
I. J. Computer Network and Information Security, 2015, 5, 1-8
Published Online April 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2015.05.01

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 5, 1-8

Embedded Real-Time HTTP Server

Radosław Czarnecki
Division of Computer Science, Cracow University of Technology, Poland

Email: czarneck@pk.edu.pl

Stanislaw Deniziak
Department of Computer Science, Kielce University of Technology, Poland

Email: s.deniziak@computer.org

Abstract—This paper presents the architecture of

embedded real-time web server. Unlike existing web

servers, in our approach, requests are processed not in the

―first in first out‖ order but according to their deadlines

and the expected server load. For this purpose the Least

Laxity First scheduling method is used. First, requests

with imposed hard real-time constraints are served. Then

requests enclosed by soft deadlines are processed. Finally,

request without time requirements are served in the order

they arrived. We also present real-time extensions to the

Hypertext Transfer Protocol. We propose headers that

enable defining hard and soft deadlines, as well as

responses containing time information, that are being sent

to the client application. The experimental results showed

that in case of real-time applications our server misses

significantly fewer requests, due to time out, then existing

solutions. The presented server may be very useful for

implementing real-time services supported by embedded

systems, e.g. in future real-time ―Internet of things‖

applications.

Index Terms—Web server, embedded system, real-time

system, HTTP, Internet of things, Sensing as a service.

I. INTRODUCTION

More and more embedded systems are connected to

Internet. The emerging concepts, like Internet of Things

(IoT) [1], Machine to Machine communication (M2M)

[2], Sensing as a Sevice (S
2
aaS) [3], wireless sensor

networks [4] etc., stimulate the development of web-

enabled devices. Such devices can communicate with

web-applications using HTTP protocol [5], a lot of them

are controlled by web browsers. For this purpose an

embedded web server (EWS) should be built in. EWS

usually is a lightweight application implementing only

main methods defined by the HTTP protocol. It contains

simple web pages, with forms used for the interaction.

EWS are used for controlling network printers, wireless

routers, network cameras and other devices or sensors. It

is expected that in a few years almost each product may

be identified and traced on Internet using wireless

communication methods. Moreover, a lot of them will

supply sensing data to web applications.

Existing web-based sensing applications do not

consider time requirements. Although the increasing

number of sensing services will cause that sensors with

built in EWS will face real-time conditions, which should

be satisfied to provide appropriate and required level of

Quality of Service (QoS). Recently it was revealed that

future Internet of Things or Service Oriented

Architectures should address the real-time aspects. Some

web applications have time-critical demand, especially in

domains like environmental monitoring, transportation.

The IoT will comprise billions of intelligent

communicating ―things‖ or Internet Connected Objects

(ICOs) that will have sensing, actuating and data

processing capabilities. Each ICO will have one or more

embedded sensors that will capture potentially enormous

amounts of data. To enable processing a large number of

requests, such ICO should take into consideration real-

time constraints.

Real-time applications expect responses from sensors

or external services in predictable time periods.

Unfortunately HTTP does not support real-time

constraints. When the response to the request did not be

received during the expected time it is not possible to

determine if it was caused by the EWS overload, network

faults, server failure or heavy network traffic. Moreover,

in existing HTTP servers it is not possible either to

control the order of processing of incoming requests or to

predict the time of processing. In real-time environment

EWS should first, process requests according to their

deadlines, second, if it is not able to process request in the

expected time, EWS should send timeout message to a

client application. Server that meets above requirements

will significantly improve QoS in real-time IoT systems,

especially when an ICO supports sensing data for a large

number of real-time web applications and when getting

these data requires time-consuming computations.

In this work we present the architecture of an

embedded real-time HTTP server. To enable imposing

the real-time requirements for HTTP requests, we will

define the real-time extensions of the HTTP protocol. The

server schedules all requests according to their priority,

which is based on real-time requirements, and an

expected processing time. The main appliance of our

server would be embedded systems supporting sensing

data in real time. According to our best knowledge there

are not similar solutions for embedded systems.

The rest of this paper is organized as follows. In the

next section related works are presented. In section 3 we

present real-time extensions to the HTTP protocol.

2 Embedded Real-Time HTTP Server

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 5, 1-8

Section 4 describes the architecture of the real-time

HTTP server. The experimental results showing the

advantages of applying our server in real-time web

applications are given in section 5. Finally, in section 6,

we end with some conclusions and show further work to

develop in this field.

