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Abstract—This paper presents the information flow 

control model NetIFC to prevent information leakage 

when a net service is being executed. NetIFC offers the 

following features: (1) it blocks at least statements as 

possible and (2) it reduces runtime overhead. To achieve 

the first feature, NetIFC strictly controls output 

statements because only output may leak information. To 

achieve the second feature, NetIFC is executed in parallel 

with a service in different sites to monitor the service. 

This monitoring style substantially reduce runtime 

overhead when comparing with embedding a model in a 

net service. 

 

Index Terms—Information flow, information flow 

control, information security, information leakage 

prevention, runtime overhead. 
 

I.  INTRODUCTION 

Current software services are generally executed on the 

net, such as web services and cloud services. Although 

the research of cloud computing [1] is really hot, the 

research of other net applications is still important. 

Therefore, we collectively call services on the net and 

those on clouds as net services. Net services offer 

substantial benefit. However, there are problems to solve. 

Our research focuses on preventing information leakage 

during the execution of net services. The prevention can 

be achieved by information flow control [2-15]. 

According to our survey, information flow control 

models can be classified into two major categories. The 

first category uses credentials, attributes, or other 

mechanism to determine whether a requester can invoke a 

service. For example, the SCIFC model [12] checks 

whether a service chain can be successfully invoked 

through attributes/credentials checking. Models in this 

category fail to check information flows within software. 

They are considered imprecise because progra m 

statements may leak information during execution. For 

example, a malicious account management system may 

leak user accounts during execution. As to models in the 

second category, such as the decentralized label model 

[4-5],  they are embedded  in software to check 

information flows in the software during execution. 

Control in this category is precise but induces runtime 

overhead. For example, using n statements to check a 

statement results in about n+1 times the normal runtime. 

In general, models in this category prevent information 

but fail to discuss runtime overhead. 

We developed models in the second category [16]. 

However, high runtime overhead induced by model 

embedding bothered us. Thanks to the mass parallelism 

of net environments, we developed an information flow 

control model for net services named NetIFC. It is not 

embedded in services. On the other hand, NetIFC and the 

net service being monitored are executed in parallel on 

different sites. According to non-embedding, the runtime 

overhead is expected to be reduced substantially. NetIFC 

uses security level numbers to prevent information 

leakage, in which larger security level numbers imply 

more sensitivity. When designing the model, we 

identified the following facts. 

 
1. Without considering viruses, worms, and the 

attack mentioned in [18], only output statements 

need to be controlled because only output 

information may be leaked (to persons or other 

programs). As to other statements, they need not 

be controlled. Nevertheless, the join operation [4] 

should be used to adjust security level numbers so 

that leakage can be prevented when variables are 

output later. Control in this manner simplifies a 

model. However, existing models are 

unnecessarily complicated because they generally 

control every statement. 

2. Information exchange is sometimes illegal even 

with the same data type. For example, salaries 

with the units of EUR and USD are incomparable. 

Exchanging incomparable information results in 

information corruption. We use groups to prevent 

the corruption. Information in different groups 

cannot be exchanged. 

3. Embedding a model in a program induces large 

runtime overhead. We have mentioned this point 

already. 

 
According to the facts, NetIFC strictly controls output 

statements and uses join operations to adjust security 

level numbers for other statements. In addition, NetIFC is 

not embedded in a net service. Instead, it is executed in 

parallel with the service on different sites to monitor the 

service. According to non-embedding, runtime overhead 

is expected to be substantially reduced. Note that our 

research assumes that information transferring on the 

network is secure and thus skips the problem of 

cryptography. This paper presents NetIFC. 
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II.  RELATED WORK 

Traditional lattice-based model [2-3] is a MAC 

(mandatory access control). The “can flow” relationship 

is based on the rules of “no read up” and “no write down” 

[19], which are generally criticized as too restricted. The 

decentralized label model [4-5] uses labels to mark the 

security levels of variables. A label is composed of 

policies to be simultaneously obeyed. A policy in a label 

is composed of an owner and zero or more readers that 

can read the variable. The model in [20] uses ACLs of 

objects to compute ACLs of executions. A message filter 

is used to filter out possibly non-secure information flows. 

Interactions among executions are categorized into five 

modes, which loosen the restriction of MAC by using 

different policies for different modes. 

