
I. J. Computer Network and Information Security, 2015, 3, 1-9
Published Online February 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2015.03.01

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 3, 1-9

Controlling Information Flows in Net Services

with Low Runtime Overhead

Shih-Chien Chou
Department of Computer Science and Information Engineering National Dong Hwa University, Taiwan

E-Mail: scchou@mail.ndhu.edu.tw

Abstract—This paper presents the information flow

control model NetIFC to prevent information leakage

when a net service is being executed. NetIFC offers the

following features: (1) it blocks at least statements as

possible and (2) it reduces runtime overhead. To achieve

the first feature, NetIFC strictly controls output

statements because only output may leak information. To

achieve the second feature, NetIFC is executed in parallel

with a service in different sites to monitor the service.

This monitoring style substantially reduce runtime

overhead when comparing with embedding a model in a

net service.

Index Terms—Information flow, information flow

control, information security, information leakage

prevention, runtime overhead.

I. INTRODUCTION

Current software services are generally executed on the

net, such as web services and cloud services. Although

the research of cloud computing [1] is really hot, the

research of other net applications is still important.

Therefore, we collectively call services on the net and

those on clouds as net services. Net services offer

substantial benefit. However, there are problems to solve.

Our research focuses on preventing information leakage

during the execution of net services. The prevention can

be achieved by information flow control [2-15].

According to our survey, information flow control

models can be classified into two major categories. The

first category uses credentials, attributes, or other

mechanism to determine whether a requester can invoke a

service. For example, the SCIFC model [12] checks

whether a service chain can be successfully invoked

through attributes/credentials checking. Models in this

category fail to check information flows within software.

They are considered imprecise because progra m

statements may leak information during execution. For

example, a malicious account management system may

leak user accounts during execution. As to models in the

second category, such as the decentralized label model

[4-5], they are embedded in software to check

information flows in the software during execution.

Control in this category is precise but induces runtime

overhead. For example, using n statements to check a

statement results in about n+1 times the normal runtime.

In general, models in this category prevent information

but fail to discuss runtime overhead.

We developed models in the second category [16].

However, high runtime overhead induced by model

embedding bothered us. Thanks to the mass parallelism

of net environments, we developed an information flow

control model for net services named NetIFC. It is not

embedded in services. On the other hand, NetIFC and the

net service being monitored are executed in parallel on

different sites. According to non-embedding, the runtime

overhead is expected to be reduced substantially. NetIFC

uses security level numbers to prevent information

leakage, in which larger security level numbers imply

more sensitivity. When designing the model, we

identified the following facts.

1. Without considering viruses, worms, and the

attack mentioned in [18], only output statements

need to be controlled because only output

information may be leaked (to persons or other

programs). As to other statements, they need not

be controlled. Nevertheless, the join operation [4]

should be used to adjust security level numbers so

that leakage can be prevented when variables are

output later. Control in this manner simplifies a

model. However, existing models are

unnecessarily complicated because they generally

control every statement.

2. Information exchange is sometimes illegal even

with the same data type. For example, salaries

with the units of EUR and USD are incomparable.

Exchanging incomparable information results in

information corruption. We use groups to prevent

the corruption. Information in different groups

cannot be exchanged.

3. Embedding a model in a program induces large

runtime overhead. We have mentioned this point

already.

According to the facts, NetIFC strictly controls output

statements and uses join operations to adjust security

level numbers for other statements. In addition, NetIFC is

not embedded in a net service. Instead, it is executed in

parallel with the service on different sites to monitor the

service. According to non-embedding, runtime overhead

is expected to be substantially reduced. Note that our

research assumes that information transferring on the

network is secure and thus skips the problem of

cryptography. This paper presents NetIFC.

2 Controlling Information Flows in Net Services with Low Runtime Overhead

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 3, 1-9

II. RELATED WORK

Traditional lattice-based model [2-3] is a MAC

(mandatory access control). The “can flow” relationship

is based on the rules of “no read up” and “no write down”

[19], which are generally criticized as too restricted. The

decentralized label model [4-5] uses labels to mark the

security levels of variables. A label is composed of

policies to be simultaneously obeyed. A policy in a label

is composed of an owner and zero or more readers that

can read the variable. The model in [20] uses ACLs of

objects to compute ACLs of executions. A message filter

is used to filter out possibly non-secure information flows.

Interactions among executions are categorized into five

modes, which loosen the restriction of MAC by using

different policies for different modes.

Flume [6] is a decentralized information flow control

(DIFC) model for operating systems. It tracks

information flows in a system using tags and labels. The

control granularity is detailed to processes (i.e., Flume

regards the information transferred among processes as a

whole). The secrecy tags prevent information leakage and

integrity tags prevent information corruption. Flume also

avoids information leaked to untrusted channel (e.g.,

sockets). The function of Laminar [7] is similar to that of

Flume. Nevertheless, the control granularity is detailed to

data structures and system resources.