II. RELATED WORK

In [6] the problem of real-time requirements in the

Web of Things (WoT) applications was discussed.

Authors observed that a lot of WoT systems interact with

embedded devices and expect real-time data, thus

development of WoT application that satisfy real-time

requirements is one of the main challenges. Although

some technologies for real-time communication (e.g.

RTP/RTSP [7], XMPP [8]) or real-time interaction (e.g.

Comet [9]) were developed, but still more developments

and standards are required for real-time WoT and IoT

systems.

Real-time web applications are often considered in the

context of cloud computing. Current work concerning

real-time cloud computing (RTCC) mainly concentrates

on 2 domains: adopting existing web technologies to this

new paradigm and developing software architectures for

real-time applications. Recent studies have been

performed on the allocation of resources for real-time

tasks. Aymerich et al. [10] developed an infrastructure

for a real-time financial system based on cloud

computing technologies. Liu et al. [11] showed how to

schedule real-time tasks with different utility functions.

The real-time tasks are scheduled non-preemptively with

the objective to maximize the total utility by using the

time utility function (TUF). Tsai et al. [12] discuss a real-

time database partitioning on cloud infrastructures. Kim

et al. [13] investigate power-aware provisioning of

resources for real-time cloud services. In their work the

real-time constraint is specified in a Service Level

Agreement (SLA) between customers and cloud

providers. SLAs specify the negotiated agreements,

including QoS. In such cloud models the service provider

is responsible for the allocation resources. Their work

examines power management while allocation of

resources should meet the SLA. None of the above

studies consider a cost-efficient selection, from a set of

different types of resources available in clouds, for real-

time tasks. Kumar et al. [14] developed an algorithm of

resource allocation for applications with real-time tasks.

They propose an EDF-greedy scheme that considers

temporal overlapping to allocate resources efficiently.

The methods of cost-aware synthesis of real-time cloud

applications for IoT are presented in [15] [16] [17].

There are a lot of implementations of embedded web

servers. Appweb [18] is a compact, multi-threaded server

that supports in-memory modules for the ESP, Ejscript

and PHP frameworks. Fusion Embedded HTTP Server

[19] supports only GET and POST methods. It may

process multiple concurrent requests and main advantage

is very small memory footprint. The Barracuda Web

Server [20] is an industrial-strength, small embeddable

web server engine that is optimized for compact, deeply

embedded devices. Smews [21] is a prototype of very

efficient and very small web server for WoT systems.

There are no known web servers that consider real-

time constraints. The Chloe [22] which is called the

realtime web server, deals with „real-time web‖, i.e.

solutions that enable browsers to receive information as

soon as it is published by its authors. The real-time web is

fundamentally different from real-time computing since

there is no knowing when, or if, a response will be

received.

III. REAL-TIME HTTP

HTTP is a stateless protocol for communication

between a client and a server [Fie99]. An HTTP session

consists of a sequence of request-response transactions.

The client application sends a request, which may

correspond to one of the following methods: GET, HEAD,

POST, PUT, DELETE, OPTIONS, TRACE and

CONNECT. As a response the server application sends

back a message containing a status line and a requested

resource. Not all methods are required to be implemented

in the server application. Embedded systems usually use

lightweight web servers where the most important is a

small memory footprint, minimal CPU utilization and

reliability.

Although some extensions for specification of time

requirements were proposed [23], the HTTP protocol

does not consider real-time requirements. Requests are

processed in the FIFO order, regardless of the expected

processing time. Thus it is not possible to predict when

the client will receive the response, as well as it is not

possible to define time constraints associated with the

requests. The server latency depends on the number of

requests, that must be processed, and on the processing

time.

In order to enable specification of real-time constraints,

we propose the real-time extensions to the HTTP protocol

(RT-HTTP). All methods defined in the HTTP/1.1 are

available in the RT-HTTP, moreover, three new headers

(Hard Deadline, Soft Deadline and Remaining Time) as

well as four new responses (120 Server Timeout, 220

Constraint Satisfied, 420 Wrong Deadline, 520 Deadlines

Not Supported) are added.

A. Header "Hard Deadline"

Header ―Hard Deadline‖ defines the hard time

constraint, i.e. maximal time for processing the request by

the server. This header may be specified only in requests.

