
I.J. Computer Network and Information Security, 2014, 7, 1-10
Published Online June 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2014.07.01

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 1-10

Router-based Content-aware Data Redirection for

Future CDN Systems

Janaka L. Wijekoon
Hiroaki Nishi Laboratory, Department of Computer Science, Keio University Hiyoshi 3-14-1, Yokohama, Japan

Email: janaka@west.sd.keio.ac.jp

Erwin H. Harahap, Shinichi Ishida, Rajitha L. Tennekoon and Hiroaki Nishi
Hiroaki Nishi Laboratory, Department of Computer Science, Keio University Hiyoshi 3-14-1, Yokohama, Japan

Email: {erwin2h, sin, rajitha}@west.sd.keio.ac.jp and west@sd.keio.ac.jp

Abstract—Delivery of data-enriched applications has

become a top priority on the Internet, and Internet users

are demanding faster and higher-quality services. Cater

such requirements, Content Delivery Networks (CDNs)

were introduced. However, the growth rate of information

on the Internet requires infrastructural modifications to

keep the consistency while maintaining quality of the

Internet services. To this end, the Service-oriented Router

is introduced to provide content based services by

shifting the current Internet infrastructure to information-

based open innovation platform. In this study, initially we

provide implementation notes of a software-designed

SoR. Then we propose a new method of CDN Request

Redirection (RR) (SoR-based RR), which is designed to

redirect packets based on the content of packets and the

status of content servers using an SoR as an edge router

of a CDN. Furthermore, we present the design and

implementation of a prototype to realize the SoR-based

RR in a testing network. By analyzing the result of the

prototype implementation, we show that the SoR-based

RR can enhance the both client experience and faster

adaptations to the server changes in CDN environments.

Index Terms—Service-oriented Router, Network

Simulation, Data Analysis, Content Delivery Networking,

Request Redirection.

I. INTRODUCTION

Communication technologies have become

significantly advanced in the past few decades, with new

technologies being invented to achieve efficient

communication. In addition, people are more interested in

sharing knowledge and information for various purposes.

Innovations in information sharing are continuously

accelerated to cater user needs in such environments.

These motives have encouraged the construction of

sophisticated environments for effective communication

and information delivery.

Content Delivery Networks (CDNs) are implemented

to achieve low-latency content delivery such as; data

streaming, on-line gaming and e-commerce web accesses

by placing content servers near the customer [1]. RR

techniques are used in CDNs to redirect client requests to

the nearest surrogate server [1-7]. Therefore, it is

important to maintain a better RR method that can find

the nearest server for a particular user. Besides, a RR

method can also achieve efficient server load balancing

[6, 10]. DNS redirection and URL rewriting [1] are the

most commonly used CDN redirection methods in the

current CDNs.

Several studies have been conducted on the impact of

content delivery on networks in the past few decades.

Before the adoption of worldwide server caching, such as

CDN, some early research on the effectiveness of interior

web caching were performed by Gadde et al [8]. In

addition, recent studies [9, 10] indicate the DNS-based

method can significantly reduce the download latency.

Top-level CDN providers, such as Akamai [3, 4] and

CenturyLink [5], use DNS-based RR to redirect client

requests to the nearest surrogate server, or sometimes

known as a redirector or an edge server. However, all

those studies use multi tire name servers in order to

maintain the consistency of changes of surrogate servers

[3, 6, 11].

The DNS-based redirection use small Time to Live

(TTL) values at the clients in order to adapt the changes

occurs on the CDN infrastructure [1, 3, 4]. Consequently,

small TTL values lead the client to access the local name

server frequently to get an up to date infrastructural

changes [1, 11 - 13]. Furthermore, name server resolving

process increases the client waiting time due to

communication between local name server and

authoritative name servers to find the CDN surrogate

servers’ IP addresses. Poese et al. [6] proposed a content

aware traffic engineering design that give some hints

about the ISP collaborated method of redirecting packets

based on both status of the servers and the network. But

that study also was not able to provide a solution to the

clients regarding the latency factors of connection

initiation and lags of the connection due to the DNS

resolving process and small TTL values. Therefore, we

argue that the usage of multi tire name servers and small

Time to Live (TTL) values on DNS-based RR

considerably degrades the connection initiation process.

We argue that, if an edge router of the network can

identify the server locations and redirects client request to

the servers regardless of the IP address of the final

2 Router-based Content-aware Data Redirection for Future CDN Systems

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 1-10

destination, we can utilize data redirection process to

achieve faster connection initiation and faster adaptation

to the server changes in a CDN. To this end, this study

proposes a redirection mechanism which is redirecting

Fig. 1. SoR-based RR Overview

packets based on the content of the packet by using an

Service-oriented Router [14, 15, 16] as an edge router of

a network. Furthermore, we confer that the basic

functions of the SoR such as; DPI and content based data

redirection, introduce the ideal test bed to implement a

prototype for an edge router based date redirection. Fig. 1

illustrates the basic concept of SoR-based RR. The client

sends the data stream to the SoR which is placed at the

edge of network and SoR selects the proper surrogate; A,

B, C or D, based on the content of the packet and the

status of the server and, redirects the packet stream to the

selected server. In addition, an SoR redirects packets by

performing server load balancing if an SoR has routing

records of more than one surrogate server.