The model Trust-Serv [21] uses state machines to

dynamically choose web services at run time. The

choosing is a kind of negotiation. It uses trust negotiation

[22] to select web services that can be invoked. The

kernel component to determine whether a web service

can be invoked is credential. The model proposed in [23]

uses digital credentials for negotiation. It defines

strategies for negotiation policies. The model proposed in

[24] handles k-leveled invocation of web services. The

primary component used in the model is credentials.

SCIFC [12] uses various mechanism (such as back-check

procedure, carry-along policies, and transformation

factors) and algorithms to make sure whether a service

chain can be successfully invoked. The objectives of

quite a few researches are also about negotiation [25-30].

A negotiation model generally fails to check information

flows within software during execution. The models are

considered imprecise as mentioned in section 1.

The model proposed in [8] uses X-GTRBAC [31] to

control the access of web services. X-GTRBAC can be

used in heterogeneous and distributed sites. Moreover, it

applies TRBAC [32] to control the factor related to time.

The model in [9] determines whether a composition of

web services can be invoked. It offers a language to

describe policies, which check whether a composition of

web services can be invoked. The model in [10] uses

RBAC (role-based access control) concept [33-34] to

define policies of accessing a web service. It is a two-

leveled mechanism. The first level checks the roles

assigned to requesters and web services. An authorized

requester is a candidate to invoke a web service. The

second level uses parameters as attributes and assigns

permissions to the attributes. An authorized requester can

invoke a web service only when it possesses the

permissions to access the attributes. The model proposed

in [11] allows requesters to use PMI (privilege

management infrastructure) for managing the checking,

retrieval, and revocation of authentication. The model

also uses an RBAC-based web service access control

policy to determine whether a requester can invoke a web

service.

The model in [13] identifies dependencies among I/O

parameters of services to decide whether service

invocations will leak information. The model in [14]

offers functions to check intra-component information

flows through the JIF language [35]. It also defines

protocols to check inter-component information flows.

Although both intra- and inter-components information

flows are checked, JIF embeds decentralized labels in a

program. The embedding will induce runtime overhead.

The model in [15] applied Chinese Wall [36] to control

information flows in the IaaS level. As to services in the

SaaS level, the model cannot control their information

flows. In the recent survey of [37], the authors especially

emphasize the importance of data privacy in a cloud

computing environment. They believed that information

flow control is a good solution for the problem. However,

the article did not propose a concrete information flow

control model for cloud environments.

As stated in section 1, existing models can be classified

into two categories. Models such as [12] belong to the

first one, which fail to check information flows within a

service and results in imprecise control. Models such as

[14] belong to the second one. Although they are precise,

they may induce large runtime overhead.

III. NetIFC

Before defining NetIFC, we describe information

leakage. Information leakage occurs when persons or

other software illegally obtain sensitive information from

a software system. In general, persons can obtain

information from files or output devices and software can

obtain information from files. Information leakage may

thus happen when sensitive information is output.

When designing NetIFC, we let the control granularity

be detailed to variables. That is, NetIFC controls

information flows among variables. We need this

granularity because different variables carry information

with different sensitivities. According to the description

in section 1, a group and a security level number facilitate

preventing information corruption and leakage,

respectively. We thus combine them into a security level.

That is, a group Gp and a security level number Slv is

combined into a security level: “(Gp, Slv)”. Since the

control granularity is detailed to variables, every variable

is associated with a security level. To facilitate normal

execution of a service, the security levels of non-sensitive

variables are set “(Global, -1)”. The setting allows non-

sensitive variables to flow anywhere because intersecting

a set with “Global” obtains the set itself. A non-sensitive

variable may become sensitive and vice versa during

runtime. For example, suppose: (a) the initial security

 Controlling Information Flows in Net Services with Low Runtime Overhead 3

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 3, 1-9

level of the variable b is (Gp1, Slv1) and (b) the variable

a is initially non-sensitive. Then, after the statement

“a=b;” is executed, the security level of the variable a is

adjusted to be the same as that of b. This causes a to

become sensitive.

Since sensitive information operated by software may

be leaked only when it is output, every file and output

device should also be associated with a security level. In

general, the security level of a device is decided by its

location. For example, if an output device is placed in the

office of a manager, its security level is set according to

the importance of the manager. If the location of a device

is changed, its security level may be changed. NetIFC

cannot handle the change because only persons know the

change. As to files, their security levels also cannot be

adjusted because the adjustment will affect the access of

the files. For example, if the security level number of a

file is 3, it can be accessed by a user possessing a

privilege to access files whose security level number is 3

or lower. If the security level number of a file is adjusted

to be 4, the user can no longer access the file.