Hard constraint must not be violated, otherwise the server

should return the response 120 (Server Timeout). When

the request will be processed in time, then the server

sends the 220 (Constraint Satisfied) response to the client.

The ―Hard Deadline‖ request header is defined in RT-

HTTP as follows:

Hard-Deadline := Hard Deadline: SP time [ms] CRLF

where: SP is a whitespace character and CRLF denotes

 Embedded Real-Time HTTP Server 3

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 5, 1-8

the end of line, time means a deadline value given in

seconds (default) or milliseconds.

Assume that the IoT application traces bus positions in a

public transportation system. Each bus is equipped with

GPS and EWS supporting the current bus position. To get

up-to-date bus position, information should be provided

timely. Below, a sample POST request containing hard

deadline, is shown:

POST /task/GetPosition HTTP/1.1

Accept-Language: pl-PL

User-Agent: Mozilla/5.0 (compatible; MSIE 9.0;

Windows NT 6.1; WOW64; Trident/5.0)

Content-Type: text/plain

Accept-Encoding: text/html

Host: 198.51.100.0:80

Connection: Keep-Alive

Cache-Control: no-cache

Hard Deadline: 5

In the above example GetPosition is a servlet that has

to send a response during 5 seconds after receiving the

request. First, the server tries to schedule the GetPosition

in such a way, that the servlet will finish its execution

before the deadline. If it will be possible then the servlet

will send the response 220 as a result of this request. A

sample response may have the following form (the

message body contains information about the current and

next positions):

HTTP/1.1 220 Constraint Satisfied

Date: So, 22 lis 2014 20:01:05 CET

Content-Length: 87

Content-Encoding: aslam

Connection: close

Content-Type: text/html; charset=UTF-8

Server: HunterServer

<html> <body> current: Cracow, Warszawska: 45,

change: Cracow, Szlak: 12</body> </html>

If it will not be possible to find the feasible schedule,

then the server will send the response 120, then the

request is discarded. A sample response may be as

follows:

HTTP/1.1 120 Server Timeout

Date: So, 22 lis 2014 20:21:55 CET

Content-Length: 42

Content-Encoding: aslam

Connection: close

Content-Type: text/html; charset=UTF-8

Server: HunterServer

<html> <body>Server timeout</body> </html>

B. Header "Soft Deadline"

Header ―Soft Deadline‖ also may be used only in

requests. It defines the maximal time for processing the

request, this deadline may be violated, but this results in

degraded quality of service. For the same requests both

soft and hard deadlines may be given. Server returns

response 220 even when the soft deadline is violated. The

―Soft Deadline‖ request header is defined as follows:

Soft-Deadline := Soft Deadline: SP time[ms] CRLF

Assume that the most precise results will be obtained if

the response will be sent not later than after 2s. Hence,

the request referring to the GetPosition additionally

specifies a soft deadline. The request may have the

following form:

POST /task/ GetPosition HTTP/1.1

Accept-Language: pl-PL

User-Agent: Mozilla/5.0 (compatible; MSIE 9.0;

Windows NT 6.1; WOW64; Trident/5.0)

Content-Type: text/plain

Accept-Encoding: text/html

Host: 198.51.100.0:80

Connection: Keep-Alive

Cache-Control: no-cache

Soft Deadline: 2

Hard Deadline: 5

If it will be not possible to schedule GetPosition before

the hard deadline then the response 120 will be sent.

Otherwise, the response 220 will be sent, even when the

soft deadline will be violated. The servlet may take into

consideration this delay to produce appropriate results,

e.g. it may modify the next position taking into

consideration this delay:

HTTP/1.1 220 Constraint Satisfied

Date: So, 22 lis 2014 20:01:05 CET

Content-Length: 87

Content-Encoding: aslam

Connection: close

Content-Type: text/html; charset=UTF-8

Server: HunterServer

<html> <body> current: Cracow, Warszawska: 45,

change: Cracow, Szlak: 18 </body> </html>

C. Header "Remaining Time"

Header ―Remaining Time‖ is specified in responses

that are sent as a result of processing real-time requests. It

specifies the remaining time that may be used for sending

the response to the client. This information may be useful

for proxies or gateways. The ―Remaining Time‖ response

header is defined as follows:

Remaining-Time := Remaining Time: SP time[ms]

CRLF

Fig. 1 presents the processing of deadlines by a proxy,

a gateway and a server. First, the request R1 with

deadline 5000 ms, is sent, we assume that the proxy

processes this request during 200 ms, thus the deadline is

modified. Next, the request is processed by the gateway,

it will take 300 ms. After processing the request by the

server that takes 4000 ms, the response 220 is sent to the

server. Times of processing the response by the gateway

4 Embedded Real-Time HTTP Server

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 5, 1-8

and the proxy are equal 200 ms. Hence, the deadline for

processing the request is not violated. In the second case,

the request R2 is processed in time by the proxy, the

gateway and the server, but the proxy is not able to

process the response and the deadline was exceeded by

100 ms, therefore the response code was changed to 120.

