
I.J. Computer Network and Information Security, 2014, 7, 50-55
Published Online June 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2014.07.07

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 50-55

Task Assignment for Heterogeneous Computing

Problems using Improved Iterated Greedy

Algorithm

R.Mohan
Department of Computer Science and Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India

E-mail: rmohan@nitt.edu

N.P.Gopalan
Department of Computer Applications, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India

E-mail: npgopalan@nitt.edu

Abstract—The problem of task assignment is one of the

most fundamental among combinatorial optimization

problems. Solving the Task Assignment Problem is very

important for many real time and computational scenarios

where a lot of small tasks need to be solved by multiple

processors simultaneously. A classic problem that

confronts computer scientists across the globe pertaining

to the effective assignment of tasks to the various

processors of the system due to the intractability of the

task assignment problem for more than 3 processors.

Several Algorithms and methodologies have been

proposed to solve the Task Assignment Problem, most of

which use Graph Partitioning and Graph Matching

Techniques. Significant research has also been carried out

in solving the Task Assignment Problem in a parallel

environment. Here we propose a modified version of

iterated greedy algorithm that capitalizes on the efficacy

of the Parallel Processing paradigm, minimizing the

various costs along with the duration of convergence. The

central notion of the algorithm is to enhance the quality

of assignment in every iteration, utilizing the values from

the preceding iterations and at the same time assigning

these smaller computations to internal processors (i.e.

parallel processing) to hasten the computation. On

implementation, the algorithm was tested using Message

Passing Interface (MPI) and the results show the

effectiveness of the said algorithm.

Index Terms—Load Balancing, Task Assignment, Task

Interaction Graph (TIG), Iterated Greedy Heuristic,

Parallel Processing, Heterogeneous Computing, Message

Passing Interface.

I. INTRODUCTION

The paradigm of Heterogeneous Computing has

emerged as a hotbed for research in the recent times with

the burgeoning demand for computationally invested

applications requiring varied degrees of calculations and

running on extremely divergent systems. With the advent

of the phenomenon of cloud computing, these

computations are often needed to transcend the

geographical, cultural and linguistic boundaries. In other

words, the heterogeneous system computation, entails

apart from the dissimilar system configuration but also

the geographical spread of these said systems.

Given such a scenario of geographic spread of

processors, it is efficient and viable to divide a parallel

application into cohesive tasks which can be executed

independently on these individual processors. The caveat

however lies in the fact that the efficiency of the said

parallelization hinges on the concept of Task Assignment.

Task Assignment deals with the assignment of tasks to

processors with the single minded objective of

minimizing the time and cost of computation.

Parallel computing is commonly used for executing

computationally intensive applications like those used in

database management, data-mining, networked videos

and medical imaging. Instead of executing the application

on a single processor, the application is divided into

many tasks, and the tasks are executed in multiple

processors concurrently. Since these processors differ in

several key aspects including the cost of communication

between two processors, heterogeneous computing finds

practical application over its homogeneous counterpart.

The concept of parallelization hinges on the key notion of

task assignment. Task assignment problem involves

assigning task modules to available processors in order to

maximize processor utilization and minimizing

Turnaround time. Since, the execution time of a

process is different on each processor; the total execution

time in these systems is largely influenced by the order of

assignment of tasks, done to different processors. The

task assignment problem has been proves to be NP hard.

Tasks assignments are of two types – Static and

Dynamic. Static task assignment involves finding a

solution to the assignment problem before the start of

execution of the large program on different processors.

Hence, a longer time is needed to provide a better

solution in the static method. This is in contrast to the

 Task Assignment for Heterogeneous Computing Problems using Improved Iterated Greedy Algorithm 51

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 50-55

Fig 1: Flow chart depicting Iterated greedy method

Dynamic assignment wherein tasks of the large program

are assigned to the processors while the program is

actually being executed.

