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Abstract—This paper presents the architecture of 

embedded real-time web server. Unlike existing web 

servers, in our approach, requests are processed not in the 

―first in first out‖ order but according to their deadlines 

and the expected server load. For this purpose the Least 

Laxity First scheduling method is used. First, requests 

with imposed hard real-time constraints are served. Then 

requests enclosed by soft deadlines are processed. Finally, 

request without time requirements are served in the order 

they arrived. We also present real-time extensions to the 

Hypertext Transfer Protocol. We propose headers that 

enable defining hard and soft deadlines, as well as 

responses containing time information, that are being sent 

to the client application. The experimental results showed 

that in case of real-time applications our server misses 

significantly fewer requests, due to time out, then existing 

solutions. The presented server may be very useful for 

implementing real-time services supported by embedded 

systems, e.g. in future real-time ―Internet of things‖ 

applications.  

 
Index Terms—Web server, embedded system, real-time 

system, HTTP, Internet of things, Sensing as a service. 

 

I.  INTRODUCTION 

More and more embedded systems are connected to 

Internet. The emerging concepts, like Internet of Things 

(IoT) [1], Machine to Machine communication (M2M) 

[2], Sensing as a Sevice (S
2
aaS) [3], wireless sensor 

networks [4] etc., stimulate the development of web-

enabled devices. Such devices can communicate with 

web-applications using HTTP protocol [5], a lot of them 

are controlled by web browsers. For this purpose an 

embedded web server (EWS) should be built in. EWS 

usually is a lightweight application implementing only 

main methods defined by the HTTP protocol. It contains 

simple web pages, with forms used for the interaction. 

EWS are used for controlling network printers, wireless 

routers, network cameras and other devices or sensors. It 

is expected that in a few years almost each product may 

be identified and traced on Internet using wireless 

communication methods. Moreover, a lot of them will 

supply sensing data to web applications.  

Existing web-based sensing applications do not 

consider time requirements. Although the increasing 

number of sensing services will cause that sensors with 

built in EWS will face real-time conditions, which should 

be satisfied to provide appropriate and required level of  

Quality of Service (QoS). Recently it was revealed that 

future Internet of Things or Service Oriented 

Architectures should address the real-time aspects. Some 

web applications have time-critical demand, especially in 

domains like environmental monitoring, transportation. 

The IoT will comprise billions of intelligent 

communicating ―things‖ or Internet Connected Objects 

(ICOs) that will have sensing, actuating and data 

processing capabilities. Each ICO will have one or more 

embedded sensors that will capture potentially enormous 

amounts of data. To enable processing a large number of 

requests, such ICO should take into consideration real-

time constraints. 

Real-time applications expect responses from sensors 

or external services in predictable time periods. 

Unfortunately HTTP does not support real-time 

constraints. When the response to the request did not be 

received during the expected time it is not possible to 

determine if it was caused by the EWS overload, network 

faults, server failure or heavy network traffic. Moreover, 

in existing HTTP servers it is not possible either to 

control the order of processing of incoming requests or to 

predict the time of processing. In real-time environment 

EWS should first, process requests according to their 

deadlines, second, if it is not able to process request in the 

expected time, EWS should send timeout message to a 

client application. Server that meets above requirements 

will significantly improve QoS in real-time IoT systems, 

especially when an ICO supports sensing data for a large 

number of real-time web applications and when getting 

these data requires time-consuming computations. 

In this work we present the architecture of an 

embedded real-time HTTP server. To enable imposing 

the real-time requirements for HTTP requests, we will 

define the real-time extensions of the HTTP protocol. The 

server schedules all requests according to their priority, 

which is based on real-time requirements, and an 

expected processing time. The main appliance of our 

server would be embedded systems supporting sensing 

data in real time. According to our best knowledge there 

are not similar solutions for embedded systems.  

