
I.J. Computer Network and Information Security, 2015, 1, 24-30
Published Online December 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2015.01.04

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 24-30

Mean Response Time Approximation for HTTP

Transactions over Transport Protocols

Y. –J. Lee
Department of Technology Education, Korea National University of Education, South Korea

Email: lyj@knue.ac.kr

Abstract—This paper addresses mean response time that

end-users experience when using the Internet. HTTP

(Hyper Text Transfer Protocol) is a widely used transfer

protocol to retrieve web objects in the Internet. Generally,

HTTP uses TCP (Transmission Control Protocol) in a

transport layer. But it is known that HTTP interacts with

TCP inefficiently. As an example of such inefficiencies,

HTTP does not require TCP to deliver the rigid order,

which may cause head-of-line blocking. As another

transport layer protocol, SCTP (Stream Control

Transmission Protocol) has attractive features such as

multi-streaming and multi-homing unlike TCP. Within an

SCTP association, multi-streaming allows for

independent delivery among streams, thus can avoid the

head-of-line blocking. In addition, SCTP provides very

large number of streams; therefore, it can transfer

multiple objects more efficiently than the typical

HTTP/1.1 over TCP which limits the number of pipelines.

Mean response time is one of the main measures that end

users using Internet concern. This paper presents the

simple analytical model and algorithm to find the mean

response time for HTTP over SCTP including the

previous HTTP over TCP. Some computational

experiences show that the proposed model and algorithm

are well approximated to the real environment. Also, it is

shown that mean response time for HTTP over SCTP can

be less than that for HTTP over TCP.

Index Terms—Mean response time, HTTP over TCP,

HTTP over SCTP.

I. INTRODUCTION

Mean response time is one of the important measures

to evaluate the performance of the Internet service. HTTP

is a main application protocol to offer the Internet service.

Since HTTP requires a reliable transfer, it uses

connection oriented protocol like TCP and SCTP in the

transport layer.

HTTP 1.0 does not provide the means to request the

multiple objects, thus, we must establish a new TCP

connection for retrieving each object from the web server.

Since HTTP 1.0 requires two extra RTTs (round trip

times) in setting up a new TCP connection between the

web client and the web server, it is particularly inefficient

[1].

HTTP 1.1 aims to reduce the extra setup time with

persistent connections. It allows the web client to retrieve

all objects from the web server by using pipelining. But,

the numbers of objects which pipeline can handle

simultaneously are affected and limited by the processing

power of web server [2].

Even though any enhanced version of HTTP is used,

there is a mismatch between the requirements of HTTP

and the functionality by TCP. When multiple embedded

objects are transmitted by using HTTP, TCP wants that

each object should be reliably transferred. However,

ordered delivery of these objects is not a requirement of

HTTP. Instead, HTTP user wants the perceived latency

to be reduced. In fact, most users are only concerned

about fast response time.

TCP offers only a single stream of data and requires

rigid ordered delivery. While this feature is desirable for

delivery of a file or record, it causes additional delay

when message loss or sequence error occurs in the

network. When loss or error happens, TCP should delay

delivery until the sequencing is corrected, either by

receipt of an out-of-sequence data, or by retransmission

of a lost data.

For a number of applications, this strict sequence

preservation is not truly necessary. Web application

needs not to maintain sequence between the presentations

of objects. In some cases, web application may present

parts of a single object out of sequence. Our goal is to

deliver all objects as soon as possible. However, the

ability to deliver objects out of sequence can achieve

better performance. The reason is why parts of the web

page can be displayed before waiting the entire objects.

This situation is called the head-of-line blocking.

SCTP (Stream Control Transfer Protocol) [3] is a

newly suggested message oriented transport layer

protocol. SCTP provides a reliable full-duplex connection,

called an association, and employs the control congestion

mechanism like TCP. However, SCTP provides enhanced

delivery options which TCP does not offer. SCTP can

divide data into multiple streams and deliver

independently by using its own multi-streaming function.

By this function, SCTP can limit message loss in any

of the streams within that stream only.