Flume [6] is a decentralized information flow control 

(DIFC) model for operating systems. It tracks 

information flows in a system using tags and labels. The 

control granularity is detailed to processes (i.e., Flume 

regards the information transferred among processes as a 

whole). The secrecy tags prevent information leakage and 

integrity tags prevent information corruption. Flume also 

avoids information leaked to untrusted channel (e.g., 

sockets). The function of Laminar [7] is similar to that of 

Flume. Nevertheless, the control granularity is detailed to 

data structures and system resources. 

The model Trust-Serv [21] uses state machines to 

dynamically choose web services at run time. The 

choosing is a kind of negotiation. It uses trust negotiation 

[22] to select web services that can be invoked. The 

kernel component to determine whether a web service 

can be invoked is credential. The model proposed in [23] 

uses digital credentials for negotiation. It defines 

strategies for negotiation policies. The model proposed in 

[24] handles k-leveled invocation of web services. The 

primary component used in the model is credentials. 

SCIFC [12] uses various mechanism (such as back-check 

procedure, carry-along policies, and transformation 

factors) and algorithms to make sure whether a service 

chain can be successfully invoked. The objectives of 

quite a few researches are also about negotiation [25-30]. 

A negotiation model generally fails to check information 

flows within software during execution. The models are 

considered imprecise as mentioned in section 1. 

The model proposed in [8] uses X-GTRBAC [31] to 

control the access of web services. X-GTRBAC can be 

used in heterogeneous and distributed sites. Moreover, it 

applies TRBAC [32] to control the factor related to time. 

The model in [9] determines whether a composition of 

web services can be invoked. It offers a language to 

describe policies, which check whether a composition of 

web services can be invoked. The model in [10] uses 

RBAC (role-based access control) concept [33-34] to 

define policies of accessing a web service. It is a two-

leveled mechanism. The first level checks the roles 

assigned to requesters and web services. An authorized 

requester is a candidate to invoke a web service. The 

second level uses parameters as attributes and assigns 

permissions to the attributes. An authorized requester can 

invoke a web service only when it possesses the 

permissions to access the attributes. The model proposed 

in [11] allows requesters to use PMI (privilege 

management infrastructure) for managing the checking, 

retrieval, and revocation of authentication. The model 

also uses an RBAC-based web service access control 

policy to determine whether a requester can invoke a web 

service. 

The model in [13] identifies dependencies among I/O 

parameters of services to decide whether service 

invocations will leak information. The model in [14] 

offers functions to check intra-component information 

flows through the JIF language [35]. It also defines 

protocols to check inter-component information flows. 

Although both intra- and inter-components information 

flows are checked, JIF embeds decentralized labels in a 

program. The embedding will induce runtime overhead. 

The model in [15] applied Chinese Wall [36] to control 

information flows in the IaaS level. As to services in the 

SaaS level, the model cannot control their information 

flows. In the recent survey of [37], the authors especially 

emphasize the importance of data privacy in a cloud 

computing environment. They believed that information 

flow control is a good solution for the problem. However, 

the article did not propose a concrete information flow 

control model for cloud environments. 

As stated in section 1, existing models can be classified 

into two categories. Models such as [12] belong to the 

first one, which fail to check information flows within a 

service and results in imprecise control. Models such as 

[14] belong to the second one. Although they are precise, 

they may induce large runtime overhead. 

 

III.  NetIFC 

Before defining NetIFC, we describe information 

leakage. Information leakage occurs when persons or 

other software illegally obtain sensitive information from 

a software system. In general, persons can obtain 

information from files or output devices and software can 

obtain information from files. Information leakage may 

thus happen when sensitive information is output. 

When designing NetIFC, we let the control granularity 

be detailed to variables. That is, NetIFC controls 

information flows among variables. We need this 

granularity because different variables carry information 

with different sensitivities. According to the description 

in section 1, a group and a security level number facilitate 

preventing information corruption and leakage, 

respectively. We thus combine them into a security level. 