The rest of this paper is organized as follows. In the 

next section related works are presented. In section 3 we 

present real-time extensions to the HTTP protocol.  
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Section 4 describes the architecture of the real-time 

HTTP server. The experimental results showing the 

advantages of applying our server in real-time web 

applications are given in section 5. Finally, in section 6, 

we end with some conclusions and show further work to 

develop in this field. 

 

II.  RELATED WORK 

In [6] the problem of real-time requirements in the 

Web of Things (WoT) applications was discussed. 

Authors observed that a lot of WoT systems interact with 

embedded devices and expect real-time data, thus 

development of WoT application that satisfy real-time 

requirements is one of the main challenges. Although 

some technologies for real-time communication (e.g. 

RTP/RTSP [7], XMPP [8]) or real-time interaction (e.g. 

Comet [9]) were developed, but still more developments 

and standards are required for real-time WoT and IoT 

systems.  

Real-time web applications are often considered in the 

context of cloud computing. Current work concerning 

real-time cloud computing (RTCC) mainly concentrates 

on 2 domains: adopting existing web technologies to this 

new paradigm and developing software architectures for 

real-time applications. Recent studies have been 

performed on the allocation of resources for real-time 

tasks. Aymerich et al. [10] developed an infrastructure 

for a real-time financial system based on cloud 

computing technologies. Liu et al. [11] showed how to 

schedule real-time tasks with different utility functions. 

The real-time tasks are scheduled non-preemptively with 

the objective to maximize the total utility by using the 

time utility function (TUF). Tsai et al. [12] discuss a real-

time database partitioning on cloud infrastructures. Kim 

et al. [13] investigate power-aware provisioning of 

resources for real-time cloud services. In their work the 

real-time constraint is specified in a Service Level 

Agreement (SLA) between customers and cloud 

providers. SLAs specify the negotiated agreements, 

including QoS. In such cloud models the service provider 

is responsible for the allocation resources. Their work 

examines power management while allocation of 

resources should meet the SLA. None of the above 

studies consider a cost-efficient selection, from a set of 

different types of resources available in clouds, for real-

time tasks. Kumar et al. [14] developed an algorithm of 

resource allocation for applications with real-time tasks. 

They propose an EDF-greedy scheme that considers 

temporal overlapping to allocate resources efficiently. 

The methods of cost-aware synthesis of real-time cloud 

applications for IoT are presented in [15] [16] [17]. 

There are a lot of implementations of embedded web 

servers. Appweb [18] is a compact, multi-threaded server 

that supports in-memory modules for the ESP, Ejscript 

and PHP frameworks. Fusion Embedded HTTP Server 

[19] supports only GET and POST methods. It may 

process multiple concurrent requests and main advantage 

is very small memory footprint. The Barracuda Web 

Server [20] is an industrial-strength, small embeddable 

web server engine that is optimized for compact, deeply 

embedded devices. Smews [21] is a prototype of very 

efficient and very small web server for WoT systems.  

There are no known web servers that consider real-

time constraints. The Chloe [22] which is called the 

realtime web server, deals with „real-time web‖, i.e. 

solutions that enable browsers to receive information as 

soon as it is published by its authors. The real-time web is 

fundamentally different from real-time computing since 

there is no knowing when, or if, a response will be 

received. 

 

III.  REAL-TIME HTTP 

HTTP is a stateless protocol for communication 

between a client and a server [Fie99]. An HTTP session 

consists of a sequence of  request-response transactions. 

The client application sends a request, which may 

correspond to one of the following methods: GET, HEAD, 

POST, PUT, DELETE, OPTIONS, TRACE and 

CONNECT. As a response the server application sends 

back a message containing a status line and a requested 

resource. Not all methods are required to be implemented 

in the server application. Embedded systems usually use 

lightweight web servers where the most important is a 

small memory footprint, minimal CPU utilization and 

reliability.  