The paper is arranged as follow. A review of the DNS-

based RR is provided in the Section 2. Section 3

describes the motivation of this study. Section 4 describes

the software implementation of the SoR followed by the

detailed explanation of prototype implementation of the

SoR-based RR in Section 5. Test cases designs,

implementations and the test results are presented in the

Section 6. Section 7 is used to discuss the effectiveness of

the SoR for the CDN redirection process and how the

SoR-based RR is able to overcome the limitations of

existing methods. Section 8 concludes the paper with

tentative future implementations.

II. BACKGROUND STUDY

The Domain Name System (DNS) is a distributed

database of records (name-to-address mapping) cached at

intermediate name servers [17]. Each record has a time-

to-live (TTL) value that indicates how long it will be

cached. Generally TTL values are set to one day [17].

The original operation of the DNS is to resolve a Fully

Qualified Domain Name (FQDN) to its corresponding IP

address [11, 17].

However, in CDN infrastructures, once the DNS is

used to resolve the nearest surrogate server’s IP for a

particular end-user, the DNS cache becomes a significant

obstacle to providing real-time control of the CDN. The

name resolution cache must be disabled by setting TTL

values to zero in order to obtain real-time control in

CDNs [1]. Small TTL values allow fine-grained load

balancing and rapid response to changes in the server or

network load. Nonetheless, small TTL values force

clients to contact the authoritative name server for every

name resolution request. However, this phenomenon

increases access latency for particular content.

To understand the behavior of the DNS in a real

network, we captured and analyzed the traffic of a major

Internet backbone network for academics in Japan. The

most noticeable fact was that the occupation ratio of the

DNS, which was occupied more than 25% of traffic

during the captured time. Though we cannot conclude

that the measured DNS traffic occupation was entirely

from CDN networks, this clearly highlights that the DNS

traffic is high in the Internet data exchange.

On the other hand, recent studies [6, 18, 19] have been

done to research about the ISP involvement of the DNS

redirection. Authors have theorized that the ISP-CDN and

DNS collaboration make the ideal network infrastructure

for faster data delivery on the Internet. Those studies

suggested of placing low level name servers at the ISP.

Then redirect clients to the nearest server based on the

status of both ISP’s network the status of the content

servers. However, this method also requires the clients to

frequently contact local name server in order to get the

status of the CDN upon the expiration of TTL values [1,

13, 19]. Besides, Anees et al. [1] confirmed that the DNS-

based server redirection must be based on the name

server’s location, not on the client’s location. Therefore,

the response delay associated with connection initiations

and request redirections depends on the number of hops

to the authoritative name server. That study pointed out

that aforementioned factors are significant factors in data

redirection and client response time.

III. MOTIVATION

Literature related to the DSN-based RR [1, 20-22]

shows that the DNS-based RR method has following

limitations while selecting and redirecting client

connections to a particular content server. First, DNS has

to travel through many tires of name servers to identify

the nearest content server for a particular client [3, 4].

Second, users are required to find the nearest surrogate

server's IP address before initiating a connection with the

content server [6, 7, 10]. As a result, time taken to initiate

a connection is comparatively high. Furthermore, due to

the low TTL values, clients are required to query local

name servers in short time intervals in order to adapt to

the network changes. Besides, multi tires of name server

resolving create lags in the middle of data transmission.

As an example, lags in an online game playing due to

sudden server changes, and lags in video streaming will

degrade the user experiences. It will be critical for

customer satisfaction.

To this extend, as shown in the Fig. 1, in this paper, we

propose a method to redirect packets based on the content

from an edge router of the network. As a matter of fact, a

network router connects several independent networks

and forwards data from a source to a destination. Yet

 Router-based Content-aware Data Redirection for Future CDN Systems 3

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 1-10

general routers are not capable of providing content-

based services, and this limitation restricts their benefits

for both users and network carriers.

As a test-bed of a router providing content-based

services, service-oriented router (SoR) [14, 15, 23] was

proposed to enable data collection by stream recovery

and deep packet inspection (DPI) and to provide content

Fig. 2. Semantic Router Infrastructure Discussed in [15, 23]

based services from the router itself. The SoR; as shown

in Fig. 2, is specially designed router for providing

services to end users from the router itself by using a

dedicated APIs, which was proposed and implemented by

our research team [16]. As explained in [15, 23], packet

stream analyzing on the router and providing a contents-

based services based on the analysis results proofs the

effectiveness of the SoR as a service providing device.

In this study, as illustrated in Fig. 1, we placed an SoR

as an edge router of the network and the SoR was

programmed to redirect packets: 1.) based on the content

of the packet, and 2.) based on the status of the content

servers. Moreover, SoR communication protocol was

enhanced to advertise server status such as queue length

to the edge routers (SoRs). Therefore, SoRs are able to

detect the locations of the content servers and broadcast

servers’ locations among the SoRs in the network. In

addition, SoRs redirect the data packets to the nearest

possible content server upon a packet arrival without

depending on the destination IP address. Consequently,

the SoR-based RR method does not require client to have

exact destination IP address to initiate a connection. SoR-

based RR method requires the client to send data to the

edge SoR and the edge SoR redirects the packet to a

suitable content server. That flexibility enables the client

to send packet streams without waiting DNS resolve to

find the surrogate server's IP address.