Fig. 1. Reduction of deadlines by intermediaries

Assume that the proxy is used for communication

between a server and a client. To take into consideration

delays caused by processing requests by the proxy, the

server should use the ―Remaining Time‖ header. Assume

that the processing of a request was finished 100 ms

before the hard deadline, then the server should send the

following response:

HTTP/1.1 220 Constraint Satisfied
Date: So, 22 lis 2014 20:31:12 CET

Content-Length: 57

Content-Encoding: aslam

Connection: close

Content-Type: text/html; charset=UTF-8

Server: HunterServer

Remaining Time: 100 ms

<html> <body> current: Cracow, Warszawska: 45,

change: Cracow, Szlak: 12</body> </html>

If the proxy is not able to process the response during

100 ms, then it should change the response to 120. A

sample response may be the following:

HTTP/1.1 120 Server Timeout

Date: So, 22 lis 2014 20:31:54 CET

Content-Length: 40

Content-Encoding: aslam

Connection: close

Content-Type: text/html; charset=UTF-8

Server: HunterServer

<html> <body>Proxy timeout</body> </html>

Response 420 is sent when the value of the deadline is

not valid, e.g. is a negative number or it is shorter than

the time of processing the request by a server.

Response 520 is sent by servers which do not support

real-time requests. The server may attach the proper

message body, but it is not guaranteed that real-time

constraints are satisfied.

IV. ARCHITECTURE OF THE REAL-TIME EMBEDDED WEB

SERVER

A. Single-thread and Multi-thread Architectures

Architectures of the EWS and traditional web servers

are similar. In both cases a server may be single or multi-

threaded. But the multithreading enables simultaneous

processing of multiple requests. Fig. 2 presents the

architecture of single- and multiple-threaded web servers.

The specification of the embedded HTTP server in the

form of a task graph consists of the following tasks:

 NextRequest is the task that waits for the incoming

requests appearing in HTTP socket. All received

requests are stored in two queues, (described in the

next subsection), where they are scheduled and then

they are passed to task ProcessReqest. Task

NextRequest is also responsible for scheduling the

responses. The following responses are passed to

task Transmit.

 ProcessReqest is the task that is activated whenever

next request is ready for processing. It gets the next

request, removes it from the queue, and processes it.

Requests GET and POST are passes to tasks

HandleGet or HandlePost for futher processing.

 HandleGet processes GET methods. Usually this

task is implemented as servlet. The result is passed

to task ManageConnection for completion of the

final response.

C
li

en
t

P
ro

x
y

G
at

ew
ay

S
er

v
er

d=5000

R1

d=4800

R1
d=4500

R1

d=500

220

d=300

220

d=100

220

d=4000

R2
d=3800

R2
d=3500

R2

d=300

220

d=100

220

d=100

120

 Embedded Real-Time HTTP Server 5

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 5, 1-8

 HandlePost processes POST methods. It is very

similar to the HandleGet task.

 ManageConnection is the task which prepares the

response for clients and defines the status of

connection. In the case where the connection is

timed out, the deadline is exceeded or if an error

occurred while processing the command, buffers are

reset and the connection is closed.

 Transmit is the process that transmits responses as

HTML messages.

(a)

(b)

Fig. 2 Architecture of a single-thread (a) and multiple-thread (b) web
server

Single-thread server (Fig. 2a) processes all requests

sequentially. Next request can not be served until the

server will finish processing the previous one. The

efficiency of single-thread server may be increased by

applying a pipelined or parallel architecture. In the multi-

threaded server (Fig. 2b) for each client another thread is

created (process NextConnection). Each thread processes

requests sent by another client. When the connection is

closed, then the corresponding thread is destroyed.