Although some extensions for specification of time 

requirements were proposed [23], the HTTP protocol 

does not consider real-time requirements. Requests are 

processed in the FIFO order, regardless of the expected 

processing time. Thus it is not possible to predict when 

the client will receive the response, as well as it is not 

possible to define time constraints associated with the 

requests. The server latency depends on the number of 

requests, that must be processed, and on the processing 

time.  

In order to enable specification of real-time constraints, 

we propose the real-time extensions to the HTTP protocol 

(RT-HTTP). All methods defined in the HTTP/1.1 are 

available in the RT-HTTP, moreover, three new headers 

(Hard Deadline, Soft Deadline and Remaining Time) as 

well as four new responses (120 Server Timeout, 220 

Constraint Satisfied, 420 Wrong Deadline, 520 Deadlines 

Not Supported) are added.   

A.  Header "Hard Deadline" 

Header ―Hard Deadline‖ defines the hard time 

constraint, i.e. maximal time for processing the request by 

the server. This header may be specified only in requests. 

Hard constraint must not be violated, otherwise the server 

should return the response 120 (Server Timeout). When 

the request will be processed in time, then the server 

sends the 220 (Constraint Satisfied) response to the client. 

The ―Hard Deadline‖ request header is defined in RT-

HTTP as follows: 
 

Hard-Deadline := Hard Deadline: SP time [ms] CRLF 

 

where: SP is a whitespace character and CRLF denotes 
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the end of line, time means a deadline value given in 

seconds (default) or milliseconds. 

Assume that the IoT application traces bus positions in a 

public transportation system. Each bus is equipped with 

GPS and EWS supporting the current bus position. To get 

up-to-date bus position, information should be provided 

timely. Below, a sample POST request containing hard 

deadline, is shown: 

 

POST /task/GetPosition HTTP/1.1 

Accept-Language: pl-PL 

User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; 

Windows NT 6.1; WOW64; Trident/5.0) 

Content-Type: text/plain 

Accept-Encoding: text/html 

Host: 198.51.100.0:80 

Connection: Keep-Alive 

Cache-Control: no-cache 

Hard Deadline: 5 

 

In the above example GetPosition is a servlet that has 

to send a response during 5 seconds after receiving the 

request. First, the server tries to schedule the GetPosition 

in such a way, that the servlet will finish its execution 

before the deadline. If it will be possible then the servlet 

will send the response 220 as a result of this request. A 

sample response may have the following form (the 

message body contains information about the current and 

next positions): 

 

HTTP/1.1 220 Constraint Satisfied 

Date: So, 22 lis 2014 20:01:05 CET 

Content-Length: 87 

Content-Encoding: aslam 

Connection: close 

Content-Type: text/html; charset=UTF-8 

Server: HunterServer 

<html> <body> current: Cracow, Warszawska: 45, 

change: Cracow, Szlak: 12</body> </html> 

 

If it will not be possible to find the feasible schedule, 

then the server will send the response 120, then the 

request is discarded. A sample response may be as 

follows: 

 

HTTP/1.1 120 Server Timeout 

Date: So, 22 lis 2014 20:21:55 CET 

Content-Length: 42 

Content-Encoding: aslam 

Connection: close 

Content-Type: text/html; charset=UTF-8 

Server: HunterServer 

<html> <body>Server timeout</body> </html> 

B.  Header "Soft Deadline" 

Header ―Soft Deadline‖ also may be used only in 

requests. It defines the maximal time for processing the 

request, this deadline may be violated, but this results in 

degraded quality of service. For the same requests both 

soft and hard deadlines may be given. Server returns 

response 220 even when the soft deadline is violated. The 

―Soft Deadline‖ request header is defined as follows: 

 

Soft-Deadline := Soft Deadline: SP time[ms] CRLF 

 

Assume that the most precise results will be obtained if 

the response will be sent not later than after 2s. Hence, 

the request referring to the GetPosition additionally 

specifies a soft deadline. The request may have the 

following form: 

 

POST /task/ GetPosition HTTP/1.1 

Accept-Language: pl-PL 

User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; 

Windows NT 6.1; WOW64; Trident/5.0) 

Content-Type: text/plain 

Accept-Encoding: text/html 

Host: 198.51.100.0:80 

Connection: Keep-Alive 

Cache-Control: no-cache 

Soft Deadline: 2 

Hard Deadline: 5 

 

If it will be not possible to schedule GetPosition before 

the hard deadline then the response 120 will be sent. 