We can use multi-streaming for independent delivery

among streams within an SCTP association, thus reduce

the head-of-line blocking situation [4]. Furthermore,

within a single SCTP association, we can create so many

 Mean Response Time Approximation for HTTP Transactions over Transport Protocols 25

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 24-30

unidirectional streams by either end for simultaneous data

transfer. Therefore, if one object is lost during the transfer,

the other objects can be transmitted while the lost object

is retransferred. This will result in a better response time

of end-users through simultaneous retrieval of the

multiple objects [5]. In contrast, the numbers of pipelines

for HTTP 1.1 over TCP are limited largely by the

capability of web server.

Now, we investigate the TCP model related with the

HTTP. TCP model [6] considered the TCP bulk data in a

steady state. However, average transfer size of each TCP

connections is known 8-12 KB [7]. Thus Most TCP

connections carry very short data in Internet. Small size

of web object affects the performance of web application

by startup effects such as connection establishment and

slow start. Cardwell et al. [8] extended the previous

steady-state model, but, does not consider the effects by

the slow start after timeout. Jiong et al. [9] improved

model [8] by considering the influence of slow start

period after retransmission timeout, however, does not

consider multiple packet losses.

Particularly, the above researches focus on the micro

behavior only and do not consider the head-of-line

blocking time and multiple packet losses. But, most end-

users are not interested in the theoretical TCP latency, but

the overall response time.

Chang et al. [10] conducted the research about the

performance of File Transfer Protocol (FTP) over SCTP,

and the performance of Session Initiated Protocol (SIP)

over SCTP was analyzed in [11]. A simple closed-form

formula to estimate the HTTP latency over FAST TCP,

taking into account the network parameters such as

packet size, link capacity, and propagation delay was

presented in [12]. Eklund et al. [13] developed a

prediction model for the transfer times of SCTP messages

during slow start. However, the mean response time

approximation model for HTTP over SCTP in various

situations has not yet been presented.

Lee et al. [14] presented mean response time

estimation model for HTTP over SCTP in wireless

environment and Lee [15] proposed more detailed model

by extending the model [14]. However, because both

models focus on the behavior of congestion control

mechanism, they did not provides mean response times

according to several HTTP versions and transaction

processing methods.

Based on [14] and [15], this paper presents the

approximation model for mean response time of several

HTTP transactions methods over TCP and SCTP in

transport layer when the packet loss occurs only during

slow start phase due to small bandwidth.

We begin by presenting modeling and algorithm of

HTTP transactions in the next section. In section 3, we

describe HTTP applications to the model and Section 4

describes performance evaluation. We present our

conclusions in section 5.

II. MODELING AND ALGORITHM FOR MEAN RESPONSE

TIME OF HTTP TRANSACTIONS

A. Modeing for mean response time

We first assume that each size of objects is identically

distributed and the packet loss probability is given by any

constant value. We send the HTTP request for one object

and receive an acknowledgement from the server. Fig. 1

represents such a procedure. In the Fig. 1, RTT shows

round trip time between the client and the server. S1, S2,..,

Sa shows the slow start time until the first, second,, a
th

packet loss occurs respectively. DT1, DT2,.., DTa represent

the data transfer time for part of object until the first,

second,.., a
th

 packet loss occurs respectively. In addition,

HOB1, HOB2,., HOBa represent the head-of-line blocking

time that requires the waiting for the retransmission.

When the total number of packets in object (N) is

N=O/b where O and b are the size of the object to be

transferred (bits) and maximum segment size (bits),

respectively. When the packet loss probability is p, the

expected number of packet loss (a) is a=Np according to

the binomial distribution.

In Fig. 1, total response time = RTT + object transfer

time = RTT + (S1 + DT1 + TR1 + HOB1) + ∙∙∙∙∙ + (Sa + DTa

+ TRa + HOBa). Here, TRi and DTi (i=1,..,a) shows data

retransmission time and data transfer time in relation to i
th

packet loss respectively .