The kernel concepts of NetIFC have been described

above. Below we give a definition to NetIFC.

Definition 1. NetIFC = (SL, VAR, ID, OD, FI, Rules),

in which

1. SL is the set of security levels. Every component

in the set is composed of a group and a security

level number. That is, SL = {(Gp, Slv)i | Gp is a

group, Slv is a security level number, and (Gp,

Slv)i is a security level}.

2. VAR, ID, OD, FI are the sets of variables, input

devices, output devices, and files used by a service,

respectively. Every component in the sets is

associated with a security level.

3. Rules are NetIFC’s information control rules. To

facilitate describing the rules, we need the

following definition.

Definition 2. IFS is “a statement that will result in

information flow”, including the statements of (a)

assignment, (b) input from devices or files, (c) output to

devices or files, (d) invoking subroutines or methods, and

(e) invoking other services. Invoking other services may

result in chains mentioned in SCIFC [12]. Since only

security levels are needed to control information flows,

operators in a statement such as “+” and “-” can be

ignored here. Therefore, the following definition of IFS

does not contain operators.

IFS = {(Des, GpDes, SlvDes), {(Source, GpSource,

SlvSource)i} | (Des, GpDes, SlvDes) is the destination of the

information flow. (Source, GpSource, SlvSource)i is a source

for the flow. The destination and every source are

associated with a security level “(Gp, Slv)”.}

Since NetIFC controls only output statements, we

categorize statements into output statements (OPSs) and

non-output statements (NOPSs). NOPSs that may induce

information flows include assignments, input statements,

invocation statements (invoking subroutines or object

methods), and statements that invoke other services.

OPSs include outputting to devices or files. As mentioned

above, NetIFC strictly controls OPSs. Non-secure OPSs

will be blocked. As to NOPSs, they can always be

executed. However, join operations will be executed to

adjust security levels. The adjustment prevents

information leakage when output occurs later. Suppose a

is derived from the set of variables {xi | xi is a variable}.

Also suppose that the group of a and every xi are the

same. Then, the join operation adjusts the Slv of a to be

MAX(
ixSlv), in which the function MAX extracts the

maximum value.

NOPSs other than assignments can be considered

variations of assignments. For example, an input

statement retrieves a value from a device/file and assigns

the value to the variable. Other NOPs can be considered

similarly. According to the description above, NetIFC

offers a rule to control OPSs and a rule to do join for

NOPSs. The rules are listed below.

Rule 1. For an OPS “((Odes, GpOdes, SlvOdes), {(Source,

GpSource, SlvSource)i })”, in which Odes)(FIOD

(check Definition 1 for the definition of OD and FI), both

the condition “)( OdesSourcei GpGp
i

” and

“)(
iSourceSlvMAX  SlvOdes” should be true. The first

condition requires that the destination and the sources

should be in the same group. It prevents exchanging

incomparable information. The second condition prevents

information leakage.

Rule 2. For an assignment “(Des, GpDes, SlvDes),

{(Source, GpSource, SlvSource)i}”, it can be executed if the

condition “)( DesSourcei GpGp
i

” is true. The

condition prevents exchanging incomparable information

as mentioned above. After statement execution, the

following join operation adjusts the security level of the

destination.

SlvDes =)(
iSourceSlvMAX

IV. PROOF OF CORRECTNESS

Information leakage may occur during output. The

output statements are listed below.

1. ((Od, GpOd, SlvOd), {(Source, GpSource, SlvSource)i }):

This type of statement outputs the information

derived from a set of variables to an output device

Od.

2. ((Fi, GpFi, SlvFi), {(Source, GpSource, SlvSource)i }):

This type of statement outputs the information

derived from a set of variables to a file Fi.

Case 1. The output to device statement “((Od, GpOd,

SlvOd), {(Source, GpSource, SlvSource)i })” will not leak

information.

Proof. Information output to a device may only leak to

4 Controlling Information Flows in Net Services with Low Runtime Overhead

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 3, 1-9

persons. Suppose person P possesses a security level

number SLVp and SLVp< SlvOd. Rule 1 allows the output

only when)(
iSourceSlvMAX  SlvOd (suppose Od and

all sources are in the same group). If the output is allowed,

P cannot access information output to Od because SLVp<

SlvOd. Since Sourcei derives the information output to Od,

no Sourcei will be leaked to P.

Case 2. The output to file statement ((Fi, GpFi, SlvFi),

{(Source, GpSource, SlvSource)i }) will not leak information.