Task Assignment has traditionally revolved around the

nucleus of performance and the methods have been built

to satisfy these performance criteria. However the innate

quality of these distributed systems is the vulnerability to

machine and network failures stemming from the relative

size and complexity of these machines when compared to

the traditional centralized ones. This necessitates the

evolution of a new strategy of task assignment algorithms

which places equal emphasis on both performance and

reliability. The importance of assuring reliability gains

importance of gigantic proportions when the system in

question deals with critical applications such as missile

systems, aircraft control, and industrial process control

where a collapse of the system even for a small duration

could lead to exponentially high loss of money and life.

The need for emphasis on reliability of task assignment

algorithm is appreciated but is left for future research.

A. Task Assignment Methodologies

As the problem of task assignment is NP-hard for more

than three processors [1], we aim to come as close as

possible to the optimal solution using a polynomial time

(heuristic) algorithm. Various algorithms have been put

to use for making heuristics such as Greedy Heuristic

genetic algorithm (GA) [2], simulated annealing [3],

hybrid particle swarm optimization [4] and honeybee

mating optimization [5].Most algorithms are based on

graph matching and graph partitioning.

B. Iterated Greedy Heuristic Algorithms

Applying traditional approach using optimal solution

methods to Task Assignment problem takes an acceptable

amount of time for small problems but are generally

inefficient for larger problems. This problem can be

overcome by using a heuristic approach which takes

lesser time but the benefit of optimal solution approach is

lost. Thus there is a trade-off between time and optimality.

A greedy algorithm works on the principle of making a

choice based on the optimal value at that point of time. In

other words it chooses a locally optimal value at every

juncture. Since the choice is locally optimal, there is a

possibility of the final solution not being optimal, i.e. the

global optimum might not be derivable from these locally

optimal values. Thus a good greedy heuristic algorithm

uses these locally optimal values which approximate to

the global optimum solution. This is employed when the

time of computing the values are of the greatest

importance.

Greedy Algorithm produces a good solution, although

it might not be optimal, it is often close to an optimal one

in a reasonable duration of time. The algorithm has a

downside, in that it is deterministic. This leads to the

algorithm being stuck in a local minima rather than a

global minima which is often guaranteed in a Dynamic

Programming approach.

It makes use of a task graph and a processor-graph.

While the task-graph denotes the dependency amongst

the task modules, the processor graph defines the

topology of interconnection amongst the processors. The

iterated greedy algorithm starts with a heuristically

constructed initial solution and then opting to improve the

solution, with every iteration. The iterated greedy (IG)

heuristic is one of the most efficient techniques used for

solving task assignment problem as shown by [6].

C. Motivation for the work done

The Iterated Greedy Algorithm proposed in [6] is a

very efficient algorithm to solve task assignment.

However, here we present an optimized version of the

algorithm given in [6]. We propose to achieve the

optimization, by choosing a better destruction value

instead of a random value, and a better acceptance criteria

doing away with the ‗temperature‘ parameter.

Furthermore, we present a modified version of iterated

greedy algorithm that uses the Parallel Processing

paradigm, thus minimizing both - the various costs and

the duration of convergence. This method has yielded

better results when compared with the earlier algorithms

after it was tested on sample test cases using Message

Passing Interface (MPI).

The paper is organized as follows. The problem

formulation is discussed in Section 2 and the improved

IG heuristic algorithm is given in Section 3. The result of

52 Task Assignment for Heterogeneous Computing Problems using Improved Iterated Greedy Algorithm

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 50-55

application of proposed algorithm and the comparison

with original algorithm is provided in Section 4.

Concluding remarks are made in Section 5.