IV. SOR AND ITS UNDERLYING TECHNOLOGY

A. Evaluation of SoR

An SoR is a router that captures data streams passively

and stores data in high-speed databases [15, 23]. An SoR

is designed to capture data streams at wire rates such as

10 Gbps in effective speed [24], after which, it

reconstructs the data streams and performs DPI, including

Layer 7 information. That mechanism was designed to

provide an API for users to design interactive

applications in order to support future Internet

technologies. As shown in Fig. 2, Inoue et al. proposed

the Semantic Router (SR) as the initial idea of the SoR in

[15] and Nagatomi et al. implemented the cache based

process engine to the proposed semantic router in [23].

Fig. 3. Services-oriented Router Infrastructure

In contrast, the crucial problem of SoR is to maintain

data throughput while performing packet analysis of

Layer 7 information, storing data in databases, and

retrieving data. These processes slow down the packet-

forwarding process and ultimately the performance of the

entire network. To address such problems, we propose

hardware-level acceleration to reduce memory accesses

through hardware-based accelerations [23, 25, 26]. The

software-based SoR was implemented on a JunOS V app

engine for the commercial Juniper router, proving that

SoR can perform high-throughput processing over gigabit

networks [24]. Furthermore, the ns-2 SoR module was

implemented in [27] to simulate basic functions of the

SoR.

However, the complete model of the SoR given in Fig.

2 is still under research and development. Consequently,

in this study, we implemented a software-based SoR as

given in Fig. 3. Then, we used the implemented software-

based SoR to create a testing environment that we then

used to simulate an SoR-based RR. The proposed

software-designed SoR supports essential functions, such

as 1) DPI to analyze packet information from IP layers to

application layer, 2) packet-forwarding according to the

content of the packet, and 3) communications between

SoRs and CDN servers. The implemented software-based

SoR has two major modules, packet analysis and routing

module and radar module.

B. Packet Analysis and Routing Module

According to the Fig. 3, the packet analysis and routing

module consists of the following sub-modules: 1) packet

receiver, 2) packet forwarder, 3) packet buffer, and 4)

4 Router-based Content-aware Data Redirection for Future CDN Systems

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 1-10

redirection decision maker. The packet receiver is a

UNIX UDP socket that listens to dedicated port 52,000.

When a packet arrives at the port, the packet receiver

moves the packet to a First-In-First-Out (FIFO) buffer.

Then, the packet-forwarding module takes the packet

from the buffer and forwards it to the redirection decision

maker module. The redirection decision maker module

consists of three parts: 1) analyzer, 2) forwarding

information base, and 3) load-balancer. Once the packet

arrives at the analyzer module, it inspects the packet in

detail, including its UDP and IP header information along

with the Layer 7 data. Then the analyzer module returns

Fig. 4. SoR Forwarding Information Base (FIB)

Fig.. 5. Advertisement Packet Structures

the packet payload to the redirection decision maker

module. Next, the redirection decision maker module

generates a hash value using the packet payload. Then,

the hash value correlates with entries in the forwarding

information base given in Fig. 4, which is designed as an

in-memory database. That table is used to find the

corresponding next hop according to the payload of a

particular packet. In that process, the redirection decision

maker module finds the next hop IP addresses from the

forwarding information base, using the generated hash

value. The IP address of the next hop can be either SoRs

or a content server. After the redirection decision maker

module receives the forwarding IP addresses, the load

balancing module selects one of the forwarding IP

addresses based on the load balancing algorithm and

returns it to the forwarding module in order to forward

the packet to the next hop.

We introduced three load-balancing algorithms to the

SoR, namely, Random (Rand), Round Robin (RR) and

Least Load (LL). For experimental purposes, we used

server queue length as the criterion of selection for the

LL algorithm.

Finally, the packet forwarding module forwards the

packet to the corresponding IP address returned from the

packet analyzer module. This scenario is repeated in

every SoR until the packet reaches its destination.

Therefore, the SoR-based CDN system was designed by

using a hop-by-hop data forwarding process. The hop-by-

hop design allows the SoR-based CDN infrastructure to

have total control over packet forwarding between the

client and the server. Unlike forwarding packets based on

final destination's IP address, the exact destination is not

required in this routing paradigm. This means that the

routing of packets can be changed dynamically at any

SoR, depending on the packet's contents.

C. Radar Module

The radar module is designed to gather neighbor

information, which can then be used to make a decision

on hop-by-hop forwarding. Once we add the neighbor IP

addresses to the SoR in the router configuration state, the

SoR automatically generates neighbor information table

Fig. 6. SoR Data Packet Structure

as depicted in Fig. 3. The module is capable of sending

two types of advertisements: periodic advertisements and

immediate advertisements. The packet structure used for

the advertisements is given in Fig. 5.