Proof. Information output to a file may leak to persons

or software. Rule 1 allows the output only when

)(
iSourceSlvMAX  SlvFi (suppose Fi and all sources are

in the same group). Case 1 states that no Sourcei will be

leaked to a person P with a security level number SLVp

and SLVp< SlvFi. On the other hand, if Softwarei intends

to read the information of VAR from Fi to the variable

VAR1, Rule 2 causes
1varvar SlvSlv  . If Softwarei outputs

VAR1 to a device, Case 1 states that VAR1 will not be

leaked to a person. If VAR1 is output to another file, the

proof goes back to the beginning of this proof. That is,

the proof is endless. However, we know that the

information of a sensitive variable may be: (a) operating

by a net service, (b) output to a device, or (c) output to a

file. Information operating by a net service will not be

leaked without output. Information output to a device will

not be leaked (see the proof of Case 1). As to the

information output to a file, it will not be leaked to

persons. Since NetIFC handles information flows within

a limited area of the net, no information leaking to

persons corresponds to no information leakage. Therefore,

Case 2 is true.

V. RUNTIME OVERHEAD REDUCING

Existing information flow control models are generally

embedded in a software system. This induces large

runtime overhead. To reduce the overhead, NetIFC is not

embedded in a net service. Instead, it is executed in

parallel with the service on different sites. Fig. 1 shows

the concept. The checking mechanisms of NetIFC use

Rules 1 and 2 in section 3 to check information flows.

Since NetIFC checks the information flows of a service,

it is impossible for the model and the service to be

independent. They might need to synchronize under

certain circumstances (this results in the “synchronization

data structure” in Fig. 1). We use the following C

program segment to explain this.

. . .

a=b+c+e;

d=e+f;

g=h+i;

j=a+d;

k=g+j;

l=m+n;

printf(“%d”,i+g);

. . .

Fig 1. Net service and NetIFC are executed in parallel

Fig 2. Variable dependent relationships

In the program segment, the security level of variable a

can be determined only when the security levels of

variables b, c, and e are available (enabled). We say that

variable a depends on variables b, c, and e. According to

the dependency, a variable dependency structure can be

established. Fig. 2 show the structure for the program

segment above. In the figure, there are dependencies for

OPSs and those for NOPSs. Rule 1 in section 3 will be

applied to check the security of information flows for

OPSs while Rule 2 for NOPSs. With the assistance of the

structure, a net service and NetIFC can be executed in

parallel with necessary synchorization.

When checking a program deeper, Fig. 2 cannot solve

everything. For example, a variable can be used more

than once. As another example, how can the constructs of

selection (if statement) and repetition (loop) be handled?

Consider the following program segment:

...

a=a+b;

b=b+c;

a=a+b;

printf(“%d”,a);

…

 Controlling Information Flows in Net Services with Low Runtime Overhead 5

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 3, 1-9

Fig 3. The original dependency structure and the reformed one

If Fig. 2 is used in the program segment, Fig. 3(a) will

be obtained. In this case, it is difficult to decide when

should variables a and b be enabled and which statement

is being executed. For example, in the program segment

above, variables a and b should be enabled for statements

1 and 3, but it is difficult to distinguish whether statement

1 or statement 3 is being executed. We thus reform Fig.

3(a) into 3(b), in which the appearing order of variables is

explicitly shown using sequence numbers within

parentheses. With the number, the variable enabling and

disabling procedure can be operated normally. For

example, when a(1) and b(1) are enabled, the first

“a=b+c;” can be executed. On the other hand, when a(2)

and b(2) are enabled, the second “a=b+c;” can be

executed. Fig. 3(b) thus remedies the shortcoming of Fig.

2.

To handle the selection and repetition constructs,

variable values should be known. We use the following

program segment for the explanation.

. . .

a=b+c+e;

d=e+f;

if((a+b)>0) g=h+i;

else g=j+k;

while((d+j)>0){

b=d-k;

a=j+k;

d--;

}

c=a+b;

l=m+n;

o=p+q;

r=l+o;

. . .

The variable dependency relationships of the program

segment are shown in Fig. 4. In the figure, the selection

construct causes variable g to appear in two statements

that depend on different conditions. When a condition is

true, the join operations of the variables depending on the

condition will be enabled. That is, the statements

following the “if” keyword will be executed and those

following the “else” keyword will be skipped. The figure

uses different type of arrows to show different types of

variable dependencies. Solid arrows are used to perform

the join operation for a variable while dash ones are for

conditions.

Fig 4. Variable dependencies

Fig. 4 also shows the variable dependencies for the

repetition construct. In the dependencies, the sequence

numbers of the statements within the loop is shown as

“n+loop” because we do not know when the loop will end.

