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Abstract—This paper addresses mean response time that 

end-users experience when using the Internet. HTTP 

(Hyper Text Transfer Protocol) is a widely used transfer 

protocol to retrieve web objects in the Internet. Generally, 

HTTP uses TCP (Transmission Control Protocol) in a 

transport layer. But it is known that HTTP interacts with 

TCP inefficiently. As an example of such inefficiencies, 

HTTP does not require TCP to deliver the rigid order, 

which may cause head-of-line blocking. As another 

transport layer protocol, SCTP (Stream Control 

Transmission Protocol) has attractive features such as 

multi-streaming and multi-homing unlike TCP. Within an 

SCTP association, multi-streaming allows for 

independent delivery among streams, thus can avoid the 

head-of-line blocking. In addition, SCTP provides very 

large number of streams; therefore, it can transfer 

multiple objects more efficiently than the typical 

HTTP/1.1 over TCP which limits the number of pipelines. 

Mean response time is one of the main measures that end 

users using Internet concern. This paper presents the 

simple analytical model and algorithm to find the mean 

response time for HTTP over SCTP including the 

previous HTTP over TCP. Some computational 

experiences show that the proposed model and algorithm 

are well approximated to the real environment. Also, it is 

shown that mean response time for HTTP over SCTP can 

be less than that for HTTP over TCP. 

 
Index Terms—Mean response time, HTTP over TCP, 

HTTP over SCTP. 

 

I.  INTRODUCTION 

Mean response time is one of the important measures 

to evaluate the performance of the Internet service. HTTP 

is a main application protocol to offer the Internet service. 

Since HTTP requires a reliable transfer, it uses 

connection oriented protocol like TCP and SCTP in the 

transport layer.  

HTTP 1.0 does not provide the means to request the 

multiple objects, thus, we must establish a new TCP 

connection for retrieving each object from the web server. 

Since HTTP 1.0 requires two extra RTTs (round trip 

times) in setting up a new TCP connection between the 

web client and the web server, it is particularly inefficient 

[1].  

HTTP 1.1 aims to reduce the extra setup time with 

persistent connections. It allows the web client to retrieve 

all objects from the web server by using pipelining. But, 

the numbers of objects which pipeline can handle 

simultaneously are affected and limited by the processing 

power of web server [2]. 

Even though any enhanced version of HTTP is used, 

there is a mismatch between the requirements of HTTP 

and the functionality by TCP. When multiple embedded 

objects are transmitted by using HTTP, TCP wants that 

each object should be reliably transferred. However, 

ordered delivery of these objects is not a requirement of 

HTTP. Instead, HTTP user wants the perceived latency   

to be reduced. In fact, most users are only concerned 

about fast response time. 

TCP offers only a single stream of data and requires 

rigid ordered delivery. While this feature is desirable for 

delivery of a file or record, it causes additional delay 

when message loss or sequence error occurs in the 

network. When loss or error happens, TCP should delay 

delivery until the sequencing is corrected, either by 

receipt of an out-of-sequence data, or by retransmission 

of a lost data. 

For a number of applications, this strict sequence 

preservation is not truly necessary.  Web application 

needs not to maintain sequence between the presentations 

of objects. In some cases, web application may present 

parts of a single object out of sequence. Our goal is to 

deliver all objects as soon as possible. However, the 

ability to deliver objects out of sequence can achieve    

better performance. The reason is why parts of the web 

page can be displayed before waiting the entire objects. 

This situation is called the head-of-line blocking. 

SCTP (Stream Control Transfer Protocol) [3] is a 

newly suggested message oriented transport layer 

protocol. SCTP provides a reliable full-duplex connection, 

called an association, and employs the control congestion 

mechanism like TCP. However, SCTP provides enhanced 

delivery options which TCP does not offer. SCTP can 

divide data into multiple streams and deliver 

independently by using its own multi-streaming function.  

By this function, SCTP can limit message loss in any 

of the streams within that stream only.  

We can use multi-streaming for independent delivery 

among streams within an SCTP association, thus reduce 

the head-of-line blocking situation [4]. Furthermore, 

within a single SCTP association, we can create so many 



 Mean Response Time Approximation for HTTP Transactions over Transport Protocols 25 

Copyright © 2015 MECS                                                I.J. Computer Network and Information Security, 2015, 1, 24-30 

unidirectional streams by either end for simultaneous data 

transfer. Therefore, if one object is lost during the transfer, 

the other objects can be transmitted while the lost object 

is retransferred. This will result in a better response time 

of end-users through simultaneous retrieval of the 

multiple objects [5]. In contrast, the numbers of pipelines 

for HTTP 1.1 over TCP are limited largely by the 

capability of web server. 