Client ServerNetwork

HTTP request (Object)

DATA (DT1
): (x-1) packets

T
o

ta
l

R
es

p
o

n
se

 T
im

e

S1

Sa

DATA (DTa)

Retransmission 1 (TR1
)

Retransmission a (TRa)

HoB1

HoBa

O
b

je
ct

 T
ra

n
sf

er
 T

im
e

R
T

T

Sa+1

Fig. 1. HTTP transaction and total response time

Since RTT can be regard as constant value in the given

environment, total response time varies according to the

object transfer time. But, the sum of the data transfer time

is Σk=1
a
 DTk = O/Q and can be treated as the constant.

Here, Q represents transmission rates of the link from the

server to the client (bps). Therefore, slow start time (Si),

retransmission time (TRi) and head-of-line blocking time

(HOBi) in relation to i
th

 packet loss are affecting elements

to the total response time. Without packet loss, we need

not the additional slow-start time, retransmission time

and head-of-line blocking time. Thus, in that case, only

the slow start time and data transfer time are required to

find out response time.

26 Mean Response Time Approximation for HTTP Transactions over Transport Protocols

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 24-30

Now, we assume that packet loss occurs. First, in order

to find the slow start time (S1) until the first packet loss,

we have to know the expected number of packets sent

before the loss. We can determine the expected number

of packets sent until a packet loss excluding the lost

packet itself (x) by (1). Thus, it is natural that the

expected number of packets sent until the first packet loss

is (x-1).






























 



 N
NN

k

k p
p

p
pkpx)1(

)1(1
)1(

1

1 (1)

In general, slow start time (ST) for web object transfer

is given by [16]

Q

b

Q

b
RTTST )1(2 -][c c (2)

Here, c = min [V, W-1]. V and W represent the number

of times the server would stall and the number of

windows covering the object when the packet is not lost,

respectively. V is given by (3). W is given by (4).

1)1(log2 






 


b

QRTT
V (3)









)1(log2

b

O
W (4)

However, when the packet is lost, we should send the

(x-1) packets before the loss, therefore, W is given by

   xxW 22 log)11(log  (5)

By substituting these values into the above ST, we can

obtain the slow start time until the first packet loss (S1).

The retransmission time for one segment (TR1) is TR1 =

b/Q.

Next, we compute the window size (y) covers the

expected value of packet number when the loss occurs (x).

 )1(log)}1(log:min{

}12:min{

}222:min{

22

110





 

xxW

xW

xWy

W

W

 (6)

Since we can infer that when the packet loss occurs,

the half of number of packets in the window on the

average are waiting for the retransmission for reordering,

mean head-of-line blocking time due to the first packet

loss can be given by

Q

yb
HOB

2
1  (7)

We can obtain the remaining values of S2,.., Sa+1 so on

by using the same method. It is noted that Si must be

found for (i=1,.., a+1), but HOBi, DTi, and TRi must be

found for (i=1,..,a).

B. Algorithm for object transfer time

Based on the above model, we can formulate the entire

procedure to find the object transfer time.

In the first step, we introduce the following local

variables; dt, st, hob, and rt. dt represents data transfer

time, and is given by (object size)/(link transmission rate).

st shows slow start time and is equal to 0 at the initial

phase. hob shows the head-of-line blocking time and is

also given by 0 at the initial phase. Finally, rt means the

retransmission time, and is set to zero as an initial value.

We then compute the total number of packets included

an object (N) is given by (object size / maximum segment

size) and the expected number of packet loss (a) is

computed by (the total number of packets * the packet

loss ratio). We set the iteration count (i) to zero.

In the second step, we first check whether the expected

number of packet loss is equal to zero. That is, we

investigate if the packet loss ratio is equal to zero. If so,

then we proceed to the slow start time computation phase,

otherwise, we increase the iteration count (i) by one. If

the increased iteration count is equal to (a+1), we set the

expected number of packets sent until a packet loss

excluding the lost packet itself (x) to the total number of

packets included an object (N). Otherwise we compute

Algorithm 1. Pseudo-code for object transfer time

STEP 1:

① Set dt (data transfer time) = O/Q.

Set st (slow start time) = 0.

Set hob (head-of-line blocking time) = 0.

Set rt (retransmission time) = 0.

② Compute the total number of packets in object, N=O/b

and the expected number of packet loss, a=Np.