When a new surrogate server is added to the network,

the surrogate server contacts its affiliated SoR and

transmits several pieces of information, its presence, the

type of data the surrogate server supports, and the queue

length of the surrogate server using the packet structure

given in Fig. 5. Once an advertisement is received at the

radar module, it checks for the piggybacked information

for the advertisement. If the advertisement is

piggybacked, the SoR omits that advertisement. If not, it

generates a hash value of the content and checks that hash

value with the existing hash value records in the

forwarding information base. If there are no records, it

adds an entry to the routing table and, sends an immediate

advertisement to its neighbors about the surrogate server

via a UDP socket. On the other hand, if the content server

is listed in the forwarding information base, the SoR

checks for the queue length and updates the particular

record accordingly, and then sends an immediate update

to its neighbors. Nonetheless, if any server does not

contact its edge router, the particular router deletes the

record from its forwarding information base and sends an

immediate update to its neighbors. Unless the

aforementioned scenarios have occurred, SoRs are

programmed to send periodic updates. For this

experiment, we assumed that 1) all SoRs are up and

running, and 2) no link failure occurs, and we set the

periodic update advertisement between SoRs to 10 s.

 Router-based Content-aware Data Redirection for Future CDN Systems 5

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 1-10

V. PROTOTYPE IMPLEMENTATION

The design of the simulation environment was based

on three main modules; a traffic generator to serve as a

client module, a server module, and a name server

emulation module to emulate DNS. We implemented all

clients, SoRs, and server programs using basic UNIX

libraries such as pthread library, c++ map, c++ multi-map,

c++ queue structures, and UNIX socket communication

library [28].

For the experimental purposes, the SoR-based RR

prototype was implemented based on UDP because, 1)

UDP is a connectionless protocol and appropriate for

route data in hop-by-hop routing protocol which was

explained in Section 4; 2.) UDP is used in multimedia

and online gaming applications [30, 31].

A. SoR Simulation Topology

B. DNS Simulation Topology

Fig 7 Simulation Topologies

A. Client Module

We designed the client as a constant UDP traffic

generator which is similar to a multimedia application or

online gaming application. The client module was

implemented to fill a packet with the information given in

Fig. 6 and send the packet to the edge router. In the client

configuring state, the client was programmed with the IP

address of the edge router which is always an SoR.

Besides, As explained in the Section IV, the client sends

the data to the edge router without resolving the IP

address of the final destination. This aspect allows the

client to send data without waiting for name server

resolution. Then, the particular edge router (SoR)

forwards the data to the surrogate server as explained in

Section IV.

B. Server Module

The server application accepts user requests on the

socket and stores packets in a buffer implemented as an

FIFO queue. The server fetches a packet from the buffer

and generates a response packet using the same packet

structure given in Fig. 6, and sends it to the associated

edge router.

In addition, server is configured to communicate with

the edge SoR. The advertisement packet contains

information such as the current queue length and IP

address of the server. Once a new content has been added

to the server, it immediately notifies the associated SoR

about the content and the queue value. Otherwise, it sends

keep-alive messages periodically to the edge SoR to

inform that the server is alive and inform the present

queue length. For experimental purposes, we

programmed the keep-alive message interval as 5s.

C. Name Server Module

For our experiment, we created a simple socket

communication program to emulate name servers. Since

UDP is used in the domain name resolution [17], we

created a simple c++ map to store FQDN and its

associated IP address as the name server. Once a DNS

query arrives at the name server, it checks the map file

and returns the resultant IP address for the FQDN.

VI. SIMULATION, EXPERIMENT AND TEST RESULTS

We used a test bed with network virtualization

technologies and VLAN technology to simulate a

network. This environment was created by Hitachi

Central Research Laboratory and presented at the Global

Inter-Cloud Technology Forum (GICTF) [29]. This

network has data centers at the Shin-Kawasaki campus of

Keio University and Sendai, Japan. As shown in Fig. 7-A,

we implemented the SoR-based CDN infrastructure on

this network environment. The computational resources

of the test environment were limited, but enough to

implement the SoR-based RR prototype and evaluate

with the DNS-based RR. We used three SoRs, one main

server, two surrogate servers, and one client. SoR#1,

SoR#2, and SoR#3 were used as the edge SoRs for the

client, the surrogate servers, and the main server,

respectively. All SoRs and servers were able to advertise

themselves to their neighbors. We placed the surrogate

server at the Shin-Kawasaki data center, because the

surrogate server must be proximal to the client.

The simulator was designed as a packet-based

simulator. Therefore, the testing scenarios are created

based on the number of packet sent by the client. We

measured the Round Trip Time (RTT) and the packet

arrival delay in each packet returned to the client, and we

used those time values as the data to evaluate the SoR-

based RR method compared to the DNS-based RR

methods.

As shown in the Fig. 7-B, we placed name servers

similarly to their placement in Akamai’s method of

finding the nearest redirector [3, 4]. In this experiment,

three layers of name servers; root, high-level, and low-

level name servers, were used to simulate the DNS-based

CDN redirection. According to [1, 6, 11], the client TTL

6 Router-based Content-aware Data Redirection for Future CDN Systems

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 1-10

value is always 1 s or 2 s. However, in our study, as we

use packet based simulator, we were unable to set TTL

values as 1s or 2s. Therefore, we programmed the DNS-

based simulation to resolve the DNS for every new

content request and every change occur in servers.

Testing scenarios were created as follows. Since our

main focus is to find the connection initiation delays and

reveal the performance of content server interruptions in

the midst of the communication in both the proposed SoR

and DNS-based RR methods, we planned the following

scenarios. We set the client to send 500 packets initially.