During information flow checking, if NetIFC identifies

the security levels of variables within a loop will not

change even when the loop is not finished, it will skip

other checking and proceeds to the next statement (e.g.,

the “c=a+b” statement after the loop). Note that the

security checking process of the assignment statements

for the l, o, and r are not affected by the branch and

repetition constructs because no variable dependent

relationship exists. Therefore, selections and repetitions

may or may not affect information flow checking of

statements following them.

To show the rules of establishing variable

dependencies, we need the following symbols: (1) D(i, j)

depicts that variable i derives variable j, (2) O(i, j) depicts

that variable i outputs to device/file j, (3) Do(i, j) and

Dno(i, j) depicts that variable i depends on variable j for

OPSs and NOPSs, respectively, (4) E(C, A) depicts that if

condition C is true, block A is executed, (5) R(C, A)

depicts that if condition C is true, block A is repeated, (6)

V(C) is the set of variables within condition C, (7) Dno(i,

C) depicts that variable i depends on condition C, and (8)

Dno(C, i) depicts that condition C depends on variable i.

The dependency establishment rules are shown below:

1. D(a(j), b(i))  Dno(b(i+1), a(j))

2. O(a(j), Om(i))  Do(Om(i+1), a(j))

3. In a selection, either E(C, A) or E(NOT(C), B). In

either case, rules 1 through 4 listed here establishes

variable dependencies in blocks A and B. Moreover,

the following sub-rules are used to establish

dependencies for condition C.

3.1. a V(C)D(a(j), b(i)): Dno(C, b(i))

3.2. a V(C)D(b(i), a(j)): Dno(b(i), C)

6 Controlling Information Flows in Net Services with Low Runtime Overhead

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 3, 1-9

4. In a repetition construct, R(C, A). Rules 3.1 and 3.2

are applied to condition C, and the following sub-

rules are applied for block A.

4.1. D(a(j), b(i))  Dno(b(i+loop), a(j))

4.2. O(a(j), Om(i))  Do(Om(i+loop), a(j))

Fig 5. Implementation architecture NetIFC

The implementation architecture of NetIFC is shown in

Fig. 5, which is similar to MapReduce [19]. The net

service being monitored is executed in the service site

and NetIFC is executed in others. The data used by the

service and the variable dependent relationships are

stored in the database “sldb”. When a service is being

executed, if an output occurs, the variable to be output

must be ready (i.e., the security of the output statement

must be ensured). With this, a ready flag for the variable

should be checked before output. NOPSs are executed

without checking readiness. However, if the checking of

“within the same group” fails (see Rule 2 in section 3),

the service will be aborted.

Fig. 5 shows that the master site polls the status

(enabled or disabled) of the variables needed by the

checking mechanisms. As long as the status of the

variables needed by a checking mechanism is enabled,

the master requires a site from the net environment to

execute a copy of the checking mechanism. After the

checking, the site is released. With this design, the master

can require multiple sites to execute checking

mechanisms of NetIFC in parallel with the service (the

larger the net area, the more available sites for the

checking mechanisms).

To describe the operations of NetIFC, we need the

following symbols: (1) V(service) is the set of variables

appear in a service, (2) DepSl(v) and DepVl(v) are the

sets of variables that the variable v depends on its security

levels (solid arrows in Fig. 2) and its values (dash arrows

in Fig. 2), respectively, (3) setDis(v), setEnb(v), and

setRdy(v) respectively disable the variable v, enables the

variable v, and sets the variable v ready, (4) Enb(v) and

Rdy(v) show that the variable v is enable and ready,

respectively, (5) R1(v) and R2(v) mean that the variable v

passes the requirements of Rule 1 and Rule 2 in section 3,

respectively, (6) Abort(service) aborts the executing

service. The execution logic of NetIFC is shown below:

1. v V(service): setDis(v)

2. v V(service)DepSl(v) = DepVl(v) = :

setEnb(v), setRdy(v)

3. v V(service),  iv DepSl(v)Enb(vi): if R2(v)

then Enb(v) else Abort(service)

4. v V(service),  iv DepVl(v)  Rdy(vi): if

R1(v) then setEnb(v), setRdy(v) else Abort(service)

VI. EVALUATION

To evaluate the performance of NetIFC, we used 10

PCs to simulate the architecture in Fig. 5, in which one of

them simulates the master site, another simulates the

service site, and the others simulate the NetIFC checking

mechanisms.

Although a service and the checking mechanisms for

NetIFC can be executed in parallel, the service may delay

when intending to output unchecked (unready) variables.

The case occurs when the checking mechanisms fail to

finish checking the variables before the output statement.