③ Set i = 0.

STEP 2:

① If a = 0 (p = 0), then proceed to ④ of STEP 2.

② Set i = i + 1.

If i = a+1, Set x = N and go to ④ of STEP 2.

③ Compute the expected number of packets sent until a

packet loss by (1).

④ // slow start time computation phase

Compute the slow start time (Si) by using (2)

Compute the number of times the server would stall

by (3) and the number of windows that cover the object

without packet loss by (5), respectively.

Set st = st + Si.
If a = 0 or i = a+1 then proceed to STEP 4.

⑤ Compute the retransmission time (TRi),

Set TRi = b/Q.

Set rt = rt + TRi.

⑥ Compute the window size(y) covers the expected value

of packet number when the loss occurs (x) and mean

waiting time (HOBi) by (6) and (7), respectively.

⑦ Set hob = hob + HOBi.

STEP 3:

If i = a+1, then proceed to STEP 4.

Otherwise, Set N = N – x and return to STEP 2.

STEP 4:

Compute object transfer time (OT),

OT = dt + st + rt + hob

 Mean Response Time Approximation for HTTP Transactions over Transport Protocols 27

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 24-30

the expected number of packets sent until a packet loss by

(1).

In the slow start time computation phase, we compute

the slow start time (Si) by using (2) and compute the

number of times the server would stall by (3) and the

number of windows that cover the object without packet

loss by (5), respectively. The total slow start time (st) is

computed as the sum of the previous slow start time (st)

and Si obtained in this phase. If the computed number of

packet loss (a) is equal to zero or the iteration count (i) is

equal to a+1, we jump to the last step.

We compute the retransmission time (TRi) using

equation, TRi = maximum segment size (b)/ transmission

rates of the link (Q). And we compute the retransmission

time (rt) by rt = rt + TRi. Then we compute the window

size(y) covers the expected value of packet number when

the loss occurs (x) and mean waiting time (HOBi) by (6)

and (7), respectively. We accumulate the head-of-line

blocking time (hob) by hob = hob + HOBi.

In the third step, we investigate whether the iteration

count (i) is equal to a+1, if so, we go to the last step.

Otherwise, we decrease the number of packets to be sent

by setting N = N – x and return to the second step.

In the last step, we compute the total object transfer

time (OT), by using equation, OT = data transfer time

(dt)+ slow start time (st) + the retransmission time (rt) +

the head-of-line blocking time (hob).

Algorithm 1 summarizes the above procedure and

shows the pseudo-code.

III. MODEL APPLICATION TO HTTP PROTOCOLS

To begin with, we formulate the response time for

HTTP over TCP. There are four cases for HTTP over

TCP: non-persistent connection of HTTP/1.0, non-

persistent connection with parallel connection of

HTTP/1.0, persistent connection without pipelining of

HTTP/1.1 and persistent connection with pipelining of

HTTP/1.1. Next, we describe the response time for HTTP

over SCTP which supports the multi-streaming and

avoids the head-of-line blocking.

In all the cases, we assume that the web page is

composed of one HTML file and M referenced objects.

When the client receives the HTML file from the server,

it parses the HTML file and then sends another requests

for the referenced objects based on the protocol

specification. As we can see each procedure, all protocols

have the same connection setup, request and receipt of

the HTML file. Thus, we will not consider the packet loss

in this step. In addition, since the size of control and http

request packet is very small and only one packet for all

protocol, we will not also consider the loss for these

packets. Even if we consider the packet loss in the above

cases, the delay time due to the loss will be same for all

protocol.

Finally, in the original protocols, the server is required

to close the connection after sending the file. But, in this

paper, we will not consider the connection close time

because it does not affect the comparison of protocols.

A. Non-persistent connection of HTTP/1.0 over TCP

HTTP uses one TCP connection over total transactions

and does not need the control channel in both server and

client. Flow related to the file transmission in non-

persistent connection of HTTP/1.0 is represented in Fig. 2.