Only the main server was started at the beginning of the

simulation. Therefore, all packets were redirected to the

main server. Then, at the time client sent the 500th packet,

surrogate server was started. Then, after the client sent

the 1000th packet, we temporally suspended the surrogate

server. Repeatedly, the servers; main and surrogate

servers, were toggled for each 500 packets. In each

scenario, we measured the RTT of response packets and

the latency between two response packets.

Fig. 8. RTT Comparisons

In the SoR-based method, as only the main server was

started initially, the main server was able to advertise the

information about the content that the server supports to

SoR#3. As a result, SoR#3 was able to advertise about

the main server with the other SoRs in the topology.

Consequently, once the client started and sent data to the

edge router which is the SoR#1, SoR#1 redirect the

packets to the main server immediate after receiving. In

fact, in the DNS-based method, the client was

programmed to query the local name server to get the IP

address of the redirector. Once the name server returned

the IP address of the redirector, the client was started to

send data to the main server. In both methods, we

measured the RTT and the packet inter-arrival time

(latency between two response packets) of the response

packets and the results were plotted in the graphs shown

in Figs. 8 and 9.

As shown in Fig. 8-B, for the connection initiation, the

DNS-based method consumed about 0.095s. In fact, the

SoR-based method was able to initiate the connection by

consuming only 0.0375s, which is about 60% faster

compared to the DNS based method. Furthermore, the

DNS-based method shows high variances of RTT while

temporary server shifting took place at the 500th, 1,000th,

and 1,500th packets, owing to the required DNS

resolution time. In contrast, as shown in the Fig. 8-A, the

SoR-based method did not exhibit such high RTT

variances. As an example, at the 500th packet, the SoR-

based method consumed only 0.0125s to redirect the

packet stream from the main server to the surrogate

server. However, the DNS-based method consumed about

0.081s to redirect the connection from the main server to

the surrogate server. In an average, the SoR-based

method adopt to the server changes 58% faster compared

to the DNS-based RR method.

Fig. 9-B shows that the packet inter-arrival time for the

DNS-based method increases during the period of server

toggling, because the DNS-based method searches for a

new server while content servers were being toggled. In

Fig. 9. Packet Inter-arrival time Comparisons

fact in the SoR-based method, according to the Fig. 9-A,

the packet inter-arrival time does not exhibit such high

increases when the servers are toggled. Packet inter-

arrival time is varying between 0.009s and 0.025s for all

reply packets from both servers, with no sudden latencies

in the packet arrival. That phenomenon allows the client

to receive data smoothly without lags in the receiving

data streams.

However, based on Figs. 8 and 9, we understood that

the RTT of the software-based SoR is slightly higher than

a conventional backbone router, because the SoR

performs DPI to determine the next hop. According to the

Fig. 8, there is 0.01s RTT latency in the SoR packet

forwarding. Reason is, regular routers were not

programmed to DPI the packets to forward. They used

simple static routing table to route the packets. Therefore,

the results imply that the SoR processing delay also

affects the client RTT. However, the difference in

processing delay is insignificant compared to the faster

 Router-based Content-aware Data Redirection for Future CDN Systems 7

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 1-10

adaptation to the server changes and the faster connection

initiation. Therefore, the merits of SoR are greater than its

demerits in terms of communication delay. On the other

hand, the RTT variation and packet inter-arrival time

shifts up and down based on one baseline. As an example,

in Fig. 8-A, the baseline RTT is about 0.022s for packets

501 to 1,200, because the SoR was designed entirely as

software, and basic thread communication methods was

used to share the single packet queue between receiving

and sending functions. Therefore, the thread lock of the

packet queue between sending and receiving functions

resulted in such variance in the RTT. Moreover, the

network latency also affected the RTT. As an example, in

Fig. 8-A, packets one to 500 show RTT values between

0.0375s and 0.045s approximately, because those packets

have to go through the public network in order to reach

the main server at Sendai data centre.

In contrast, the RTT of packets 501 to 1,200

varied from 0.015s to 0.0275s with a baseline of

approximately 0.022s, because those packets were

Fig. 10. Queue Length of S:Servers for Load Balancing Algorithms

destined for the surrogate server in the Shin-Kawasaki

data centre together with the client. Those packets were

not traveling in the public network, so the RTT is low

compared to that of the packets traveling to the Sendai

data centre.

As Load balancing occurs only within an ISP network

or a geographically near cluster [1, 11], to compare the

effectiveness of load balancing implemented for the SoR-

based RR, we used only two servers attached to the Shin-

Kawasaki data centre. Originally, both surrogate servers

were started and let the information propagate among the

SoRs in the topology. Then, we started the client and let

SoR#1 and SoR#2 redirect the packets among the

surrogate servers by measuring the queue values of the

surrogate servers. Afterward, we measured the RTT and

the packet inter-arrival time of the response packets and

plotted the results in Figs. 10 and 11. As Fig. 11

illustrates, the queue lengths of both servers were low

when using either the RR algorithm or the RAND

algorithm, because every packet was delivered to one or

the other server regardless of the server queue length. As

a result, as depicted in Fig. 10, the loads of both servers

were properly balanced. However, in the LL algorithm,

since the SoR makes the decision based on the queue

length of the server, the SoR has to wait 5s advertisement

delay to determine the least load server. Within a 5s time

interval, SoR#2 sends packets continuously to only one

server, so the queue length of that surrogate server

increases gradually. In the meantime, the queue length of

the other surrogate server gets decreased gradually. As a

result, the LL load balancing method shows a saw tooth

pattern for both surrogate servers, as depicted in Fig. 10.