Now, we investigate the TCP model related with the 

HTTP. TCP model [6] considered the TCP bulk data in a 

steady state. However, average transfer size of each TCP 

connections is known 8-12 KB [7]. Thus Most TCP 

connections carry very short data in Internet. Small size 

of web object affects the performance of web application 

by startup effects such as connection establishment and 

slow start. Cardwell et al. [8] extended the previous 

steady-state model, but, does not consider the effects by 

the slow start after timeout. Jiong et al. [9] improved 

model [8] by considering the influence of slow start 

period after retransmission timeout, however, does not 

consider multiple packet losses. 

Particularly, the above researches focus on the micro 

behavior only and do not consider the head-of-line 

blocking time and multiple packet losses. But, most end-

users are not interested in the theoretical TCP latency, but 

the overall response time.  

Chang et al. [10] conducted the research about the 

performance of File Transfer Protocol (FTP) over SCTP, 

and the performance of Session Initiated Protocol (SIP) 

over SCTP was analyzed in [11]. A simple closed-form 

formula to estimate the HTTP latency over FAST TCP, 

taking into account the network parameters such as 

packet size, link capacity, and propagation delay was 

presented in [12]. Eklund et al. [13] developed a 

prediction model for the transfer times of SCTP messages 

during slow start. However, the mean response time 

approximation model for HTTP over SCTP in various 

situations has not yet been presented.  

Lee et al. [14] presented mean response time 

estimation model for HTTP over SCTP in wireless 

environment and Lee [15] proposed more detailed model 

by extending the model [14]. However, because both 

models focus on the behavior of congestion control 

mechanism, they did not provides mean response times 

according to several HTTP versions and transaction 

processing methods.  

Based on [14] and [15], this paper presents the 

approximation model for mean response time of several 

HTTP transactions methods over TCP and SCTP in 

transport layer when the packet loss occurs only during 

slow start phase due to small bandwidth.  

We begin by presenting modeling and algorithm of 

HTTP transactions in the next section. In section 3, we 

describe HTTP applications to the model and Section 4 

describes performance evaluation. We present our 

conclusions in section 5. 

 

II.  MODELING AND ALGORITHM FOR MEAN RESPONSE 

TIME OF HTTP TRANSACTIONS 

A.  Modeing for mean response time  

We first assume that each size of objects is identically 

distributed and the packet loss probability is given by any 

constant value. We send the HTTP request for one object 

and receive an acknowledgement from the server. Fig. 1 

represents such a procedure. In the Fig. 1, RTT shows 

round trip time between the client and the server. S1, S2,.., 

Sa shows the slow start time until the first, second,, a
th

 

packet loss occurs respectively. DT1, DT2,.., DTa represent 

the data transfer time for part of object until the first, 

second,.., a
th

 packet loss occurs respectively. In addition, 

HOB1, HOB2,., HOBa represent the head-of-line blocking 

time that requires the waiting for the retransmission. 

When the total number of packets in object (N) is 

N=O/b where O and b are the size of the object to be 

transferred (bits) and maximum segment size (bits), 

respectively. When the packet loss probability is p, the 

expected number of packet loss (a) is a=Np according to 

the binomial distribution.  

In Fig. 1, total response time = RTT + object transfer 

time = RTT + (S1 + DT1 + TR1 + HOB1) + ∙∙∙∙∙ + (Sa + DTa 

+ TRa + HOBa). Here, TRi and DTi (i=1,..,a) shows data 

retransmission time and data transfer time in relation to i
th

 

packet loss respectively . 
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Fig. 1.  HTTP transaction and total response time 

Since RTT can be regard as constant value in the given 

environment, total response time varies according to the 

object transfer time. But, the sum of the data transfer time 

is Σk=1
a
 DTk = O/Q and can be treated as the constant. 