Regardless of the server architecture all requests are

processed in the FIFO order. Therefore, in the case of a

large number of simultaneous requests some clients may

wait a long time for the response. When EWS supports

services for IoT systems, the web application expects the

response during the required time period. In some cases

the time may be critical due to short period of the data

validity e.g. when data contains the position of the mobile

system. While in other cases this period may be longer.

Thus, more suitable would be the scheduling of requests

according to their deadlines.

One of the most important requirements for the EWS is

a small memory footprint and low memory requirements.

Therefore, single-threaded EWS, or at least server with

limited number of threads, is more appropriate. In case of

heavy duty EWSs multi-core embedded processors may

be used to increase the sever throughput.

B. Request Scheduling

We assume that the times required to perform tasks,

corresponding to processing the requests, are known.

Therefore, scheduling method based on Least Laxity First

(LLF) [24] may be applied. Our Real-Time Embedded

Web Server (RTEWS) accepts requests defined by the

extended HTTP protocol described in p. III.

First, the algorithm schedules requests containing real-

time requirements using LLF method. Other requests are

served meanwhile i.e. when there are no real-time

requests. FIFO scheduling is used for this purpose.

Scheduling is performed by the NextRequest process (Fig.

2). Since, requests may feed the server continuously, the

process modifies makespan after receiving each request.

All requests are scheduled in two queues: LLFQ and

FIFOQ. Process ProcessRequest gets the next request

from the LLFQ, or if this queue is empty, then from the

FIFOQ, and sends it to the appropriate task for processing.

Fig. 3 Request scheduling algorithm

The draft of the scheduling algorithm is shown on

Figure 3. Rn means the next request that arrived at time t,

NextConnection

NextRequest

Process
Request

HandleGet
HandlePost

Manage

Connection

Transmit

NextRequest

Process
Request

HandleGet
HandlePost

Manage

Connection

Transmit

NextRequest

Transmit Process

Request

HandleGet HandlePost

Manage

Connection

Req=GET Req=POST

// algorithm starts each time when a new request Rn

//appears in time t.

Schedule(Rn, t)

 if (deadline(Rn)!=0) then

 laxity(Rn)= tmax(Rn)-tproc(Rn);

 add Rn to LLFQ in the order of ascending laxity

 taking R with hard deadlines first;

 for each Ri with hard deadline in LLFQ do

 find processor P with min(tfinish(P));

 if (tfinish(P)+ tproc(Ri)- tarr(Ri)<= tmax(Ri) then

 tstart(P,Ri)= tfinish(P);

 tfinish(P)= tfinish(P)+ tproc(Ri);

 else

 if (Ri has hard deadline)

 send response 120;

 remove Ri from LLFQ;

 else //soft deadline

 tstart(P,Ri)= tfinish(P);

 tfinish(P)= tfinish(P)+ tproc(Ri);

 else add Ri to FIFOQ;

6 Embedded Real-Time HTTP Server

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 5, 1-8

tmax(Ri) is the deadline specified for request Ri, tproc(Ri) is

the estimated time of processing the request Ri, tfinish(P) is

the finish time of all tasks currently assigned to processor

P, tarr(Ri) is the time when request Ri arrived, tstart(P,Ri)

denotes the time when the processor P will start to

process request Ri.

Since during processing the next real-time requests

may arrive, the scheduler modifies schedule according to

the LLF method. For each task the laxity= tmax-tproc is

computed. All tasks are scheduled according to the laxity

(task with the lowest laxity is scheduled first). If for the

given task it is not possible to find the feasible schedule,

then the server sends the response 120 and the request is

canceled.

Requests containing soft deadlines are scheduled in the

second pass. The scheduler modifies the LLFQ by adding

these requests. First it tries to find the schedule that

satisfies soft deadline, if it is not possible, then the

schedule such that the time exceed is minimal is chosen.

C. Example

The scheduling of requests in the RTEWS architecture

will be illustrated with an example. Assume that the

server may serve four types of requests, processing of

each request is performed by another task (e.g. servlets).

Average execution times of all tasks are shown in Table 1.

It is assumed that clients send requests using standard

methods POST and GET. Real-time requests will be

denoted as POSTRT and GETRT. Let the scenario of

arriving requests will be as shown in Table 2. The

following columns contain: time of the request, request

identifier, type of request, deadline tmax (for RT),

constraint type (hard or soft), the task that is to be

launched, the latency (tmax-tproc).