To check in details the runtime overhead of NetIFC, we

write programs by controlling the length of variable

dependency path (e.g., “k -> j -> a -> b” in Fig. 2 is a

variable dependency path) and controlling the runtime of

the programs. When we need a large runtime, we write

programs with loops that execute as many times as

needed. As shown in Fig. 5, the runtime overhead of

NetIFC is caused by the time consumed by the master,

that by the network transfer, and that by the checking

mechanisms. For each checking operation, the execution

time includes: (1) the master execution time, (2) the

checking mechanism execution time, and (3) five

network overheads. Fig. 5 shows that the network

overheads include: (1) that for master to retrieve variable

value and status, (2) that for master to receive variable

value and status, (3) that for master to trigger checking

mechanism, (4) that for master to receive checking

mechanism return, and (5) that for master to enable

variables. When evaluating network overhead, we record

the time t1 of a site when sending a message to another

site and record the time t2 when the sender receives a

return message. The receiver returning a message to the

sender should tells the sender the time t3 consumed by

the processes in the receiver. The sender then calculates

network overhead using the formula “t2 - t1 - t3”.

In the experiments, we want to know the relationships

between runtime overhead and the following factors:

1. The network overhead. This factor is closely

related to the runtime of a program. If the runtime

of a program is too short, network overhead may

dominate the runtime overhead.

2. The length of variable dependency path. If the

length is too large, there may be few checking

 Controlling Information Flows in Net Services with Low Runtime Overhead 7

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 3, 1-9

mechanisms can execute in parallel. This may

cause large runtime overhead.

Fig. 6. Experimrnt 1 result

We design experiments to check those we intend to

know. The experiment results are obtained from the

average of multiple programs’ execution results. The first

experiment checks the relationships between program

runtime and NetIFC runtime overhead. The result is

shown in Fig. 6. The value in the X dimension of the

figure should be multiplied by 100 ms (i.e., the unit of the

X dimension is 100 ms). The figure shows that the

network overhead dominates the runtime overhead when

program execution time is smaller than about 700 ms.

Fig. 7. Experimrnt 2 result

The second experiment checks the relationship

between the length of variable dependency path and

NetIFC runtime overhead. To eliminate the effect of

network overhead, the runtime of programs in this and

other experiments are all longer than 1 minute. In this

experiment, the ratio between the longest execution

thread of a program and the maximum length of the

variable dependency path are expected to dominate the

runtime overhead. That is, if the longest execution thread

of a program is m and the maximum length of the

variable dependency path is n, the ratio m/n should be the

dominating factor in this experiment. Fig. 7 shows the

result of the second experiment. The value in the X

dimension of the figure is the ratio mentioned above and

it should be multiplied by 2 (i.e., the unit of the X

dimension is 2). The figure shows that the runtime

overhead can be reduced to almost zero if the longest

dependency path is smaller than about one twelfth of the

longest execution thread of a program. Here we use

“almost zero” because every output statement still has to

check whether the variables to output are enabled. We

will further discuss this in the following experiment.

The third experiment checks the runtime overhead of

programs controlled by NetIFC. To eliminate the effect of

variable dependency, every variable dependency path is

smaller than 4. Fig. 8 shows the result of the third

experiment. The value in the X dimension of the figure is

the ratio of output statements in a program and it should

be multiplied by 0.1% (i.e., the unit of the X dimension is

0.1%). Ideally, the runtime overhead should be zero.

However, since variable flags should be checked for the

output statement, runtime overhead will happen

according to multiple memory access. Nevertheless, the

overhead is small, as sown in Fig. 8.

Fig. 8. Experimrnt 3 result

Since NetIFC controls information flows for net

services, dishonest service providers may steal output

information from physical hardware. We are currently

finding solution(s) for the problem.

VII. CONCLUSION

Information security is a crucial problem for net

services. The security covers many research areas. Our

research focuses on preventing information leakage

during service execution. The prevention can be achieved

by information flow control models. We developed

NetIFC to control information flows for net services.

NetIFC uses groups to prevent exchanging incomparable

information and security levels to prevent information

leakage. Since our research excludes virus and worms,

only output information may be leaked. NetIFC thus

strictly controls output statements but allows others.

However, NetIFC uses the join operation to adjust the

security levels of variables to prevent information leakage

when output occurred later.

If NetIFC should be embedded in software services, it

may induce large runtime overhead. We thus applied the

mass parallelism of the net environment to implement

NetIFC. In the implementation, a net service can be

executed in parallel with NetIFC. However, the service

0
5

10
15
20
25
30
35
40
45

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

o
v
er

h
ea

d

Runtime (unit: 100 ms)

Experiment 1 result

Runtime

overhead

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

o
v
er

h
ea

d

Length ratio (unit: 2)

Experiment 2 result

Runtime

overhead

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

o
v
er

h
ea

d

Output statement ratio (unit: 0.1%)

Experiment 3 result

Runtime

overhead

8 Controlling Information Flows in Net Services with Low Runtime Overhead

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 3, 1-9

and NetIFC should synchronize using variable

dependency relationships.