Here, Q represents transmission rates of the link from the 

server to the client (bps). Therefore, slow start time (Si), 

retransmission time (TRi) and head-of-line blocking time 

(HOBi) in relation to i
th

 packet loss are affecting elements 

to the total response time. Without packet loss, we need 

not the additional slow-start time, retransmission time 

and head-of-line blocking time.  Thus, in that case, only 

the slow start time and data transfer time are required to 

find out response time. 
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Now, we assume that packet loss occurs. First, in order 

to find the slow start time (S1) until the first packet loss, 

we have to know the expected number of packets sent 

before the loss. We can determine the expected number 

of packets sent until a packet loss excluding the lost 

packet itself (x) by (1). Thus, it is natural that the 

expected number of packets sent until the first packet loss 

is (x-1). 
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In general, slow start time (ST) for web object transfer 

is given by [16] 
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Here, c = min [V, W-1]. V and W represent the number 

of times the server would stall and the number of 

windows covering the object when the packet is not lost, 

respectively.  V is given by (3). W is given by (4). 
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However, when the packet is lost, we should send the    

(x-1) packets before the loss, therefore, W is given by 
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By substituting these values into the above ST, we can 

obtain the slow start time until the first packet loss (S1).  

The retransmission time for one segment (TR1) is TR1 = 

b/Q. 

Next, we compute the window size (y) covers the 

expected value of packet number when the loss occurs (x). 
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Since we can infer that when the packet loss occurs, 

the half of number of packets in the window on the 

average are waiting for the retransmission for reordering, 

mean head-of-line blocking time due to the first packet 

loss can be given by 
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We can obtain the remaining values of S2,.., Sa+1 so on 

by using the same method. It is noted that Si must be 

found for (i=1,.., a+1), but HOBi, DTi, and TRi must be 

found for (i=1,..,a).   

B.  Algorithm for object transfer time 

Based on the above model, we can formulate the entire 

procedure to find the object transfer time.  

 

 
In the first step, we introduce the following local 

variables; dt, st, hob, and rt. dt represents data transfer 

time, and is given by (object size)/(link transmission rate). 

st shows slow start time and is equal to 0 at the initial 

phase. hob shows the head-of-line blocking time and is 

also given by 0 at the initial phase. Finally, rt means the 

retransmission time, and is set to zero as an initial value. 

We then compute the total number of packets included 

an object (N) is given by (object size / maximum segment 

size) and the expected number of packet loss (a) is 

computed by (the total number of packets * the packet 

loss ratio). We set the iteration count (i) to zero. 

In the second step, we first check whether the expected 

number of packet loss is equal to zero. That is, we 

investigate if the packet loss ratio is equal to zero. If so, 

then we proceed to the slow start time computation phase, 

otherwise, we increase the iteration count (i) by one. If 

the increased iteration count is equal to (a+1), we set the 

expected number of packets sent until a packet loss 

excluding the lost packet itself (x) to the total number of 

packets included an object (N). Otherwise we compute 

Algorithm 1. Pseudo-code for object transfer time 

STEP 1: 

①  Set  dt (data transfer time) = O/Q. 

Set  st (slow start time) = 0. 

Set  hob (head-of-line blocking time) = 0. 

Set  rt  (retransmission time) = 0. 

②  Compute the total number of packets in object, N=O/b  

and the expected number of packet loss, a=Np. 

③  Set i = 0. 

STEP 2: 

①  If a = 0 (p = 0), then proceed to ④ of STEP 2. 

②  Set i = i + 1. 

If i = a+1, Set x = N and go to ④ of STEP 2. 

③ Compute the expected number of packets sent until a 

packet loss by (1). 

④ // slow start time computation phase 

Compute the slow start time (Si) by using (2) 

Compute the number of times the server would stall  

by (3) and the number of windows that cover the object  

without packet loss by (5), respectively. 

Set st = st + Si. 
If a = 0 or i = a+1 then proceed to STEP 4. 

⑤  Compute the retransmission time (TRi), 

Set TRi = b/Q. 

Set rt = rt + TRi. 

⑥ Compute the window size(y) covers the expected value  

of packet number when the loss occurs (x) and mean  

waiting time (HOBi) by (6) and (7), respectively. 

⑦  Set hob = hob + HOBi. 

STEP 3: 

If i = a+1, then proceed to STEP 4. 

Otherwise, Set N = N – x and return to STEP 2. 

STEP 4: 

Compute object transfer time (OT), 

OT = dt + st + rt + hob 
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the expected number of packets sent until a packet loss by 

(1). 