Typical TCP connection setup uses the 3-way-hand-

shake. HTTP can send the request for HTML file from

server in the third packet (GET HTML). Server replies by

sending the HTML file. Time to complete these steps is

the same for all the protocols. We will denote this initial

connection setup and HTML file transfer time as IT in the

subsequent figures. As can be shown in the Fig. 2, IT =

2RTT + O/Q + ST. ST represents the slow start time

incurred in transferring HTML file. Fig. 2 shows that this

protocol needs the connection setup whenever it sends the

HTTP request. Thus, mean response time = IT + M

 (2RTT + object transfer time). Here, M represents the

number of reference objects

Object transfer time (OT) can be found by using the

Algorithm 1 presented in section 2.

Client ServerNetwork

TCP ACK+ HTTP request(HTML)

TCP Data (HTML)

SYN

SYN + ACK

TCP Data (object:1)

3
-w

ay
-

h
an

d
sh

ak
e

SYN

TCP ACK+
HTTP request(object:1)

R
es

p
o
n
se

 T
im

e

SYN + ACK

TCP Data (object:M)

SYN

SYN + ACK

TCP ACK+
HTTP request(object:M)

IT

Fig. 2. Non Persistent Connection of HTTP/1.0

B. Non-persitent connection with parallel connection of

HTTP/1.0 over TCP

In Fig. 3, we create the M processes which use the 3-

way-hand-shake simultaneously. M processes in the web

client can send their requests for M objects stored in the

web server parallel and receive objects simultaneously.

However, The simultaneously created number of

processes can be limited by the processing capability of

web server. In order to alleviate the creating process load

at the client side, we can create multiple threads in a

process. However, this method can limit the number of

simultaneous threads at a time, which is different by the

type of operating system.

28 Mean Response Time Approximation for HTTP Transactions over Transport Protocols

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 24-30

Fig. 3 shows that mean response time = IT + 2RTT +

object transfer time (OT). The method to find the object

transfer time is the same as in the non-persistent

connection protocol.

Client ServerNetwork

TCP ACK+ HTTP request(HTML)

TCP Data (HTML)

SYN

SYN + ACK

TCP Data (objects: 1
-M)

3
-w

a
y
-

h
an

d
sh

ak
e

SYN

SYN + ACK

TCP ACK+ HTTP request(objects:1-M)

R
es

p
o

n
se

 T
im

e

IT

Fig. 3. Non persistent with parallel connection of HTTP/1.0

C. Persitent connection without pipelining of HTTP/1.1

over TCP

HTTP/1.1 can reduce the extra setup time by using the

pipelining. But, if we use the pipelining which can affect

the performance of the server, the following procedure

such as Fig. 4 can be used. In Fig. 4, it is clear that mean

response time = IT + M  (RTT + object transfer time

(OT)). We can also find the object transfer time by using

Algorithm 1 in section 2.

Client ServerNetwork

TCP ACK+
HTTP request(HTML)

TCP Data (HTML)

HTTP rquest(object: 1)

SYN

SYN + ACK

TCP Data (object: 1)

HTTP rquest(object: M)

TCP Data (object: M)

3
-w

ay
-

h
an

d
sh

ak
e

R
es

p
o

n
se

 T
im

e

IT

Fig. 4. Persistent connection without pipelining of HTTP/1.1

D. Persitent connection with pipelining of HTTP/1.1

over TCP

Fig. 5 represents the case when the persistent

connection with pipelining is used. The maximum

number of pipelines to be handled depends on the

processing power of server. So, we introduce the variable

(L) which represents maximum number of pipelines. If L

is greater than or equal to M, then TCP data is transferred

at a time. Otherwise, it is transferred at a several times.

That is, if LM, mean response time = IT + RTT + object

transfer time (OT). Otherwise, mean transfer time = IT +

M/L (RTT + OT). Object transfer time can be found by

using Algorithm 1 in section 2.

Client ServerNetwork

TCP ACK+
HTTP request (HTML)

TCP Data (HTML)

HTTP rquest(object: 1 – object: L)

SYN

SYN + ACK

TCP Data (object: 1- object: L)

HTTP request(····object: M)

TCP Data (····
object: M)

3
-w

a
y
-

h
a
n

d
sh

a
k

e

R
e
sp

o
n

se
 T

im
e

IT

Fig. 5. Persistent connection with pipelining of HTTP/1.1

E. HTTP over SCTP

TCP uses the 3-way-hand-shake connection setup.