II. PROBLEM FORMULATION

The task problem can be represented by a graph Task

Interaction Graph (TIG): G (V, E). The TIG involves the

various tasks (say, N tasks) that are used as vertices (V)

of the graph (G) and (E) represents the communication

required between those two tasks. The tasks are assigned

to the various processors (P). Since we have assumed a

heterogeneous system the execution times of the various

tasks differs with change in the processor. The various

execution times are taken in a matrix {ecij} where ecij

represents the time taken for task i to execute on

processor j. A weight wij corresponds with an edge (E)

that represents the amount of data to be transferred

between tasks i and j. As in a heterogeneous system the

communication cost between processors could also differ,

and this is represented by dkl where k and l are two

processors. This value depends on distance between

processors and it is the cost for transferring unit data

between the two processors. This distance metric is

considered to be symmetric, i.e. dkl= dlk. Additionally,

we also assume that two tasks assigned to the same

processor yields no communication overhead.

The task assignment problem involves trying to

minimize the total time. The communication cost is

calculated by multiplying the distance between the two

processors with data to be transferred between the two

tasks wij * dkl(when task i and task j are assigned to

processor k and processor l respectively).

Let ϕ be a mapping which assigns tasks to processors,

e.g. ϕ [i] =k implies that ith task was assigned to

processor k. Let ϕ be the set of all possible mappings ϕ.

In our model, we consider two costs that are incurred –

processor execution cost and inter-processor

communication cost.

The processor execution cost (PEC) is given by,

 (1)

The inter-processor communication cost (IPCC) is given

by,

 (2)

The objective is therefore to Minimize Cost=PEC+IPCC

subject to the constraints:

 Resource Constraints:

 (3)

 Processor is used if a task is allocated at least

one

 And all the tasks should be allocated only once.

III. IMPROVED ITERATED GREEDY ALGORITHM

The algorithm starts with the generation of an initial

greedy solution. This initial solution is generated

randomly and is followed by a series of iterations that are

performed to get optimized solutions. Akin to the

algorithm proposed in [1], the algorithm has four basic

steps – Construction, Destruction, Optimize and

Acceptance.

In the destruction phase, some d tasks are removed

from the incumbent solution and in the construction

phase, these d tasks are reassigned to the available

processors. The decision i.e., to accept this new

arrangement or not, is taken by the acceptance criteria.

This whole process is iterated until a stopping condition

is met.

An outline of iterated greedy algorithm as given in [1],

Procedure IteratedGreedy

{

 Xo= GenerateInitialSolution;

 X = LocalSearch (Xo);

 Repeat

 Xp = Destruction(X);

 XC = Construction (Xp);

 X = LocalSearch (Xc);

 X = AcceptanceCriterion (X, X*);

 Until termination condition met

}

A. Initial Solution

Initial solution is randomly generated, by assigning

some random task to each processor such that no

constraints on resources and memory are violated. The

number of iterations required to generate the optimal

solution depends on the initial solution. The proximity of

the initial solution to the final solution governs the

number of iterations needed to solve the task assignment

problem. The closer the initial solution is to the final

solution, the lower is the number of iterations required

(on an average). Thus, the random solution technique

employed to identify the initial solution forms the basis

for implementing parallel processing in the iterated

greedy methodology.

 Task Assignment for Heterogeneous Computing Problems using Improved Iterated Greedy Algorithm 53

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 50-55

Fig 2: A plot of total time consumption (T) against the destruction level (D) for value N=50, n=3

B. Destruction Phase

In this phase, a certain number tasks are chosen and

they are removed from the incumbent solution. As stated

in [6], the number of tasks to be removed (d) is chosen

randomly from 0 to N. The complexity of this phase is O

(d*N). It can be seen that the number d influences the

total running time of the algorithm.

From Fig. 1, the plot reveals that the total time

consumption (T) takes a local minima at D=0.3. Further

extension will show that the local minima is also a global

minima. Thus in order to ensure a minimum value for the

time consumption, we maintain d as 0.3N since it yields

better performance as seen from [6].

C. Construction Phase

After removing d tasks from the destruction phase, we

have a partial assignment solution ϕ p. The removed

tasks are re-assigned to the available processors such that

we have minimum cost according to greedy constructive

heuristic technique adopted from [7], while also taking

care that no constraint is violated. This is done for each

removed task. The complexity of this phase is O (d*N*K).