Otherwise, the response 220 will be sent, even when the 

soft deadline will be violated. The servlet may take into 

consideration this delay to produce appropriate results, 

e.g. it may modify the next position taking into 

consideration this delay: 

 

HTTP/1.1 220 Constraint Satisfied 

Date: So, 22 lis 2014 20:01:05 CET 

Content-Length: 87 

Content-Encoding: aslam 

Connection: close 

Content-Type: text/html; charset=UTF-8 

Server: HunterServer 

<html> <body> current: Cracow, Warszawska: 45, 

change: Cracow, Szlak: 18 </body> </html> 

C.  Header "Remaining Time"  

Header ―Remaining Time‖ is specified in responses 

that are sent as a result of processing real-time requests. It 

specifies the remaining time that may be used for sending 

the response to the client. This information may be useful 

for proxies or gateways. The ―Remaining Time‖ response 

header is defined as follows: 

 

Remaining-Time := Remaining Time: SP time[ms] 

CRLF 

 

Fig. 1 presents the processing of deadlines by a proxy, 

a gateway and a server. First, the request R1 with 

deadline 5000 ms, is sent, we assume that the proxy 

processes this request during 200 ms, thus the deadline is 

modified. Next, the request is processed by the gateway, 

it will take 300 ms. After processing the request by the 

server that takes 4000 ms, the response 220 is sent to the 

server. Times of processing the response by the gateway 
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and the proxy are equal 200 ms. Hence, the deadline for 

processing the request is not violated. In the second case, 

the request R2 is processed in time by the proxy, the 

gateway and the server, but the proxy is not able to 

process the response and the deadline was exceeded by 

100 ms, therefore the response code was changed to 120.  

 

 

Fig. 1. Reduction of deadlines by intermediaries 

 

Assume that the proxy is used for communication 

between a server and a client. To take into consideration 

delays caused by processing requests by the proxy, the 

server should use the ―Remaining Time‖ header. Assume 

that the processing of a request was finished 100 ms 

before the hard deadline, then the server should send the 

following response: 

 

HTTP/1.1 220 Constraint Satisfied 
Date: So, 22 lis 2014 20:31:12 CET 

Content-Length: 57 

Content-Encoding: aslam 

Connection: close 

Content-Type: text/html; charset=UTF-8 

Server: HunterServer 

Remaining Time: 100 ms 

<html> <body> current: Cracow, Warszawska: 45, 

change: Cracow, Szlak: 12</body> </html> 

 

If the proxy is not able to process the response during 

100 ms, then it should change the response to 120. A 

sample response may be the following: 

 

HTTP/1.1 120 Server Timeout 

Date: So, 22 lis 2014 20:31:54 CET 

Content-Length: 40 

Content-Encoding: aslam 

Connection: close 

Content-Type: text/html; charset=UTF-8 

Server: HunterServer 

<html> <body>Proxy timeout</body> </html> 

 

Response 420 is sent when the value of the deadline is 

not valid, e.g. is a negative number or it is shorter than 

the time of processing the request by a server.  

Response 520 is sent by servers which do not support 

real-time requests. The server may attach the proper 

message body, but it is not guaranteed that real-time 

constraints are satisfied. 

 

IV.  ARCHITECTURE OF THE REAL-TIME EMBEDDED WEB 

SERVER 

A.  Single-thread and Multi-thread Architectures 

Architectures of the EWS and traditional web servers 

are similar. In both cases a server may be single or multi-

threaded. But the multithreading enables simultaneous 

processing of multiple requests. Fig. 2 presents the 

architecture of single- and multiple-threaded web servers. 