That is, a group Gp and a security level number Slv is 

combined into a security level: “(Gp, Slv)”. Since the 

control granularity is detailed to variables, every variable 

is associated with a security level. To facilitate normal 

execution of a service, the security levels of non-sensitive 

variables are set “(Global, -1)”. The setting allows non-

sensitive variables to flow anywhere because intersecting 

a set with “Global” obtains the set itself. A non-sensitive 

variable may become sensitive and vice versa during 

runtime. For example, suppose: (a) the initial security 
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level of the variable b is (Gp1, Slv1) and (b) the variable 

a is initially non-sensitive. Then, after the statement 

“a=b;” is executed, the security level of the variable a is 

adjusted to be the same as that of b. This causes a to 

become sensitive. 

Since sensitive information operated by software may 

be leaked only when it is output, every file and output 

device should also be associated with a security level. In 

general, the security level of a device is decided by its 

location. For example, if an output device is placed in the 

office of a manager, its security level is set according to 

the importance of the manager. If the location of a device 

is changed, its security level may be changed. NetIFC 

cannot handle the change because only persons know the 

change. As to files, their security levels also cannot be 

adjusted because the adjustment will affect the access of 

the files. For example, if the security level number of a 

file is 3, it can be accessed by a user possessing a 

privilege to access files whose security level number is 3 

or lower. If the security level number of a file is adjusted 

to be 4, the user can no longer access the file. 

The kernel concepts of NetIFC have been described 

above. Below we give a definition to NetIFC. 

 

Definition 1. NetIFC = (SL, VAR, ID, OD, FI, Rules), 

in which 

 

1. SL is the set of security levels. Every component 

in the set is composed of a group and a security 

level number. That is, SL = {(Gp, Slv)i | Gp is a 

group, Slv is a security level number, and (Gp, 

Slv)i is a security level}. 

2. VAR, ID, OD, FI are the sets of variables, input 

devices, output devices, and files used by a service, 

respectively. Every component in the sets is 

associated with a security level. 

3. Rules are NetIFC’s information control rules. To 

facilitate describing the rules, we need the 

following definition. 

 

Definition 2. IFS is “a statement that will result in 

information flow”, including the statements of (a) 

assignment, (b) input from devices or files, (c) output to 

devices or files, (d) invoking subroutines or methods, and 

(e) invoking other services. Invoking other services may 

result in chains mentioned in SCIFC [12]. Since only 

security levels are needed to control information flows, 

operators in a statement such as “+” and “-” can be 

ignored here. Therefore, the following definition of IFS 

does not contain operators. 

 
IFS = {(Des, GpDes, SlvDes), {(Source, GpSource, 

SlvSource)i} | (Des, GpDes, SlvDes) is the destination of the 

information flow. (Source, GpSource, SlvSource)i is a source 

for the flow. The destination and every source are 

associated with a security level “(Gp, Slv)”.} 

 
Since NetIFC controls only output statements, we 

categorize statements into output statements (OPSs) and 

non-output statements (NOPSs). NOPSs that may induce 

information flows include assignments, input statements, 

invocation statements (invoking subroutines or object 

methods), and statements that invoke other services. 

OPSs include outputting to devices or files. As mentioned 

above, NetIFC strictly controls OPSs. Non-secure OPSs 

will be blocked. As to NOPSs, they can always be 

executed. However, join operations will be executed to 

adjust security levels. The adjustment prevents 

information leakage when output occurs later. Suppose a 

is derived from the set of variables {xi | xi is a variable}. 

Also suppose that the group of a and every xi are the 

same. Then, the join operation adjusts the Slv of a to be 

MAX(
ixSlv ), in which the function MAX extracts the 

maximum value. 

NOPSs other than assignments can be considered 

variations of assignments. For example, an input 

statement retrieves a value from a device/file and assigns 

the value to the variable. Other NOPs can be considered 

similarly. According to the description above, NetIFC 

offers a rule to control OPSs and a rule to do join for 

NOPSs. The rules are listed below. 

Rule 1. For an OPS “((Odes, GpOdes, SlvOdes), {(Source, 

GpSource, SlvSource)i })”, in which Odes )( FIOD  

(check Definition 1 for the definition of OD and FI), both 

the condition “ )(  OdesSourcei GpGp
i

” and 

“ )(
iSourceSlvMAX  SlvOdes” should be true. The first 

condition requires that the destination and the sources 

should be in the same group. It prevents exchanging 

incomparable information. The second condition prevents 

information leakage. 