Instead, the initialization of an association in SCTP is

completed after the exchange of four messages. The

passive side of the association does not allocate resources

for the association until the third of these messages has

arrived and been validated. Last two messages of the

four-way handshake can already carry user data.

With this piggybacking, SCTP has the same

connection-establishment delay as TCP, namely one

round trip time. Because SCTP has multi-streaming

feature, it can avoid the head-of-line blocking.

Furthermore, it doesn’t limit the maximum number of

objects which the persistent connection with pipelining of

HTTP/1.1 over TCP does. We depict the HTTP over

SCTP procedure in Fig. 6. Since HTTP over SCTP does

not need the head-of-line blocking time, mean response

time = IT + RTT + object transfer time (OT) – hob. Here

hob represents the head-of-line blocking time.

 Mean Response Time Approximation for HTTP Transactions over Transport Protocols 29

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 24-30

Client ServerNetwork

COOKIE-ECHO HTTP request (HTML)

COOKIE-ACK, DATA(HTML)

HTTP request (object: 1 – object: M)

INIT

INIT + ACK

SCTP Data (object: 1- object: M)

4
-w

a
y
-h

a
n

d
sh

a
k

e

R
e
sp

o
n

se
 T

im
e

IT

Fig. 6. HTTP over SCTP

IV. PERFORMANCE EVALUATION

We consider the computation complexity of Algorithm

1 in section 2. When the number of packets is N, time

complexity of algorithm is O(N).

Step 2 ~ Step 3 of Algorithm 1 can be executed up to

the (a + 1) times. When the size of object is O bits and

the maximum segment size is b bits, it is clear that N is

equal to O/b. Parameter a represents the expected number

of packet losses, thereby a is equal to Np. That is, we

should compute the expressions (Np + 1) times. All the

expressions in each step of algorithm can be computed in

O(1). In addition, since we assumed that p is constant,

time complexity of algorithm becomes O(N).

Table 1 summarizes mean response times presented in

A ~ E of section 3. In Table 1, it is noted that IT is equal

to 2RTT + O/Q. OT and hob are object transfer time and

head-of-line blocking time obtained by Algorithm 1

presented in section 2, respectively. Mean response time

for HTTP over SCTP is less than that for the enhanced

version of HTTP over TCP by head-of-line blocking time.

V. CONCLUSIONS

Mean response time is mainly used to measure the

delay of end-user in the Internet. To estimate the mean

response time is very important in developing and

managing the web service and the dimensioning of web

server. Since most web services are based on the HTTP

over transport layer protocols, we first investigated main

elements of mean response time such as the data transfer

time, retransmission time, head-of-line blocking time and

slow-start time. Since most TCP connections carry short

HTTP data, connection setup time and slow-start time are

main structural elements of mean response time.

Therefore, we derive the analytical model and algorithm

for object transfer time including slow-start time and

head-of-line blocking time. We then investigated all sort

of HTTP transactions over TCP and HTTP over SCTP

and estimate approximations of mean response times for

every cases. The comparison of mean response times

between HTTP over TCP and SCTP shows that mean

response time can be reduced by head-of-line blocking

time when using HTTP over SCTP. Further works

include more exact model and algorithm to cover the

entire congestion control mechanism.

Table 1. Comparison of mean response time

REFERENCES

[1] T. Berners-Lee, R. Fielding and H. Frystyk, ―Hypertext

Transfer Protocol – HTTP/1.0‖, RFC-1945, 1996.

[2] H. F. Nielson and J. Gettys, ―Network Performance

Effects of HTTP/1.1, CSS1, and PNG‖, ACM, 1997.

[3] R. Stewart, Q. Xie, et al, Stream Control Transmission

Protocol, RFC-2960, 2000.

[4] A. L. Caro, J. R. Iyengar, P. D. Amer, S. Ladha, G. Heinz

and K. Shah, ―SCTP: A Proposed Standard for Robust

Internet Data Transport‖, IEEE Computer, Vol. 36, No. 11,

pp. 56-63, 2003.