The specification of the embedded HTTP server in the 

form of a task graph consists of the following tasks: 

 

 NextRequest is the task that waits for the incoming 

requests appearing in HTTP socket. All received 

requests are stored in two queues, (described in the 

next subsection), where they are scheduled and then 

they are passed to task ProcessReqest. Task 

NextRequest is also responsible for scheduling the 

responses. The following responses are passed to 

task Transmit. 

 ProcessReqest is the task that is activated whenever 

next request is ready for processing. It gets the next 

request, removes it from the queue, and processes it. 

Requests GET and POST are  passes to tasks 

HandleGet or HandlePost for futher processing. 

 HandleGet processes GET methods. Usually this 

task is implemented as servlet. The result is passed 

to task ManageConnection for completion of the 

final response. 
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 HandlePost processes POST methods. It is very 

similar to the HandleGet task. 

 ManageConnection is the task which prepares the 

response for clients and defines the status of 

connection. In the case where the connection is 

timed out, the deadline is exceeded or if an error 

occurred while processing the command, buffers are 

reset and the connection is closed.  

 Transmit is the process that transmits responses as 

HTML messages. 

 

 
(a) 

 

 
 

(b) 

Fig. 2 Architecture of a single-thread (a) and multiple-thread (b) web 
server 

Single-thread server (Fig. 2a) processes all requests 

sequentially. Next request can not be served until the 

server will finish processing the previous one. The 

efficiency of single-thread server may be increased by 

applying a pipelined or parallel architecture. In the multi-

threaded server (Fig. 2b) for each client another thread is 

created (process NextConnection). Each thread processes 

requests sent by another client. When the connection is 

closed, then the corresponding thread is destroyed. 

Regardless of the server architecture all requests are 

processed in the FIFO order. Therefore, in the case of a 

large number of simultaneous requests some clients may 

wait a long time for the response. When EWS supports 

services for IoT systems, the web application expects the 

response during the required time period. In some cases 

the time may be critical due to short period of the data 

validity e.g. when data contains the position of the mobile 

system. While in other cases this period may be longer. 

Thus, more suitable would be the scheduling of requests 

according to their deadlines.  

One of the most important requirements for the EWS is 

a small memory footprint and low memory requirements. 

Therefore, single-threaded EWS, or at least server with 

limited number of threads, is more appropriate. In case of 

heavy duty EWSs multi-core embedded processors may 

be used to increase the sever throughput. 

B.  Request Scheduling 

We assume that the times required to perform tasks, 

corresponding to processing the requests, are known. 

Therefore, scheduling method based on Least Laxity First 

(LLF) [24] may be applied. Our Real-Time Embedded 

Web Server (RTEWS) accepts requests defined by the 

extended HTTP protocol described in p. III.  

First, the algorithm schedules requests containing real-

time requirements using LLF method. Other requests are 

served meanwhile i.e. when there are no real-time 

requests. FIFO scheduling is used for this purpose. 

Scheduling is performed by the NextRequest process (Fig. 

2). Since, requests may feed the server continuously, the 

process modifies makespan after receiving each request. 

All requests are scheduled in two queues: LLFQ and 

FIFOQ. Process ProcessRequest gets the next request 

from the LLFQ, or if this queue is empty, then from the 

FIFOQ, and sends it to the appropriate task for processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Request scheduling algorithm 

The draft of the scheduling algorithm is shown on 

Figure 3. Rn means the next request that arrived at time t,  
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Req=GET Req=POST 

// algorithm starts each time when a new request Rn  

//appears in time t. 