Rule 2. For an assignment “(Des, GpDes, SlvDes), 

{(Source, GpSource, SlvSource)i}”, it can be executed if the 

condition “ )(  DesSourcei GpGp
i

” is true. The 

condition prevents exchanging incomparable information 

as mentioned above. After statement execution, the 

following join operation adjusts the security level of the 

destination. 

SlvDes = )(
iSourceSlvMAX  

 

IV. PROOF OF CORRECTNESS 

Information leakage may occur during output. The 

output statements are listed below. 

 

1. ((Od, GpOd, SlvOd), {(Source, GpSource, SlvSource)i }): 

This type of statement outputs the information 

derived from a set of variables to an output device 

Od. 

2. ((Fi, GpFi, SlvFi), {(Source, GpSource, SlvSource)i }): 

This type of statement outputs the information 

derived from a set of variables to a file Fi. 

 

Case 1. The output to device statement “((Od, GpOd, 

SlvOd), {(Source, GpSource, SlvSource)i })” will not leak 

information. 

Proof. Information output to a device may only leak to
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persons. Suppose person P possesses a security level 

number SLVp and SLVp< SlvOd. Rule 1 allows the output 

only when )(
iSourceSlvMAX  SlvOd (suppose Od and 

all sources are in the same group). If the output is allowed, 

P cannot access information output to Od because SLVp< 

SlvOd. Since Sourcei derives the information output to Od, 

no Sourcei will be leaked to P. 

Case 2. The output to file statement ((Fi, GpFi, SlvFi), 

{(Source, GpSource, SlvSource)i }) will not leak information. 

Proof. Information output to a file may leak to persons 

or software. Rule 1 allows the output only when 

)(
iSourceSlvMAX  SlvFi (suppose Fi and all sources are 

in the same group). Case 1 states that no Sourcei will be 

leaked to a person P with a security level number SLVp 

and SLVp< SlvFi. On the other hand, if Softwarei intends 

to read the information of VAR from Fi to the variable 

VAR1, Rule 2 causes 
1varvar SlvSlv  . If Softwarei outputs 

VAR1 to a device, Case 1 states that VAR1 will not be 

leaked to a person. If VAR1 is output to another file, the 

proof goes back to the beginning of this proof. That is, 

the proof is endless. However, we know that the 

information of a sensitive variable may be: (a) operating 

by a net service, (b) output to a device, or (c) output to a 

file. Information operating by a net service will not be 

leaked without output. Information output to a device will 

not be leaked (see the proof of Case 1). As to the 

information output to a file, it will not be leaked to 

persons. Since NetIFC handles information flows within 

a limited area of the net, no information leaking to 

persons corresponds to no information leakage. Therefore, 

Case 2 is true.  

 

V. RUNTIME OVERHEAD REDUCING 

Existing information flow control models are generally 

embedded in a software system. This induces large 

runtime overhead. To reduce the overhead, NetIFC is not 

embedded in a net service. Instead, it is executed in 

parallel with the service on different sites. Fig. 1 shows 

the concept. The checking mechanisms of NetIFC use 

Rules 1 and 2 in section 3 to check information flows. 

Since NetIFC checks the information flows of a service, 

it is impossible for the model and the service to be 

independent. They might need to synchronize under 

certain circumstances (this results in the “synchronization 

data structure” in Fig. 1). We use the following C 

program segment to explain this. 

 

. . . 

a=b+c+e; 

d=e+f; 

g=h+i; 

j=a+d; 

k=g+j; 

l=m+n; 

printf(“%d”,i+g); 

. . . 

 

Fig 1. Net service and NetIFC are executed in parallel 

 

Fig 2. Variable dependent relationships 

In the program segment, the security level of variable a 

can be determined only when the security levels of 

variables b, c, and e are available (enabled). We say that 

variable a depends on variables b, c, and e. According to 

the dependency, a variable dependency structure can be 

established. Fig. 2 show the structure for the program 

segment above. In the figure, there are dependencies for 

OPSs and those for NOPSs. Rule 1 in section 3 will be 

applied to check the security of information flows for 

OPSs while Rule 2 for NOPSs. With the assistance of the 

structure, a net service and NetIFC can be executed in 

parallel with necessary synchorization. 

