEEE, 2011, p248-252.

[6] Baohua Huang, Tongyi Xie, Yan Ma ―Anti SQL Injection

with Statements Sequence Digest‖ National Science

Foundation of China, Scientific Research and

Development Plan of Nanning City (No. 10876012),

IEEE 2012.

[7] Sruthy Mamadhan, Manesh T, Varghese Paul‖ SQLStor:

Blockage of Stored Procedure SQL Injection Attack

Using Dynamic Query Structure Validation‖ (No. 978-1-

4673-5119-5/12/$31.00c) IEEE, 2012, p240-246.

[8] J. Kim, ‗‗Injection Attack Detection Using the Removal

of SQL Query Attribute Values,‘‘ Proc. of the

International Conference on Information Science and

Applications (ICISA), Jeju Island, Korea, May 2011, pp.

1-7, 978-1- 4244-9224-4/11/$26.00 ©2011 IEEE.

[9] Jueneman, R. R., Matyas, S. M., and Meyer, C. H.,

―Message Authentication‖, IEEE Communication, Vol 23,

No. 9, 1985, pp 29-40.

[10] Rahul Johari, Pankaj Sharma‖ A Survey On Web

Application Vulnerabilities (SQLIA, XSS) Exploitation

and Security Engine for SQL Injection‖ Proceedings of

International Conference on Communication Systems and

Network Technologies, IEEE, 2012, p453-459.

[11] W. G. Halfond, J. Viegas, and A. Orso, ―A Classification

of SQL Injection Attacks and Countermeasures,‖

Proceedings of the International Symposium on Secure

Software Engineering (ISSSE 2006), Mar. 2006.

[12] The Open Web Application Security Project (OWASP),

Available:https://www.owasp.org/index.php/Top_10_201

3-Top_10.

[13] T. Cover and J. Thomas, Elements of Information Theory,

John Wiley and Sons, 2006.

[14] Pushpendra Kumar, R.K.Pateriya, ―A Survey on SQL

Injection Attacks Detection and Prevention Techniques‖

Proceedings of ICCCNT‘12(IEEE -20180), July 2012.

[15] N. Antunes and M. Vieira, ‗‗Defending Against Web

Application Vulnerabilities,‘‘ IEEE Computer, Volume

45, Issue 2, February 2012, pp. 66-72.

[16] SQL Injection Walkthrough, Accessed from

http://www.securiteam.com/securityreviews/5DP0N1P76

E.html.

[17] H. Shahriar and M. Zulkernine, ―Mitigation of Program

Security Vulnerabilities: Approaches and Challenges,‖

ACM Computing Surveys (CSUR), Vol. 44, No. 3,

Article 11, May 2012, pp. 1-46.

Authors’ Profiles

Mrs. Diksha G. Kumar B.Tech(Information Technology),

Student of M. Tech (II Year), Computer Engineering, PIIT,

New Panvel (Navi Mumbai) Mumbai University, Maharashtra,

India.

Prof. Dr. Madhumita A. Chaterjee M. Tech (Computer

Science) I.I.T Mumbai, Ph.D (Security in Distributed

Computing) I.I.T Mumbai, India. Currently working as

Assistant Professor and head of department, 22 years‘

experience.

How to cite this paper: Diksha G. Kumar, Madhumita Chatterjee,"Detection Block Model for SQL Injection Attacks",

IJCNIS, vol.6, no.11, pp.56-63, 2014. DOI: 10.5815/ijcnis.2014.11.08