Table 1. Average Execution Time Of Tasks By RTEWS

Task Name Average execution time [ms]

T1 700

T2 1200

T3 1000

T4 300

The makespan is shown in Figure 4. Arrows below the

Gantt chart denote the events, corresponding to requests

which arrived at RTEWS. Arrows on top of the chart

denote points in time where scheduling of newly arrived

requests is performed. Sch(Rx, Ry) means the order in

which requests Rx, Ry will be processed. We do not

consider preemptive scheduling, hence newly arrived

requests are scheduled after finishing the currently

executed tasks, even if they have the higher priority then

the request being processed.

Fig. 4. The schedule of processing the requests in RTEWS

Real-time requests with imposed hard deadlines have

the highest priority, thus they are scheduled first. If the

deadline will not be satisfied, such request is not

scheduled and it is missed. In the example, if request R10

had hard deadline, it would be missed, because it is not

possible to find the proper schedule, in the best case it

will exceed the deadline by 200ms. But actually, R10 has

a soft deadline, thus it will be scheduled after request R11,

which has a hard deadline. Requests that have no

deadlines specified, have to wait for the execution of all

handlers serving real-time requests. Therefore, the order

of processing the requests is as follows. The R1 request

has been received as first, at this time the server does not

process any other requests, so the task T2 was launched

immediately as the handler of this request. Next, requests

R2, R3 and R4 arrive during the execution of T2, thus

they are scheduled after finishing the T1. The order is R4,

R3 and R2, because R4 has more stringent time constraint,

i.e. treq(R4) + laxity(R4) < treq(R3) + laxity(R3) and R2

has no time constraints. The task serving request R2 is

scheduled to execute after the processing of R3 and R4

will be finished, unless other real-time events will appear

during this time. During the executing of T1, requests R5,

R6, R7 arrived, they were scheduled according to their

priorities. Request R8 arrived during

Table 2. Parameters of Requests Sent from the Client to the RT Server

Request arrive time [ms] Request ID Request type Deadline [ms] Constraint type Task Latency [ms]

0 R1 POSTRT 2000 hard T2 800

100 R2 POST - - T1 -

1100 R3 POSTRT 3000 hard T1 2300

1120 R4 GETRT 2500 hard T4 2200

2500 R5 GETRT 3000 hard T3 2400

2600 R6 GET - - T2 -

2610 R7 POSTRT 3000 hard T3 2400

3000 R8 POST - - T3 -

5000 R9 POST - - T4 -

5300 R10 POSTRT 1300 soft T1 600

5500 R11 GETRT 2000 hard T2 800

 Embedded Real-Time HTTP Server 7

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 5, 1-8

execution of task T3, but since this is no real-time request,

there is no necessity for rescheduling after finishing T3,

thus request R8 is simply added to the FIFOQ (after R6).

Requests R8 and R9 were scheduled at the end, in order

of coming, because they do not have a time constraint in

the header, and R11 and R10 had to be executed first to

satisfy their deadlines. Finally, our server processes all

requests in the order that guarantees satisfying all hard

real-time requests. It should be noticed that in case of

FIFO scheduling, deadlines would not be satisfied for

requests R7 and R11.

V. EXPERIMENTAL RESULTS

In order to demonstrate the practical benefits of using

RTEWS for processing real-time requests, we have

developed a lightweight server. Only methods GET and

POST and headers defining hard deadlines were available.

RTEWS was implemented in C++, in the MicroC/OS-II

environment running on the Nios II processor built in

Altera Cyclone II FPGA. Next, we performed

experiments showing the effectiveness of request

processing. The server was tested with increasing number

of incoming requests per second. The test was performed

in two passes. First, all requests were precessed in the

FIFO order, like in existing web servers. During the

second pass, our scheduling strategy was applied. The

number of concurrent requests has been increased from

10 to 3000. For each case the number of canceled real-

time requests were analyzed and counted. The results are

presented in Figure 5. The x-axis shows the number of

incoming requests and the y-axis the percentage of RT

requests canceled by the server, because they do not meet

deadlines. Server executed a few different tasks as

handlers of the requests. The average execution time of

these tasks was in the range from 100 to 3000 ms.The

deadlines for RT requests were not higher than 3500 ms.