Meanwhile, as depicted in Fig. 11, the RTTs of the RR

and RAND algorithms are also low, because SoR#2

redirects the packets to either surrogate server#1 or

surrogate server#2 regardless of the advertisement delay

since those two methods do not depend on the server

queue length. As the server load is properly balanced in

Fig. 11. RTT Measurements for Load Balancing Algorithms

both of RR and RAND methods, server response time is

shorter. Therefore, client can get a response packet faster,

and the RTT of those packets was low. However, that of

the LL algorithm was high. Owing to the longer queue of

both servers and the fact that those servers take a long

time to reply, as shown in Fig. 11, the RTT is gradually

increased within the advertisement intervals. Furthermore,

packets have to wait a long time in the server queue and

the response time gets increased, so the RTT values were

high. In fact, soon after SoR#2 received the server

advertisement, it redirected the packets to the other server

that has a lower queue value, and the RTT dropped

drastically. As a result, the RTT also varies in a saw tooth

pattern.

VII. DISCUSSION

Implementation of the SoR as software has both merits

and demerits. The main advantage is that it can work as a

8 Router-based Content-aware Data Redirection for Future CDN Systems

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 1-10

router, packet analyser and a packet redirector on

different platforms under different Linux-based operating

systems. The main disadvantage over this implementation

is that hardware acceleration cannot be achieved, because

the SoR is a software-based implementation. As Figs. 8-

A and 9-A reveal, the SoR consumes more process time

than a regular router under some conditions and that

affects the RTT eventually. For further optimization, the

SoR has to be enhanced with thread-safe functions to

obtain better maintenance of the packet queue to reduce

the access delays of the queue.

In addition, the proposed system does not maintain a

DNS hierarchy, which was needed for managing the

locations of surrogate servers in DNS-based RR. This

feature figuratively reduces the time consumption to start

a connection and to adapt to dynamic changing

environments. Additionally, SoRs can capture CDN

management messages directly and can also dynamically

update their forwarding tables accordingly. As a result,

data streams can be rerouted dynamically to an optimized

surrogate server without additional costs to clients.

However, performing DPI for both the IP and transport

layer headers along with the Layer 7 information

increases the SoR workload and the buffer size. As a

result, a slight increase in the RTT can be seen in all

results compared with the traditional routers. However,

we have shown that the RTT delay was almost negligible,

around 0.01 s. In terms of QoS and stabilization delay

(the most significant point), SoR-based RR showed that it

can significantly utilize the delay both in connection

initiation and adapt to server changes. Moreover, the

table size required for managing content hashes was

small, and it supported quick retrieval of next hop IP

addresses during packet forwarding.

Furthermore, as contents are frequently changing in

industrial CDNs, i.e. game applications, DNS-based RR

multi-tires of name servers in order to manage constancy.

As a result, in some circumstances, name server

communication takes a long time to response. On the

other hand, client's TTL values should be set to zero in

order to get the frequent updates of the content servers.

As a result, client contact local name server frequently to

obtain the server changes [1]. But in the proposed method,

the SoR communication protocol and the DPI of CDN

management packets are able to observe the server

changes quickly and update their FIBs according to the

changes. As a result, SoRs are at the edges of the network

can adapt to the server changes considerably faster and

redirect data faster.

Moreover, we presented load-balancing algorithms to

test SoR-based RR's suitability as a load balancer.

However, the communication protocol delay is

affecting to some load balancing algorithms. Finally, as

the Conclusion, the features of SoR, such as passively

capturing data, storing data in databases, performing DPI

on data from Layer 3 to Layer 7, and making routing

decisions based on the packet contents, was utilized to

create a prototype for optimization of CDN environments

for faster connection initiation and quick adaptation to the

server changes.

VIII. CONCLUSION

In this paper, first we implemented UNIX-based

software-designed SoR which is capable of analyzing and

store necessary data while packet streams are passing

through the SoR. Second, we implemented a prototype to

demonstrate SoR-based RR to redirect packets based on

the content of the packet and the status of content servers.

The placement of an SoR as an edge router of the

network and programmed redirects packet streams to

surrogate servers by analyzing the packet payload showed

50% time reduction in connection initiation and 50% to

60% faster adaptation for the server changes in the

network. However all aforementioned advantages came

without significant burden to both network and the client,

yet the improved flexibility comes at a cost of an extra

time of packet analysis on the SoR. That resultant

averagely 0.01s increment in RTT of packet transmission.

This paper showed only the quantitative measurement,

such as RTT and client waiting time while RR, which is

one fundamental component of a CDN network. In future

implementations, we will examine the SoR-based CDN

infrastructure qualitatively. That includes a discussion

about server placement, CDN management and content

distribution among servers. Moreover, we will pay

substantial attention to proper queue and memory

management and implement thread-safe functions to

maintain the proper data propagation in software-

designed SoRs.