In the slow start time computation phase, we compute 

the slow start time (Si) by using (2) and compute the 

number of times the server would stall by (3) and the 

number of windows that cover the object without packet 

loss by (5), respectively. The total slow start time (st) is 

computed as the sum of the previous slow start time (st) 

and Si obtained in this phase. If the computed number of 

packet loss (a) is equal to zero or the iteration count (i) is 

equal to a+1, we jump to the last step. 

We compute the retransmission time (TRi) using          

equation, TRi = maximum segment size (b)/ transmission 

rates of the link (Q). And we compute the retransmission 

time (rt) by rt = rt + TRi. Then we compute the window 

size(y) covers the expected value of packet number when 

the loss occurs (x) and mean waiting time (HOBi) by (6) 

and (7), respectively. We accumulate the head-of-line 

blocking time (hob) by hob = hob + HOBi. 

In the third step, we investigate whether the iteration 

count (i) is equal to a+1, if so, we go to the last step. 

Otherwise, we decrease the number of packets to be sent 

by setting N = N – x and return to the second step. 

In the last step, we compute the total object transfer 

time (OT), by using equation, OT = data transfer time 

(dt)+ slow start time (st) + the retransmission time (rt) + 

the head-of-line blocking time (hob). 

Algorithm 1 summarizes the above procedure and 

shows the pseudo-code. 

 

III.  MODEL APPLICATION TO HTTP PROTOCOLS 

To begin with, we formulate the response time for 

HTTP over TCP. There are four cases for HTTP over 

TCP: non-persistent connection of HTTP/1.0, non-

persistent connection with parallel connection of 

HTTP/1.0, persistent connection without pipelining of 

HTTP/1.1 and persistent connection with pipelining of 

HTTP/1.1. Next, we describe the response time for HTTP 

over SCTP which supports the multi-streaming and 

avoids the head-of-line blocking.  

In all the cases, we assume that the web page is 

composed of one HTML file and M referenced objects. 

When the client receives the HTML file from the server, 

it parses the HTML file and then sends another requests 

for the referenced objects based on the protocol 

specification. As we can see each procedure, all protocols 

have the same connection setup, request and receipt of 

the HTML file. Thus, we will not consider the packet loss 

in this step. In addition, since the size of control and http 

request packet is very small and only one packet for all 

protocol, we will not also consider the loss for these 

packets. Even if we consider the packet loss in the above 

cases, the delay time due to the loss will be same for all 

protocol.  

Finally, in the original protocols, the server is required 

to close the connection after sending the file. But, in this 

paper, we will not consider the connection close time 

because it does not affect the comparison of protocols. 

A.  Non-persistent connection of HTTP/1.0 over TCP 

HTTP uses one TCP connection over total transactions 

and does not need the control channel in both server and 

client. Flow related to the file transmission in non-

persistent connection of HTTP/1.0 is represented in Fig. 2.  

Typical TCP connection setup uses the 3-way-hand-

shake. HTTP can send the request for HTML file from 

server in the third packet (GET HTML). Server replies by 

sending the HTML file. Time to complete these steps is 

the same for all the protocols. We will denote this initial 

connection setup and HTML file transfer time as IT in the 

subsequent figures. As can be shown in the Fig. 2, IT = 

2RTT + O/Q + ST. ST represents the slow start time 

incurred in transferring HTML file. Fig. 2 shows that this 

protocol needs the connection setup whenever it sends the 

HTTP request. Thus, mean response time = IT + M 

 (2RTT + object transfer time). Here, M represents the 

number of reference objects 

Object transfer time (OT) can be found by using the 

Algorithm 1 presented in section 2. 
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Fig. 2.  Non Persistent Connection of HTTP/1.0 

B.  Non-persitent connection with parallel connection of 

HTTP/1.0 over TCP 

In Fig. 3, we create the M processes which use the 3-

way-hand-shake simultaneously. M processes in the web 

client can send their requests for M objects stored in the 

web server parallel and receive objects simultaneously. 