[5] S. Fu and M. Atiquzzaman, ―SCTP: State of the art in

Research, Products, and Technical Challenges‖, Proc. of

IEEE 18th Annual Workshop on Computer Comm.,

October, 2003.

[6] J. Padhye, V. Firoiu, D. F. Towsley and J. F. Kurose,

―Modeling TCP Reno Performance: A Simple Model and

Its Empirical Validation‖, ACM Transactions on

Networking, Vol. 8, No. 2, pp. 133-145, 2000.

[7] B. A. Mah, P. Sholander, L. Martinez and L. Tolendino,

application protocol
related

figure

transport

protocol
mean response time

non-persistent connection of HTTP/1.0 Fig. 2

TCP

IT + M  (2RTT + OT)

non-persistent connection with parallel connection

of HTTP/1.0
Fig. 3 IT + 2RTT + OT

persistent connection without

pipelining of HTTP/1.1
Fig. 4 IT + M  (RTT + OT)

persistent connection with pipelining of HTTP/1.1 Fig. 5 IT + RTT + OT, if LM

IT+M/L (RTT + OT), otherwise

HTTP Fig. 6 SCTP IT + RTT + OT – hob

30 Mean Response Time Approximation for HTTP Transactions over Transport Protocols

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 1, 24-30

―IPB: An Internet Protocol Benchmark using Simulated

Traffic‖, Proc. of 6th International Symposium on

Modeling, Analysis and Simluation of Computer and

Telecommunication Systems, pp. 77-84, 1988.

[8] N. Cardwell, S. Savage and T. Anderson, ―Modeling TCP

Latency‖, Proc. of IEEE Infocom, pp. 1742-1751, 2000.

[9] Z. Jiong, Z. Shu-jing and Qi-gang, ―An Adapted Full

Model for TCP Latency‖, Proc. of IEEE TENCON ’02, pp.

801-804, 2002.

[10] Lin-Huang Chang, Ming-Yi Liao and De-Yu Wang,

―Analysis of FTP over SCTP in Congested Network‖, Proc. of

2007 International Conference on Advanced Information

Technologies (AIT), 2007, pp. 82-89.

[11] Chia-Wen Lu and Quincy Wur, ―Performance study on

SNMP and SIP over SCTP in wireless sensor networks‖,

Proc. of 14th International conference on advanced

communication technology (ICACT), pp. 844-847, 2012.

[12] Fei Ge, Liansheng Tan, Jinsheng Sun, and Moshe

Zukerman, ―Latency of fast TCP for HTTP transactions‖,

IEEE Communications Letters, Vol. 15, No. 11, pp.

1259-1261, 2011.

[13] J. Eklund, K. Grinnemo, A. Brunstorm, G. Cheimnidis,

and Y. Ismailov, ―Impact of Slow Start on SCTP

Handover Performance‖, Proc. of the 20th international

conference on computer communications and networks,

pp. 1-7, 2011.

[14] Y. –J. Lee, M. Atiquzzaman and S. K. sivagurunathan,

―Mean Response Time Estimation for HTTP over SCTP

in Wireless Environment‖, Proc. of IEEE ICC 2006

Conference, Istanbul, Turkey, 2006.

[15] Y. –J. Lee, ―Mean Response Delay Estimation for HTTP

over SCTP in Wireless Internet‖, Journal of the Korea

Contents Association, Vol. 8, No. 6, pp. 43-53, 2008.

[16] K. W. Ross and J. F. Kurose, Computer Networking,

Pearson Education, 2012.

Authors’ Profiles

Dr. Y. –J. Lee is currently serving as a Professor in the

Department of Technology Education, Korea National

University of Education, Cheongju, South Korea. His research

interests include Internet Technology, Mobile Computing and

Performance Evaluation.

How to cite this paper: Y. –J. Lee,"Mean Response Time Approximation for HTTP Transactions over Transport

Protocols", IJCNIS, vol.7, no.1, pp.24-30, 2015. DOI: 10.5815/ijcnis.2015.01.04