D. Acceptance Criteria

The acceptance criterion specifies the acceptability of

the new assignment solution. Usually, a new solution is

accepted if it is better than the incumbent solution.

However, as mentioned in [6], it is sometimes better to

accept slightly worse solution in order to avoid stagnation

that may occur due to insufficient diversification.

In [6], the approach was to use an exponential

probability function to determine whether to accept a

worse solutionor not. In this paper, however, we do away

with the probability function. Instead, we consider a

solution with System Cost < 1.2*current cost as a

candidate solution. The value for this was arrived at after

the observation that it performs better heuristically.

E. Termination Condition

We could have various terminating conditions like

total number of iterations, computation time-limit cutoff

etc. Since our algorithm will be compared with the other

heuristic algorithm mentioned in [6], we will have

computation time-limit as our stopping criteria.

Initiating parallel processing in the problem.

The parallel processing is implemented in the

generation of initial solution by calling some ‗m‘

processes to generate their own initial solution and

perform the three phase‘s namely-destruction,

construction and acceptance for some number of

iterations. After a certain number of iterations, during

which these processes communicate with each other to

find the solution which is minimum, a continue signal‗s‘

is sent to these processes and it continues with further

iterations to arrive at the final solution and all other

processes, which have not received the ―continue‖ signal,

are stopped after completion of the iterations. The

process returns the final solution back to the main process.

F. Pseudo code for proposed algorithm

54 Task Assignment for Heterogeneous Computing Problems using Improved Iterated Greedy Algorithm

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 50-55

paralliteratedgreedy()

{

min_sol,sol_id;

if(root process) //root processor//

{

for(i=1 to no_of_processors) //communication phase//

receive(par_sol,procs_id)

ifpar_sol<min_sol

{

min_sol=par sol

sol_id=procs_id

}

send(continue,sol_id); //send back continue

signal //

else //operations of other

processes//

{

Xo= GenerateInitialSolution;

 X = LocalSearch(Xo);

 Repeat

 Xp = Destruction(X);

 Xc = Construction(Xp);

 X = AcceptanceCriterion (X, X*);

 Until m iterations

}

send(X,rootprocs_id); // Sending locally minimum

value to root processes for acceptance //

receive(signal,rootprocs_id);

if(signal=contnue)

{

 Repeat

 Xp = Destruction(X);

 Xc = Construction(Xp);

 X = Optimize(Xc);

 X = AcceptanceCriterion (X, X*);

 Until termination condition met

}

send (x,rootprocs_id); // sending optimal solution

back to main process //

}

}

IV. EXPERIMENTAL RESULTS

The proposed algorithm was implemented on a Dev C

in a Intel core i3 processor. The algorithm is based on the

iterated greedy algorithm proposed in [6], incorporating

the concept of parallel processing using Message Pass

Interface (MPI) without the local search.

Values obtained from the execution of the said

algorithm resulted in the plot shown in Fig. 1. The total

time consumption plot was made against the number of

tasks (N) for different values of the number of parallel

processors (n). Without much loss of generality, it can be

stated that the value for n=1 is approximately equal to the

corresponding value of duration of convergence obtained

in [6].

V. CONCLUSIONS & RECOMMENDATIONS

It is inferred from the graph in Fig. 1 that the iterated

greedy algorithm with the concept of parallel processing

is very efficient and converges faster for smaller value of

N (the number of tasks). This is, as a result of the reduced

number of iterations needed. With the increase in tasks,

however, the overhead for communication overweighs

the advantage of parallel processing and increases time

taken for convergence.

For smaller value of N, It is also observed that with the

increase in the number of parallel processors (n), the

duration of convergence is significantly lesser.

VI. FURTHER WORK

The following improvements will be the focal point of

our further research:

 Utilizing a more robust approach to arrive at the

initial solution, than the hitherto random

methodology, will yield an initial solution much

closer to the final optimal solution, thus

reducing the number of iterations

 Adopting the concept of parallel processing in

the destruction phase, the need for random initial

solution is overcome by using random

destruction of tasks.