Schedule(Rn, t)  

    if (deadline(Rn)!=0) then 

        laxity(Rn)= tmax(Rn)-tproc(Rn); 

        add Rn to LLFQ in the order of ascending laxity 

           taking R with hard deadlines first; 

        for each Ri with hard deadline in LLFQ do 

 find processor P with min(tfinish(P));  

 if (tfinish(P)+ tproc(Ri)- tarr(Ri)<= tmax(Ri) then 

      tstart(P,Ri)= tfinish(P); 

      tfinish(P)= tfinish(P)+ tproc(Ri); 

 else  

       if (Ri has hard deadline) 

          send response 120; 

          remove Ri from LLFQ; 

       else //soft deadline 

           tstart(P,Ri)= tfinish(P); 

          tfinish(P)= tfinish(P)+ tproc(Ri);  

    else add Ri to FIFOQ; 
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tmax(Ri) is the deadline specified for request Ri, tproc(Ri) is 

the estimated time of processing the request Ri, tfinish(P) is 

the finish time of all tasks currently assigned to processor 

P, tarr(Ri) is the time when request Ri arrived, tstart(P,Ri) 

denotes the time when the processor P will start to 

process request Ri. 

Since during processing the next real-time requests 

may arrive, the scheduler modifies schedule according to 

the LLF method. For each task the laxity= tmax-tproc  is 

computed. All tasks are scheduled according to the laxity 

(task with the lowest laxity is scheduled first). If for the 

given task it is not possible to find the feasible schedule, 

then the server sends the response 120 and the request is 

canceled.  

Requests containing soft deadlines are scheduled in the 

second pass. The scheduler modifies the LLFQ by adding 

these requests. First it tries to find the schedule that 

satisfies soft deadline, if it is not possible, then the 

schedule such that the time exceed is minimal is chosen.  

C.  Example 

The scheduling of requests in the RTEWS architecture 

will be illustrated with an example. Assume that the 

server may serve four types of requests, processing of 

each request is performed by another task (e.g. servlets). 

Average execution times of all tasks are shown in Table 1. 

It is assumed that clients send requests using standard 

methods POST and GET. Real-time requests will be 

denoted as POSTRT and GETRT. Let the scenario of 

arriving requests will be as shown in Table 2. The 

following columns contain: time of the request, request 

identifier, type of request, deadline tmax (for RT), 

constraint type (hard or soft), the task that is to be 

launched, the latency (tmax-tproc). 

Table 1. Average Execution Time Of Tasks By RTEWS 

Task Name Average execution time [ms] 

T1 700  

T2 1200  

T3 1000 

T4 300 

 

The makespan is shown in Figure 4. Arrows below the 

Gantt chart denote the events, corresponding to requests 

which arrived at RTEWS. Arrows on top of the chart 

denote points in time where scheduling of newly arrived 

requests is performed. Sch(Rx, Ry) means the order in 

which requests Rx, Ry will be processed. We do not 

consider preemptive scheduling, hence newly arrived 

requests are scheduled after finishing the currently 

executed tasks, even if they have the higher priority then 

the request being processed. 

 

 

Fig. 4. The schedule of processing the requests in RTEWS 

Real-time requests with imposed hard deadlines have 

the highest priority, thus they are scheduled first. If the 

deadline will not be satisfied, such request is not 

scheduled and it is missed. In the example, if request R10 

had hard deadline, it would be missed, because it is not 

possible to find the proper schedule, in the best case it 

will exceed the deadline by 200ms. But actually, R10 has 

a soft deadline, thus it will be scheduled after request R11, 

which has a hard deadline. Requests that have no 

deadlines specified, have to wait for the execution of all 

handlers serving real-time requests. Therefore, the order 

of processing the requests is as follows. The R1 request 

has been received as first, at this time the server does not 

process any other requests, so the task T2 was launched 

immediately as the handler of this request. Next, requests 

R2, R3 and R4 arrive during the execution of T2, thus 

they are scheduled after finishing the T1. The order is  R4, 

R3 and R2, because R4 has more stringent time constraint, 

i.e. treq(R4) + laxity(R4) < treq(R3) + laxity(R3) and R2 

has no time constraints. The task serving request R2 is 

scheduled to execute after the processing of R3 and R4 

will be finished, unless other real-time events will appear 

during this time. During the executing of T1, requests R5, 

R6, R7 arrived, they were scheduled according to their 

priorities. Request R8 arrived during  

Table 2. Parameters of Requests Sent from the Client to the RT Server 

Request arrive time [ms] Request ID Request type Deadline [ms] Constraint type Task Latency [ms] 