ACKNOWLEDGMENT

This work was partially supported by funds for

integrated promotion of social system reform and

research and development, MEXT, Japan, by Low

Carbon Technology Research and Development Program

for "Practical Study on Energy Management to Reduce

CO2 emissions from University Campuses" from

Ministry of the Environment, Japan and by MEXT/JSPS

KAKENHI Grant (B) Number 25280033. Further, this

study is supported by Japanese Government

(monbukagakusho:MEXT) scholarship program.

REFERENCES

[1] Shaikh, A., Tewari, R., Agrawal, M.: On the effectiveness

of dns-based server selection. In: INFOCOM 2001.

Twentieth Annual Joint Conference of the IEEE Computer

and Communications Societies, vol. 3, pp. 1801–1810.

[2] Stamos, K., Pallis, G., Vakali, A., Katsaros, D.,

Sidiropoulos, A., Manolopoulos, Y.: Cdnsim: A simulation

tool for content distribution networks. In: ACM Trans.

Model. Comput. Simul, vol. 20, p. 40 (2010).

[3] Nygren, E., Sitaraman, R.K., Sun, J.: The akamai network:

a platform for high-performance internet applications.

SIGOPS Oper 44(3), 2–19 (2010).

[4] Akamai Technologies: Fast Internet Content Delivery with

FreeFlow. http://research.microsoft.com/en-

us/um/people/ratul/akamai/freeflow.pdf

[5] CenturyLink, I.: CenturyLink Technology Solutions.

http://www.centurylinktechnology.com/

[6] Poese, I., Frank, B., Smaragdakis, G., Uhlig, S., Feldmann,

A., Maggs, B.: Enabling content-aware traffic engineering.

SIGCOMM Comput. Commun. Rev. 42(5) (2012).

 Router-based Content-aware Data Redirection for Future CDN Systems 9

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 1-10

[7] Cohen, E., Kaplan, H.: Proactive caching of dns records:

Addressing a performance bottleneck. In: IEEE

INFOCOM (2000).

[8] Gadde, S., Chase, J., Rabinovich, M.: Web caching and

content distribution: A view from the interior. Computer

Communication 24(2), 222–231 (2001).

[9] Koletsou, M., Voelker, G.: The medusa proxy: A tool for

exploring user-perceived web performance. In: WCW,

Boston, (2001).

[10] B. Frank, I. Poese, G. Smaragdakis, A. Feldmann, B.

Maggs, S. Uhlig, V. Aggarwal, F. Schneider,

"Collaboration Opportunities for Content Delivery and

Network Infrastructures", in H. Haddadi, O. Bonaventure

(Eds.), Recent Advances in Networking, (2013), pp. 305-

377.

[11] Mao, Z., Cranor, C., Douglis, F., Rabinovich, M.,

Spatscheck, O., Wang, J.: A precise and efficient

evaluation of the proximity between web clients and their

local dns servers. In: USENIX Annu. Tech. Conf.,

Monterrey, pp. 229–242 (2002).

[12] Ager, B., M ühlbauer, W., Smaragdakis, G., Uhlig, S.:

Comparing dns resolvers in the wild. In: Internet

Measurement Conference, pp. 15–21 (2013).

[13] Kangasharju, J., Ross, K.W., Roberts, J.W.: Performance

evaluation of redirection schemes in content distribution

networks. Computer Communications 24(2), 207–214

(2001).

[14] Nishi, H: Service-oriented Backbone Router for Future

Internet. http: //www.prime-

pco.com/4thJEUsymposium/pdf/s1/s1_nishi.pdf.

[15] Inoue, K., Akashi, D., Koibuchi, M., Kawashima, H., Nish,

H.: Semantic router using data stream to enrich services. In:

International Conference on Future Internet Technologies

(CFI08) (2008).

[16] Nishi, H., Kawashima, H., Koibuchi, M.: Information-

based Open Innovation Platform. http://openinter.net/.

[17] Mockapetris, P.: RFC 1035, DOMAIN NAMES -

IMPLEMENTATION AND SPECIFICATION.

http://www.ietf.org/rfc/rfc1035.txt.

[18] Frank, B., Poese, I., an Georgios Smaragdakis, Y.L., an

Bruce M. Maggs, A.F., Rake, J., Uhlig, S., Weber, R.:

Pushing cdn-isp collaboration to the limit. Computer

Communication Review 43(3), 34–44 (2013).

[19] Gummadi, K., Saroiu, S., Gribble, S.: A precise and

efficient evaluation of the proximity between web clients

and their local dns servers. In: USENIX Annu. Tech. Conf.,

Monterrey, pp. 229–242 (2002).

[20] Cohen, E., Kaplan, H.: Proactive caching of dns records:

Addressing a performance bottleneck. In: IEEE

INFOCOM (2000).

[21] Cohen, E., Kaplan, H.: Prefetching the means for

document transfer: A new approach for reducing web

latency. In: Symposium on Applications and the Internet

(SAINT-2001) (2001).