When checking a program deeper, Fig. 2 cannot solve 

everything. For example, a variable can be used more 

than once. As another example, how can the constructs of 

selection (if statement) and repetition (loop) be handled? 

Consider the following program segment: 

 

... 

a=a+b; 

b=b+c; 

a=a+b; 

printf(“%d”,a); 

… 

 

 



 Controlling Information Flows in Net Services with Low Runtime Overhead 5 

Copyright © 2015 MECS                                                    I.J. Computer Network and Information Security, 2015, 3, 1-9 

 

Fig 3. The original dependency structure and the reformed one 

If Fig. 2 is used in the program segment, Fig. 3(a) will 

be obtained. In this case, it is difficult to decide when 

should variables a and b be enabled and which statement 

is being executed. For example, in the program segment 

above, variables a and b should be enabled for statements 

1 and 3, but it is difficult to distinguish whether statement 

1 or statement 3 is being executed. We thus reform Fig. 

3(a) into 3(b), in which the appearing order of variables is 

explicitly shown using sequence numbers within 

parentheses. With the number, the variable enabling and 

disabling procedure can be operated normally. For 

example, when a(1) and b(1) are enabled, the first 

“a=b+c;” can be executed. On the other hand, when a(2) 

and b(2) are enabled, the second “a=b+c;” can be 

executed. Fig. 3(b) thus remedies the shortcoming of Fig. 

2. 

To handle the selection and repetition constructs, 

variable values should be known. We use the following 

program segment for the explanation. 

 

. . . 

a=b+c+e; 

d=e+f; 

if((a+b)>0) g=h+i; 

else g=j+k; 

while((d+j)>0){ 

b=d-k; 

a=j+k; 

d--; 

} 

c=a+b; 

l=m+n; 

o=p+q; 

r=l+o; 

. . . 

 

The variable dependency relationships of the program 

segment are shown in Fig. 4. In the figure, the selection 

construct causes variable g to appear in two statements 

that depend on different conditions. When a condition is 

true, the join operations of the variables depending on the 

condition will be enabled. That is, the statements 

following the “if” keyword will be executed and those 

following the “else” keyword will be skipped. The figure 

uses different type of arrows to show different types of 

variable dependencies. Solid arrows are used to perform 

the join operation for a variable while dash ones are for 

conditions. 

 

 

Fig 4. Variable dependencies 

Fig. 4 also shows the variable dependencies for the 

repetition construct. In the dependencies, the sequence 

numbers of the statements within the loop is shown as 

“n+loop” because we do not know when the loop will end. 

During information flow checking, if NetIFC identifies 

the security levels of variables within a loop will not 

change even when the loop is not finished, it will skip 

other checking and proceeds to the next statement (e.g., 

the “c=a+b” statement after the loop). Note that the 

security checking process of the assignment statements 

for the l, o, and r are not affected by the branch and 

repetition constructs because no variable dependent 

relationship exists. Therefore, selections and repetitions 

may or may not affect information flow checking of 

statements following them. 

To show the rules of establishing variable 

dependencies, we need the following symbols: (1) D(i, j) 

depicts that variable i derives variable j, (2) O(i, j) depicts 

that variable i outputs to device/file j, (3) Do(i, j) and 

Dno(i, j) depicts that variable i depends on variable j for 

OPSs and NOPSs, respectively, (4) E(C, A) depicts that if 

condition C is true, block A is executed, (5) R(C, A) 

depicts that if condition C is true, block A is repeated, (6) 

V(C) is the set of variables within condition C, (7) Dno(i, 

C) depicts that variable i depends on condition C, and (8) 

Dno(C, i) depicts that condition C depends on variable i. 

The dependency establishment rules are shown below: 

 
1. D(a(j), b(i))   Dno(b(i+1), a(j)) 

2. O(a(j), Om(i))   Do(Om(i+1), a(j)) 

3. In a selection, either E(C, A) or E(NOT(C), B). In 

either case, rules 1 through 4 listed here establishes 

variable dependencies in blocks A and B. Moreover, 

the following sub-rules are used to establish 

dependencies for condition C. 