However, The simultaneously created number of 

processes can be limited by the processing capability of 

web server. In order to alleviate the creating process load  

at the client side, we can create multiple threads in a 

process. However, this method can limit the number of 

simultaneous threads at a time, which is different by the 

type of operating system. 
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Fig. 3 shows that mean response time = IT + 2RTT + 

object transfer time (OT). The method to find the object 

transfer time is the same as in the non-persistent 

connection protocol.  
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Fig. 3.  Non persistent with parallel connection of HTTP/1.0 

C.  Persitent connection without pipelining  of HTTP/1.1 

over TCP 

HTTP/1.1 can reduce the extra setup time by using the 

pipelining. But, if we use the pipelining which can affect 

the performance of the server, the following procedure 

such as Fig. 4 can be used. In Fig. 4, it is clear that mean 

response time = IT + M  (RTT + object transfer time 

(OT)). We can also find the object transfer time by using 

Algorithm 1 in section 2. 
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Fig. 4. Persistent connection without pipelining of HTTP/1.1 

D.  Persitent connection with pipelining  of HTTP/1.1 

over TCP 

Fig. 5 represents the case when the persistent 

connection with pipelining is used. The maximum 

number of pipelines to be handled depends on the 

processing power of server. So, we introduce the variable 

(L) which represents maximum number of pipelines. If L 

is greater than or equal to M, then TCP data is transferred 

at a time. Otherwise, it is transferred at a several times. 

That is, if LM, mean response time = IT + RTT + object 

transfer time (OT). Otherwise, mean transfer time = IT + 

M/L (RTT + OT). Object transfer time can be found by 

using Algorithm 1 in section 2. 
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Fig. 5. Persistent connection with pipelining of HTTP/1.1 

E.  HTTP over SCTP 

TCP uses the 3-way-hand-shake connection setup. 

Instead, the initialization of an association in SCTP is 

completed after the exchange of four messages. The 

passive side of the association does not allocate resources 

for the association until the third of these messages has 

arrived and been validated. Last two messages of the 

four-way handshake can already carry user data.  

With this piggybacking, SCTP has the same 

connection-establishment delay as TCP, namely one 

round trip time. Because SCTP has multi-streaming 

feature, it can avoid the head-of-line blocking.  

Furthermore, it doesn’t limit the maximum number of 

objects which the persistent connection with pipelining of 

HTTP/1.1 over TCP does. We depict the HTTP over 

SCTP procedure in Fig. 6. Since HTTP over SCTP does 

not need the head-of-line blocking time, mean response 

time = IT + RTT + object transfer time (OT) – hob. Here 

hob represents the head-of-line blocking time. 
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Fig. 6. HTTP over SCTP  

IV.  PERFORMANCE EVALUATION 

We consider the computation complexity of Algorithm 

1 in section 2. When the number of packets is N, time 

complexity of algorithm is O(N). 

Step 2 ~ Step 3 of Algorithm 1 can be executed up to 

the (a + 1) times. When the size of object is O bits and 

the maximum segment size is b bits, it is clear that N is 

equal to O/b. Parameter a represents the expected number 

of packet losses, thereby a is equal to Np. That is, we 

should compute the expressions (Np + 1) times. All the 

expressions in each step of algorithm can be computed in 

O(1). In addition, since we assumed that p is constant, 

time complexity of algorithm becomes O(N). 

Table 1 summarizes mean response times presented in 

A ~ E of section 3. In Table 1, it is noted that IT is equal 

to 2RTT + O/Q. OT and hob are object transfer time and 

head-of-line blocking time obtained by Algorithm 1 

presented in section 2, respectively. Mean response time 

for HTTP over SCTP is less than that for the enhanced 

version of HTTP over TCP by head-of-line blocking time. 

 

V.  CONCLUSIONS 

Mean response time is mainly used to measure the 

delay of end-user in the Internet. To estimate the mean 

response time is very important in developing and 

managing the web service and the dimensioning of web 

server. Since most web services are based on the HTTP 

over transport layer protocols, we first investigated main 

elements of mean response time such as the data transfer 

time, retransmission time, head-of-line blocking time and 

slow-start time. Since most TCP connections carry short 

HTTP data, connection setup time and slow-start time are 

main structural elements of mean response time. 

Therefore, we derive the analytical model and algorithm 

for object transfer time including slow-start time and 

head-of-line blocking time. We then investigated all sort 

of HTTP transactions over TCP and HTTP over SCTP 

and estimate approximations of mean response times for 

every cases. The comparison of mean response times 

between HTTP over TCP and SCTP shows that mean 

response time can be reduced by head-of-line blocking 

time when using HTTP over SCTP. Further works 

include more exact model and algorithm to cover the 

entire congestion control mechanism. 

Table 1. Comparison of mean response time 
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