It may be observed that the number of missed real-time

requests, obtained in the HTTP server was a few times

larger than in the RTEWS. The number of missed RT

requests in RTEWS did not exceed 5%, even for the big

number of concurrent requests. For HTTP server the RT

requests did not meet the time requirements in 40% of

such requests. For high number of concurrent requests

this percentage increased up to 80-90%.

Fig. 5. The number of missed real-time requests.

VI. CONCLUSIONS

In this paper the architecture of embedded real-time

web server was proposed. The server schedules HTTP

requests taking into consideration hard and soft deadlines

as well as the expected server load. Specifications of

deadlines are possible by using the proposed extensions

to the HTTP protocol. LLF scheduling of request

handlers guarantees finding the proper schedule (if exists)

and the high quality of service. If it is not possible to

meet the deadline, the server cancels the request and

sends the appropriate response to the client.

Experimental results showed that the number of missed

real-time requests in the proposed server is a few times

smaller than using the existing HTTP servers. Since in

our approach requests that cannot be served in expected

time period are canceled, thus the overloading or falling

over of the server is avoided.

The server may be very useful in IoT applications that

use embedded systems according to the Sensing as a

Service business model. We believe that in the near

future more and more embedded systems equipped with

different sensors and located in different places will

support real-time services for different web applications.

REFERENCES

[1] Atzoria, L., Iera, A., Morabito, G.: The Internet of Things:

A survey. Computer Networks, vol. 54, no.15, pp. 2787-

2805 (2010).

[2] Höller, V. Tsiatsis, C. Mulligan, S. Karnouskos, S.

Avesand, D. Boyle: From Machine-to-Machine to the

Internet of Things: Introduction to a New Age of

Intelligence. Elsevier, 2014.

[3] Xiang Sheng; Jian Tang; Xuejie Xiao; Guoliang Xue,

"Sensing as a Service: Challenges, Solutions and Future

Directions‖, IEEE Sensors Journal, vol.13, no.10,

pp.3733-3741, Oct. 2013.

[4] Dargie, W. and Poellabauer, C., "Fundamentals of

wireless sensor networks: theory and practice", John

Wiley and Sons, 2010.

[5] R. Fielding, J. C. Mogul, H. Frystyk, L. Masinter, P.

Leach, T. Berners-Lee, ‖Hypertext Transfer Protocol -

HTTP/1.1‖, IETF, RFC 2616, 1999.

[6] Guinard, D., Trifa, V., Mattern, F., Wilde, E.: From the

Internet of Things to the Web of Things: Resource

Oriented Architecture and Best Practices. In: Uckelmann,

Dieter; Harrison, Mark; Michahelles, Florian (Eds.)

Architecting the Internet of Things, Springer-Verlag

Berlin Heidelberg (2011).

[7] H. Schulzrinne, A. Rao, R. Lanphier, Real Time

Streaming Protocol (RTSP), IETF, RFC 2326,1998

[8] Peter Saint-Andre, Kevin Smith, Remko TronconPeter

Saint-Andre, Kevin Smith, Remko Troncon, XMPP: The

Definitive Guide, O'Reilly Media, 2009.

[9] Crane, Dave; McCarthy, Phil: Comet and Reverse Ajax:

The Next-Generation Ajax 2.0. Apress, (2008).

[10] F. M. Aymerich, G. Fenu, S. Surcis, ―A real time financial

system based on grid and cloud computing‖ ACM

symposium on Applied Computing, March 2009, New

York, pp 1219–1220.

[11] S. Liu, G. Quan, S. Ren, ―On-Line Scheduling of Real-

Time Services for Cloud Computing‖ World Congress on

Services, July 2010, Miami, pp 459–464.

http://it-ebooks.info/publisher/3/

8 Embedded Real-Time HTTP Server

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 5, 1-8

[12] W. Tsai, Q. Shao, X. Sun, J. Elston, ―Real-Time Service-

Oriented Cloud Computing‖ World Congress on Services,

July 2010, Miami, pp 473–478.

[13] K. H. Kim, A. Beloglazov, R. Buyya, ―Power-aware

provisioning of cloud resources for realtime services‖

International Workshop on Middleware for Grids, Clouds

and e-Science, 2009, New York.

[14] K. Kumar, J. Feng, Y. Nimmagadda, Y. Lu, ―Resource

Allocation for Real-Time Tasks using Cloud Computing‖

International Conference on Computer Communications

and Networks (ICCCN), July 2011, pp. 1-7.