[22] Gummadi, K., Saroiu, S., Gribble, S.: A precise and

efficient evaluation of the proximity between web clients

and their local dns servers. In: USENIX Annu. Tech. Conf.,

Monterrey, pp. 229–242 (2002).

[23] Nagatomi, Y., Koibuchi, M., Kawashima, H., Inoue, K.,

Nishi, H.: A regular expression processor embedded in

service-friendly router for future internet. In: Parallel

Processing Workshops (ICPPW), 2010 39th International

Conference On, pp. 82–88 (2010).

[24] Takagiwa, K., Kubo, R., Ishida, S., Inoue, K., Nishi, H.:

Feasibility study of service-oriented architecture for smart

grid communications. In: Industrial Electronics (ISIE),

2013 IEEE International Symposium, pp. 1–7 (2013).

[25] Yamaki, H., Nishi, H.: An improved cache machanism for

a cache-based network processor. In: The 2012

International Conference on Parallel and Distributed

Processing Techniques and Applications (2012).

[26] Hogawa, D., Ishida, S., Nishi, H.: Hardware parallel

decoder for of compressed http traffic on service-oriented

routers. In: The 2013 International Conference on

Engineering of Reconfigurable Systems and Algorithms

RSA’13 in WORLDCOMP2013, pp. 3–9 (2013).

[27] Wijekoon, J., Harahap, E., Nishi, H.: Service-oriented

router simulation module implementation in fNS2g

simulator. The 4th International Conference on Ambient

Systems, Networks and Technologies (ANT 2013), the 3rd

International Conference on Sustainable Energy

Information Technology (SEIT-2013), Procedia Computer

Science 19, 478–485 (2013).

[28] Sanghi, D.: Unix Socket Programing Computer Networks.

http://www.cse.iitk.ac.in/users/dheeraj/cs425/lec17.html/.

[29] Global Inter-cloud Technology Foruml (GICTF).

http://www.gictf.jp/indexe.html.

[30] DongJin Lee, N.B. Brian E. Carpenter: Media streaming

observations: Trends in udp to tcp ratio. International

Journal on Advances in Systems and Measurements No 3

and 4, 147–162 (2010).

[31] Kuan-Ta Chen, Chun-Ying Huang, Polly Huang, and Chin-

Laung Lei, "An Empirical Evaluation of TCP Performance

in Online Games," In Proceedings of ACM SIGCHI ACE

06, Los Angeles USA, Jun (2006).

Authors’ Profiles

Janaka L. Wijekoon received the B.S degree in Information

Technology by specializing in Computer Systems and

Networking from the Sri Lanka Institute of Information

Technology (SLIIT) in 2010. He received his M.S in

Engineering Degree from Keio University, Japan in 2013.

Currently he is a PhD candidate for the Keio University Japan

and his research interests are Future Internet Technologies,

Router Architecture Design, Service Based Internet

Infrastructure Design, Content Delivery Networks and Network

Simulations. Mr. Wijekoon currently is a Japanese Government

Scholar (MEXT) for the Hiroaki Nishi Laboratory, Keio

University and, he is an assistant lecturer for SLIIT, Sri Lanka

and currently on sabbatical leave.

Erwin H. Harahap received the B.S degree in Mathematics

from Padjadjaran University, Indonesia, in 1994 and M.S

Degree in Computer Science/Integrated Design Engineering

from Keio University, Japan, in 2010. Since 2011, he has been a

PhD student in Hiroaki Nishi laboratory, Keio University, Japan.

His research interests include Network Management System,

Artificial Intelligence with Bayesian Networks, Network

Modeling, Network Design and Simulations, and Content

Distribution Network.

Rajitha L. Tennekoon received his MSc and BSc degrees from

Sheffield Hallam University, United Kingdom, in 2010 and

2009 respectively. Since 2013, he has been a PhD student in

Hiroaki Nishi laboratory, Keio University, Japan. His research

interests include Information Systems Security, Network Design

and Simulations, Next Generation Networking and Secured

Routing.

Shinichi Ishida received the B.E., M.E, and Ph.D degrees from

the Keio University, Japan, in 2005, 2008, and 2013,

10 Router-based Content-aware Data Redirection for Future CDN Systems

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 1-10

respectively. He is currently a project researcher in Nishi

Laboratory, Keio University, Japan. His research interests

include Future Internet Technologies, Router Architecture

Design, Internet architecture and Computer Networks.

Hiroaki Nishi received his B.E., M.E., and Ph.D. degrees from

Keio University, Japan, in 1994, 1996, and 1999, respectively.

Since 2007, he has been an Associate Professor at Keio

University, and since 2010, a Visiting Associate Professor of

National Institute of Informatics (NII), Japan. The main theme

of his current research is in building of the total network system

including development of hardware and software architecture.

He places great importance on considering what is required for

the highly networked information society in the future. He is

investigating the Next generation IP router architecture and

Effective Network Systems for Electricity Transaction and

Energy Saving in Smart Energy field.

How to cite this paper: Janaka L. Wijekoon, Erwin H. Harahap, Shinichi Ishida, Rajitha L. Tennekoon, Hiroaki

Nishi,"Router-based Content-aware Data Redirection for Future CDN Systems", IJCNIS, vol.6, no.7, pp.1-10, 2014.

DOI: 10.5815/ijcnis.2014.07.01