 

3.1. a V(C)D(a(j), b(i)): Dno(C, b(i)) 

3.2. a V(C)D(b(i), a(j)): Dno(b(i), C) 
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4. In a repetition construct, R(C, A). Rules 3.1 and 3.2 

are applied to condition C, and the following sub-

rules are applied for block A. 

 

4.1. D(a(j), b(i))   Dno(b(i+loop), a(j)) 

4.2. O(a(j), Om(i))   Do(Om(i+loop), a(j)) 

 

 
Fig 5. Implementation architecture NetIFC 

The implementation architecture of NetIFC is shown in 

Fig. 5, which is similar to MapReduce [19]. The net 

service being monitored is executed in the service site 

and NetIFC is executed in others. The data used by the 

service and the variable dependent relationships are 

stored in the database “sldb”. When a service is being 

executed, if an output occurs, the variable to be output 

must be ready (i.e., the security of the output statement 

must be ensured). With this, a ready flag for the variable 

should be checked before output. NOPSs are executed 

without checking readiness. However, if the checking of 

“within the same group” fails (see Rule 2 in section 3), 

the service will be aborted. 

Fig. 5 shows that the master site polls the status 

(enabled or disabled) of the variables needed by the 

checking mechanisms. As long as the status of the 

variables needed by a checking mechanism is enabled, 

the master requires a site from the net environment to 

execute a copy of the checking mechanism. After the 

checking, the site is released. With this design, the master 

can require multiple sites to execute checking 

mechanisms of NetIFC in parallel with the service (the 

larger the net area, the more available sites for the 

checking mechanisms). 

To describe the operations of NetIFC, we need the 

following symbols: (1) V(service) is the set of variables 

appear in a service, (2) DepSl(v) and DepVl(v) are the 

sets of variables that the variable v depends on its security 

levels (solid arrows in Fig. 2) and its values (dash arrows 

in Fig. 2), respectively, (3) setDis(v), setEnb(v), and 

setRdy(v) respectively disable the variable v, enables the 

variable v, and sets the variable v ready, (4) Enb(v) and 

Rdy(v) show that the variable v is enable and ready, 

respectively, (5) R1(v) and R2(v) mean that the variable v 

passes the requirements of Rule 1 and Rule 2 in section 3, 

respectively, (6) Abort(service) aborts the executing 

service. The execution logic of NetIFC is shown below: 

 

1. v V(service):  setDis(v) 

2. v V(service)DepSl(v) = DepVl(v) = : 

setEnb(v),  setRdy(v) 

3. v V(service),  iv DepSl(v)Enb(vi): if R2(v) 

then Enb(v) else Abort(service) 

4. v V(service),  iv DepVl(v)  Rdy(vi): if 

R1(v) then setEnb(v),  setRdy(v) else Abort(service) 

 

VI.  EVALUATION 

To evaluate the performance of NetIFC, we used 10 

PCs to simulate the architecture in Fig. 5, in which one of 

them simulates the master site, another simulates the 

service site, and the others simulate the NetIFC checking 

mechanisms. 

Although a service and the checking mechanisms for 

NetIFC can be executed in parallel, the service may delay 

when intending to output unchecked (unready) variables. 

The case occurs when the checking mechanisms fail to 

finish checking the variables before the output statement. 

To check in details the runtime overhead of NetIFC, we 

write programs by controlling the length of variable 

dependency path (e.g., “k -> j -> a -> b” in Fig. 2 is a 

variable dependency path) and controlling the runtime of 

the programs. When we need a large runtime, we write 

programs with loops that execute as many times as 

needed. As shown in Fig. 5, the runtime overhead of 

NetIFC is caused by the time consumed by the master, 

that by the network transfer, and that by the checking 

mechanisms. For each checking operation, the execution 

time includes: (1) the master execution time, (2) the 

checking mechanism execution time, and (3) five 

network overheads. Fig. 5 shows that the network 

overheads include: (1) that for master to retrieve variable 

value and status, (2) that for master to receive variable 

value and status, (3) that for master to trigger checking 

mechanism, (4) that for master to receive checking 

mechanism return, and (5) that for master to enable 

variables. When evaluating network overhead, we record 

the time t1 of a site when sending a message to another 

site and record the time t2 when the sender receives a 

return message. The receiver returning a message to the 

sender should tells the sender the time t3 consumed by 

the processes in the receiver. The sender then calculates 

network overhead using the formula “t2 - t1 - t3”. 