[15] S. Bąk, R.Czarnecki, S. Deniziak, "Synthesis of Real-

Time Applications for Internet of Things", LNCS vol.

7719, pp. 37-51, 2013.

[16] S. Bąk, R. Czarnecki, S. Deniziak "Synthesis of real-time

cloud applications for Internet of things" Turkish Journal

of Electrical Engineering and Computer Sciences, to be

published, http://dx.doi.org/10.3906/elk-1302-178.

[17] Deniziak, S.; Bak, S., "Synthesis of real time distributed

applications for cloud computing", Proc of the IEEE

Federated Conference on Computer Science and

Information Systems (FedCSIS), pp.743-752, 2014.

[18] Embedthis Software, Appweb Architecture,

http://appwebserver.org/products/appweb/doc/ref/architect

ure.html, 2014.

[19] Unicoi Systems, Fusion Embedded™ HTTP,

http://www.unicoi.com/product_briefs/http.pdf, 2013.

[20] Real Time Logic, Barracuda Web Server,

https://realtimelogic.com/products/barracuda-web-server/,

2014.

[21] Duquennoy, S.; Grimaud, G.; Vandewalle, J.-J., "Smews:

Smart and Mobile Embedded Web Server", International

Conference on Complex, Intelligent and Software

Intensive Systems, 2009. CISIS '09, pp.571-576, 2009.

[22] Trotter Cashion, Introducing Chloe - The Realtime Web

Server, http://www.trottercashion.com/2011/06/13/intro-

ducing-chloe.html, 2011.

[23] S. Loreto, M. Thomson, G. Wilkins, ―Hypertext Transfer

Protocol (HTTP) Timeouts‖, IETF, draft-loreto-http-

timeout-00, 2010.

[24] G. C. Buttazzo Hard Real-Time Computing Systems:

Predictable Scheduling Algorithms and Applications,

Kluwer Academic Publishers, 1997.

Authors’ Profiles

Radosław Czarnecki is Assistant

Professor in Division of Computer

Science in Faculty of Electrical and

Computer Engineering, Cracow

University of Technology, Poland. In

2002 he received MSc in Electrical

Engineering from Cracow University of

Technology, and in 2008 PhD degree in

Computer Science from University of

Zielona Góra.

The main profile of his research focuses on methodologies of

designing a real-time Internet of Things systems. Previous

researches were directed at synthesis methods for hardware-

software distributed systems and reconfigurable embedded

systems. He regular published scientific papers in embedded

systems and synthesis methods of such systems in journals and

conference papers and presented them on national and

international meetings to promote the research. He is the author

of two papers on the synthesis of real-time applications for

Internet of Things in IEEE journals.

Stanisław Deniziak is Professor of

Computer Science in Department of

Computer Science, Kielce University of

Technology, Poland. He received MSc in

Computer Science from Warsaw

University of Technology, and PhD

degree from Gdańsk University of

Technology. In 2006 he received DSc in

Computer Science from Warsaw

University of Technology. Now, he is Vice Dean for Research

and Promotion of Faculty of Electrical Engineering, Automatics

and Computer Science, Kielce University of Technology.

He has published 78 research papers in various international

and national journals and conferences. He is active reviewer end

editorial member of 7 international journals such Journal of

Systems and Software, Computing, Microprocessors and

Microsystems, International Journal of Applied Mathematics

and Computer Science, The Open Cybernetics & Systemic

Journal, International Journal of the Physical Sciences, Annales

UMCS - Sectio A Informatica. He has reviewed research papers

of many international conferences like: IEEE Design

Automation Conference, International Conference of

Computational Methods in Sciences and Engineering etc.

Prof. Deniziak is IEEE and IEEE Computer Society Member.

How to cite this paper: Radosław Czarnecki, Stanislaw Deniziak,"Embedded Real-Time HTTP Server", IJCNIS, vol.7,

no.5, pp.1-8, 2015.DOI: 10.5815/ijcnis.2015.05.01

http://dx.doi.org/10.3906/elk-1302-178
http://appwebserver.org/products/appweb/doc/ref/architecture.html
http://appwebserver.org/products/appweb/doc/ref/architecture.html
http://www.unicoi.com/product_briefs/http.pdf
https://realtimelogic.com/products/barracuda-web-server/
http://www.trottercashion.com/2011/06/13/intro-ducing-chloe.html
http://www.trottercashion.com/2011/06/13/intro-ducing-chloe.html