 Incorporating the element of reliability into the

algorithm to enhance the application of it in

critical systems.

 Task Assignment for Heterogeneous Computing Problems using Improved Iterated Greedy Algorithm 55

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 7, 50-55

Figure 3: A plot of the total time of computation (T) against the number of tasks (N) for different number of processors (n)

REFERENCES

[1] Casavant, T., Kuhl, J.G., (1998) A taxonomy of scheduling

in general-purpose distributed computing systems, IEEE

Transaction on Software Engineering 14(2). Pp 141-154.

[2] Chockalingam, T., Arunkumar, S., (1995) Genetic

algorithm based heuristics for the mapping problem.

Computer and Operations Research. v22. Pp. 55-64.

[3] Hamam, Y., Hindi, K.S., 2000) Assignment of program

modules to processors; a simulated annealing approach.

European Journal of Operational Research 122. Pp 509-

513 European Journal of Operational Research. v177 i3. pp.

2033-2049.

[4] Yin, P.Y., Yu, S.S., Wang, P.P., Wang, Y.T., (2006). A

hybrid particle swarm optimization algorithm for optimal

task assignment in distributed systems. Computer Standard

and Interface 28. Pp 441-450.

[5] Kang, Q., He, H., (2013) Honeybee mating optimization

algorithm for task assignment in heterogeneous computing

systems. Intelligent Automation and Soft Computing 2013

Vol. 19. Pp 69-84.

[6] Qinma Kang, Hong He and Huimin Song (2011) Task

assignment in heterogeneous computing systems using an

effective iterated greedy algorithm. Journal of Systems

and Software, pp. 985-992.

[7] Shatz, S.M., Wang J.P., Goto, M., (1992) Task allocation

for maximizing reliability of distributed computer systems.

IEEE Transactions on Computers. v41. Pp. 1156-1168.

[8] Pan, Q, K., Wang, L., Zhao, B.H., (2008) An improved

iterated greedy algorithm for the no-wait flow shop

scheduling problem with makespan criterion. International

Journal of Advanced Manufacturing Technology. v38. Pp.

778-786.

[9] Ruiz, R., Stutzle, T., (2007) A simple and effective iterated

greedy algorithm for the permutation flowshop scheduling

problem.

[10] Ruiz, R., Stutzle, T., (2008) An iterated greedy heuristic

for the sequence dependent setup times flowshop problem

with makespan and weighted tardiness objectives.

European Journal of Operational Research. v 187

i3.Pp.1143-1159.

[11] Ying, K.C., Lin, S.W., Huang, C.Y., (2009) Sequencing

single-machine tardiness problems with sequence

dependent setup times using an iterated greedy heuristic.

Expert Systems with Applications. v36. Pp. 7087-7092.

[12] Chern, M.S., Chen, G.H., Liu P., (1989). An LC branch-

and-bound algorithm for module assignment problem.

Information Processing Letters 32. Pp 61-71.

Authors’ Profiles

R.Mohan is an Assistant Professor of Computer Science and

Engineering Department, National Institute of Technology,

Tiruchirappalli, Tamil Nadu, India. His research interests

include Distributed Computing, Data Structures and Algorithms.

N.P.Gopalan is Professor of Computer Applications

Department at National Institute of Technology, Tiruchirappalli,

Tamil Nadu, and India. He obtained his PhD from the Indian

Institute of Science, Bangalore. His research interests lie in Data

Mining, Web Technology, Distributed Computing and

Theoretical Computer Science.

How to cite this paper: R.Mohan, N.P.Gopalan,"Task Assignment for Heterogeneous Computing Problems using

Improved Iterated Greedy Algorithm", IJCNIS, vol.6, no.7, pp.50-55, 2014. DOI: 10.5815/ijcnis.2014.07.07