In the experiments, we want to know the relationships 

between runtime overhead and the following factors: 

 

1. The network overhead. This factor is closely 

related to the runtime of a program. If the runtime 

of a program is too short, network overhead may 

dominate the runtime overhead. 

2. The length of variable dependency path. If the 

length is too large, there may be few checking 
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mechanisms can execute in parallel. This may 

cause large runtime overhead. 

 

 

Fig. 6. Experimrnt 1 result 

We design experiments to check those we intend to 

know. The experiment results are obtained from the 

average of multiple programs’ execution results. The first 

experiment checks the relationships between program 

runtime and NetIFC runtime overhead. The result is 

shown in Fig. 6. The value in the X dimension of the 

figure should be multiplied by 100 ms (i.e., the unit of the 

X dimension is 100 ms). The figure shows that the 

network overhead dominates the runtime overhead when 

program execution time is smaller than about 700 ms. 

 

 

Fig. 7. Experimrnt 2 result 

The second experiment checks the relationship 

between the length of variable dependency path and 

NetIFC runtime overhead. To eliminate the effect of 

network overhead, the runtime of programs in this and 

other experiments are all longer than 1 minute. In this 

experiment, the ratio between the longest execution 

thread of a program and the maximum length of the 

variable dependency path are expected to dominate the 

runtime overhead. That is, if the longest execution thread 

of a program is m and the maximum length of the 

variable dependency path is n, the ratio m/n should be the 

dominating factor in this experiment. Fig. 7 shows the 

result of the second experiment. The value in the X 

dimension of the figure is the ratio mentioned above and 

it should be multiplied by 2 (i.e., the unit of the X 

dimension is 2). The figure shows that the runtime 

overhead can be reduced to almost zero if the longest 

dependency path is smaller than about one twelfth of the 

longest execution thread of a program. Here we use 

“almost zero” because every output statement still has to 

check whether the variables to output are enabled. We 

will further discuss this in the following experiment. 

The third experiment checks the runtime overhead of 

programs controlled by NetIFC. To eliminate the effect of 

variable dependency, every variable dependency path is 

smaller than 4. Fig. 8 shows the result of the third 

experiment. The value in the X dimension of the figure is 

the ratio of output statements in a program and it should 

be multiplied by 0.1% (i.e., the unit of the X dimension is 

0.1%). Ideally, the runtime overhead should be zero. 

However, since variable flags should be checked for the 

output statement, runtime overhead will happen 

according to multiple memory access. Nevertheless, the 

overhead is small, as sown in Fig. 8. 

 

 

Fig. 8. Experimrnt 3 result 

Since NetIFC controls information flows for net 

services, dishonest service providers may steal output 

information from physical hardware. We are currently 

finding solution(s) for the problem. 

 

VII.  CONCLUSION 

Information security is a crucial problem for net 

services. The security covers many research areas. Our 

research focuses on preventing information leakage 

during service execution. The prevention can be achieved 

by information flow control models. We developed 

NetIFC to control information flows for net services. 

NetIFC uses groups to prevent exchanging incomparable 

information and security levels to prevent information 

leakage. Since our research excludes virus and worms, 

only output information may be leaked. NetIFC thus 

strictly controls output statements but allows others. 

However, NetIFC uses the join operation to adjust the 

security levels of variables to prevent information leakage 

when output occurred later. 

If NetIFC should be embedded in software services, it 

may induce large runtime overhead. We thus applied the 

mass parallelism of the net environment to implement 

NetIFC. In the implementation, a net service can be 

executed in parallel with NetIFC. However, the service 
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and NetIFC should synchronize using variable 

dependency relationships. 

We simulated NetIFC to check its performance. We 

identified that network overhead and variable 

dependencies may induce runtime overhead. Our 

experiments showed that NetIFC does prevent 

information leakage and found that: (1) if the program 

runtime is shorter than about 700 ms, the dominated 

factor of runtime overhead is the network overhead, and 

(2) if the program runtime is long enough, the dominated 

factor of NetIFC runtime overhead is the longest variable 

dependency path. If the longest path is smaller than one 

twelfth of the longest execution thread of a service, 

runtime overhead can be reduced to almost zero. 
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