0 R1 POSTRT 2000 hard T2 800 

100 R2 POST - - T1 - 

1100 R3 POSTRT 3000 hard T1 2300 

1120 R4 GETRT 2500 hard T4 2200 

2500 R5 GETRT 3000 hard T3 2400 

2600 R6 GET - - T2 - 

2610 R7 POSTRT 3000 hard T3 2400 

3000 R8 POST - - T3 - 

5000 R9 POST - - T4 - 

5300 R10 POSTRT 1300 soft T1 600 

5500 R11 GETRT 2000 hard T2 800 
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execution of task T3, but since this is no real-time request, 

there is no necessity for rescheduling after finishing T3, 

thus request R8 is simply added to the FIFOQ (after R6). 

Requests R8 and R9 were scheduled at the end, in order 

of coming, because they do not have a time constraint in 

the header, and R11 and R10 had to be executed first to 

satisfy their deadlines. Finally, our server processes all 

requests in the order that guarantees satisfying all hard 

real-time requests. It should be noticed that in case of 

FIFO scheduling, deadlines would not be satisfied for 

requests R7 and R11. 

 

V.  EXPERIMENTAL RESULTS 

In order to demonstrate the practical benefits of using 

RTEWS for processing real-time requests, we have 

developed a lightweight server. Only methods GET and 

POST and headers defining hard deadlines were available. 

RTEWS was implemented in C++, in the MicroC/OS-II 

environment running on the Nios II processor built in 

Altera Cyclone II FPGA. Next, we performed 

experiments showing the effectiveness of request 

processing. The server was tested with increasing number 

of incoming requests per second. The test was performed 

in two passes. First, all requests were precessed in the 

FIFO order, like in existing web servers. During the 

second pass, our scheduling strategy was applied. The 

number of concurrent requests has been increased from 

10 to 3000. For each case the number of canceled real-

time requests were analyzed and counted. The results are 

presented in Figure 5. The x-axis shows the number of 

incoming requests and the y-axis the percentage of RT 

requests canceled by the server, because they do not meet 

deadlines. Server executed a few different tasks as 

handlers of the requests. The average execution time of 

these tasks was in the range from 100 to 3000 ms.The 

deadlines for RT requests were not higher than 3500 ms. 

It may be observed that the number of missed real-time 

requests, obtained in the HTTP server was a few times 

larger than in the RTEWS. The number of missed RT 

requests in RTEWS did not exceed 5%, even for the big 

number of concurrent requests. For HTTP server the RT 

requests did not meet the time requirements in 40% of 

such requests. For high number of concurrent requests 

this percentage increased up to 80-90%. 

 

 

Fig. 5. The number of missed real-time requests. 

VI.  CONCLUSIONS 

In this paper the architecture of embedded real-time 

web server was proposed. The server schedules HTTP 

requests taking into consideration hard and soft deadlines 

as well as the expected server load. Specifications of 

deadlines are possible by using the proposed extensions 

to the HTTP protocol. LLF scheduling of request 

handlers guarantees finding the proper schedule (if exists) 

and the high quality of service. If it is not possible to 

meet the deadline, the server cancels the request and 

sends the appropriate response to the client.  

Experimental results showed that the number of missed 

real-time requests in the proposed server is a few times 

smaller than using the existing HTTP servers. Since in 

our approach requests that cannot be served in expected 

time period are canceled, thus the overloading or falling 

over of the server is avoided.  

The server may be very useful in IoT applications that 

use embedded systems according to the Sensing as a 

Service business model. We believe that in the near 

future more and more embedded systems equipped with 

different sensors and located in different places will 

support real-time services for different web applications.   
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