We simulated NetIFC to check its performance. We

identified that network overhead and variable

dependencies may induce runtime overhead. Our

experiments showed that NetIFC does prevent

information leakage and found that: (1) if the program

runtime is shorter than about 700 ms, the dominated

factor of runtime overhead is the network overhead, and

(2) if the program runtime is long enough, the dominated

factor of NetIFC runtime overhead is the longest variable

dependency path. If the longest path is smaller than one

twelfth of the longest execution thread of a service,

runtime overhead can be reduced to almost zero.

REFERENCES

[1] L. M., Vaquero, L. Rodero-Merino, J., Caceres, M.,

Lindner, “A Break in the Clouds: Towards a Cloud

Definition”, ACM SIGCOMM Computer Communication

Review, vol. 39, no. 1, pp. 50-55, 2009.

[2] D. E., Denning, 1976. “A Lattice Model of Secure

Information Flow”, Comm. ACM, vol. 19, no. 5, 236-243,

1976.

[3] D. E., Denning, P. J., and Denning, Certification of

Program for Secure Information Flow”, Comm. ACM, vol.

20, no. 7, 504-513, 1977.

[4] Myers A., and Liskov, B., 1998. Complete, Safe

Information Flow with Decentralized Labels. Proc. 14’th

IEEE Symp. Security and Privacy, 186-197.

[5] Myers A., and Liskov, B., 2000. Protecting Privacy using

the Decentralized Label Model. ACM Trans. Software

Eng. Methodology, vol. 9, no. 4, 410-442.

[6] M. Krohn, A. Yip, M. Brodsky, and N. Cliffer, M. F.

Kaashoek, E. Kohler, and R. Morris, “Information Flow

Control for Standard OS Abstractions”, SOSP’07, 2007.

[7] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and E.

Witchel, “Laminar: Practical Fine-Grained Decentralized

Information Flow Control”, PLDI’09, 2009.

[8] Bhatti, R., Bertino, E., Ghafoor, A., 2004. A Trust-based

Context-aware Access Control Model for Web Services.

IEEE ICW’04, 184 – 191.

[9] Seamons, K. E., Winslett, M., Yu, T., 2001. Limiting the

Disclosure Access Control Policies during Automated

Trust Negotiation. Network and Distributed System

Security Symposium.

[10] Wonohoesodo R., Tari, Z., 2004. A Role Based Access

Control for Web Services. Proceedings of the 2004 IEEE

International Conference on Service Computing, 49-56.

[11] Shen, H. -B., Hong, F., 2006. An Attribute-Based Access

Control Model for Web Services. IEEE International

Conference on Parallel and Distributed Computing

Applications and Technologies (PDCAT'06), 74-79.

[12] W. She, I. -L. Yen, B. ThuraiSingham, E. Bertino, “The

SCIFC Model for Information Flow Control in Web

Service Composition”, 2009 IEEE International

Conferences on Web Services, pp. 1-8, 2009.

[13] W. She, I. -L. Yen, B. ThuraiSingham, and S. –Y. Huang,

“Rule-Based Run-Time Information Flow Control in

Service Cloud”, 2011 IEEE International Conferences on

Web Services, pp. 524-531, 2011.

[14] L. Sfaxi, T. Abdellatif, R. Robbana, and Y. Lakhnech,

“Information Flow Control of Component-Based

Distributed Systems”, Concurrency and Computation:

Practice and Experience, available on

http://www.bbhedia.org/robbana/Wiley.pdf.

[15] R. Wu, G. –J., Ahn, H. Hu, and M. Singhal, “Information

Flow Control in Cloud Computing”, Proceedings of the

6th International Conference on Collaborative Computing:

Networking, Applications and Worksharing, 2010.

[16] Chou, S. –C., 2004. Embedding Role-Based Access

Control Model in Object-Oriented Systems to Protect

Privacy. Journal of Systems and Software, 71(1-2), 143-

161.

[17] J. Dean and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters”, OSDI 2004, available on

http://static.usenix.org/event/osdi04/tech/full_papers/dean/

dean.pdf.

[18] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,

“Hey, You, Get Off of My Cloud: Exploring Information

Leakage in Third-Party Compute Clouds”, Proceedings of

the 16th ACM Conference on Computer and

Communications Security, pp. 199-212, 2009.

[19] Bell D. E., and LaPadula, L. J., 1976. Secure Computer

Systems: Unified Exposition and Multics Interpretation.

Technique report, Mitre Corp., Mar. 1976.

http://csrc.nist.gov/publications/history/bell76.pdf.

[20] Samarati, P., Bertino, E., Ciampichetti, A., and Jajodia, S.,

1997. Information Flow Control in Object-Oriented

Systems. IEEE Trans. Knowledge Data Eng., vol. 9, no. 4,

524-538.

[21] Samarati, P., Bertino, E., Ciampichetti, A., and Jajodia, S.,

1997. Information Flow Control in Object-Oriented

Systems. IEEE Trans. Knowledge Data Eng., vol. 9, no. 4,

524-538.

[22] Yu, T., Winslett, M., Seamons, K., 2003. Supporting

Structured Credentials and Sensitive Policies through

Interoperable Strategies for Automated Trust Negotiation.

ACM Transactions on Information and System Security,

vol. 6, no. 1, 1-42.

[23] Koshutanski, H., Massacci, F., 2005. Interactive

Credential Negotiation for Stateful Business Processes,

Lecture notes in computer science, 256-272.

[24] Mecella, M., Ouzzani, M., Paci, F., Bertino, E., 2006. An

Access Control Enforcement for Conversation-based Web

Services. International World Wide Web Conference, 257-

266.

[25] Bertino, E., Squicciarini, A. C., Martino, L., Pacim, F.,

2006. An Adaptive Access Control Model for Web

Service. International Journal of Web Service Research,

vol. 3, no. 3, 27-60.

[26] Paurobally, S., Jennings, N. R., 2005. Protocol

Engineering for Web Service Conversations. Engineering

Applications of Artificial Intelligence, vol. 18, no. 2, 237-

254.

[27] Srivatsa, M., Iyengar, A., Mikalsen, T., Rouvellou, I., Yin,

J., 2007. An Access Control System for Web Service

Compositions. 2007 IEEE International Conference on

Web Services, 1-8.

[28] Ardagna, C. A., Damiani, E., 2006. A Web Service

Architecture for Enforcing Access control Policies.

Electronic Notes in Theoretical Computer Science, vol.

142, 47-62.

[29] Koshutanski H., Massacci, F., 2003. An Access Control

Framework for Business Processes for Web Service. ACM

Workshop on XML Security, 15-24.

[30] Sirer E. G., Wang, K., 2002. An Access Control Language

for Web Services. Proceedings of the seventh ACM

symposium on Access control models and technologies

(SACMAT’02), 23-30.

[31] Bhatti, R., Ghafoor, A., Bertino, E., Joshi, J. B. D., 2005.

X-GTRBAC: An XML-Based Policy Specification

Framework and Architecture for Enterprise-Wide Access

 Controlling Information Flows in Net Services with Low Runtime Overhead 9

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 3, 1-9

Control. ACM Transactions on Information and System

Security (TISSEC), Vol. 8, No. 2, 187 – 227.

[32] Bertino, E., Bonatti P. A., Ferrari, E., 2001. TRBAC: A

Temporal Role-Based Access Control Model. ACM

Transactions on Information and System Security, Vol. 4,

No. 3, 191 – 233.

[33] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., Youman, C.

E., 1996. Role-Based Access Control Models. IEEE

Computer, vol. 29, no. 2, 38-47.

[34] R. Sandhu, D. F., Ferraiolo, and D. R., Kuhn, D. "The

NIST Model for Role Based Access Control: Toward a

Unified Standard", 5th ACM Workshop Role-Based

Access Control. pp. 47–63, 2000

[35] JIF website, “Jif: Java + information flow”, available on

http://www.cs.cornell.edu/jif/

[36] Brewer, D.F.C., Nash, M.J., 1989. The Chinese Wall

Security Policy. In: Proceedings of the 5’th IEEE

Symposium on Security and Privacy, 206-214.

[37] J. Bacon, D. Eyers, T. F. J. –M. Pasquier, J. Singh, and P.

Piezuch, “Information Flow Control for Secure Cloud

Computing”, IEEE Trans. Network and Service

Management, 11(1), pp. 76-89, 2014.

Authors’ Profiles

Shih-Chien Chou is a Professor in the

Department of Computer Science and

Information Engineering, National Dong

Hwa University, Taiwan. He is major in

software engineering, process environment,

software reuse, and information flow

control.

How to cite this paper: Shih-Chien Chou,"Controlling Information Flows in Net Services with Low Runtime

Overhead", IJCNIS, vol.7, no.3, pp.1-9, 2015.DOI: 10.5815/ijcnis.2015.03.01

http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-00.pdf
http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-00.pdf
http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-00.pdf

