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Abstract—A zero-day attack poses a serious threat to the 

Internet security as it exploits zero-day vulnerabilities in 

the computer systems. Attackers take advantage of the 

unknown nature of zero-day exploits and use them in 

conjunction with highly sophisticated and targeted attacks 

to achieve stealthiness with respect to standard intrusion 

detection techniques. Thus, it's difficult to defend against 

such attacks. Present research exhibits various issues and 

is not able to provide complete solution for the detection 

and analysis of zero-day attacks. This paper presents a 

novel hybrid system that integrates anomaly, behavior 

and signature based techniques for detecting and 

analyzing zero-day attacks in real-time. It has layered and 

modular design which helps to achieve high performance, 

flexibility and scalability. The system is implemented and 

evaluated against various standard metrics like True 

Positive Rate (TPR), False Positive Rate (FPR), F-

Measure, Total Accuracy (ACC) and Receiver Operating 

Characteristic (ROC) curve. The result shows high 

detection rate with nearly zero false positives. 

Additionally, the proposed system is compared with 

Honeynet system. 

 
Index Terms—Zero-day Attacks, Unknown Attacks, 

Intrusion Detection, One-Class SVM, Malware Analysis, 

Network Security. 

 

I.  INTRODUCTION 

Today the Internet has become a pervasive threat 

vector for various types of organizations. As new 

technologies are developed and adopted to meet changing 

business requirements, sneaky sources lie in wait to 

exploit vulnerabilities exposed. In recent years, zero-day 

attacks have been dominating the headlines for political 

and monetary gains. They are being used as essential 

success vectors in various sophisticated and targeted 

attacks like Aurora, Advanced Persistent Threat (APT), 

Stuxnet, Duqu and Flame. Also, the number of such 

attacks reported each year increases immensely. 

According to Symantec's Internet Security Threat Report 

of 2014 [1] there is 91% increase in targeted attacks 

campaigns in 2013, 62% increase in the number of 

security breaches and 23 zero-day vulnerabilities were 

discovered. Another security threat report by Sophos [2] 

reported that large tech companies like Apple, Facebook, 

Microsoft, Twitter and others were targeted with same 

zero-day Java vulnerability that attacks multiple 

customers. All such facts and figures represent a serious 

concern in today's network security. And the zero-day 

attacks are among the top security concerns that the 

modern enterprises face today. People talked about zero-

day attacks few years back, but today every industry 

faces it. Another day, another breach and a company 

losses sensitive data. 

To defend against zero-day attacks, the research 

community has proposed various techniques. These are 

divided into Statistical-based, Signature-based, Behavior-

based and Hybrid techniques [3]. Most of the statistical-

based techniques [4, 5, 6] are dependent on attack profiles 

build from historical data. Due to the static nature of 

attack profiles, the detection techniques are unable to 

adapt to the timely changes in the environment. For any 

change in the data pattern the system will require an 

updated profile with constant training. Setting the limit 

(or detection parameters) for judging new observations 

(new attacks) is a critical step in designing a statistical 

detection approach since it has a dramatic effect on the 

quality of the detection. If the threshold value is very 

narrow, it will frequently be exceeded resulting in a high 

rate of false positive alarms, and if it is very wide the 

limit will never be exceeded, resulting in many false 

negative alarms. At times, the detection parameters are 

either manually extracted or adjusted to detect new 

attacks. All these factors, limit the statistical detection 

approaches to work in offline mode. And hence, they 

cannot be used for instant detection and protection in real 

time. 

The signature based detection techniques mainly focus 

on polymorphic worms. There are three types of 

signatures: content-based, semantic-based and 

vulnerability-based. The content-based signatures [7, 8, 9] 

capture the features specific to a worm implementation, 

thus might not be generic enough and can be evaded by 

other exploits. Furthermore, various attacks can evade the 

content-based signatures by misleading signature 

generation processes by using crafted packet injection 

into normal traffic. Semantic-based signatures [10] are 

computationally expensive to generate as compared to 

approaches based on substrings. Moreover, they cannot 

be implemented in existing IDS like Snort. Vulnerability-

driven signatures [11] capture the characteristics of the 

vulnerability the worm exploits and are difficult to 

generate. 

Behavior-based techniques [12], looks for the essential 
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characteristics of worms which do not require the 

examination of payload byte patterns. They suffer from 

the fact that they cannot effectively capture the context in 

which the worm program interacts with the real victim 

machine and they are also prone to evasion [13]. Hybrid 

techniques [14, 15, 40] combines heuristics and different 

intrusion detection techniques like signature-based, 

anomaly-based, etc. to detect zero-day polymorphic 

worms. 

A.  Motivation and Contributions 

The results of recent studies have been the prime 

motivation for this research. Various techniques were 

surveyed. The existing zero-day detection techniques do 

not raise the bar for the attackers, while their cost for the 

defender in terms of resources that need to be devoted to 

detection can be significant. Several research projects 

have addressed the problem of zero-day detection but 

unfortunately they exhibit one or more problems. As per 

literature survey there exist certain research proposals 

that have been promising, but they can also be easily 

defeated by using minor enhancements to the attack 

vectors. As attack tools are improving, reliance on minor 

improvements in the detection processes is insufficient. 

The current techniques have several drawbacks. 

Statistical-based detection techniques cannot be used for 

instant detection and protection in real time. They are 

dependent on static attack profiles and require manual 

adjustment of detection parameters. Signature-based 

techniques are widely used but, need improvement in 

generating good quality signatures. They suffer from one 

or more limitations of high false positives, false negatives, 

reduced sensitivity and specificity. Behavior-based 

techniques may detect a wide range of novel attacks but 

they are prone to evasion, computationally expensive and 

may not effectively capture the context in which the new 

attacks interact with the real victim machine. Other 

hybrid techniques combine heuristics and different 

intrusion detection techniques like signature-based, 

anomaly-based, etc. to detect zero-day attacks but they 

also suffer from high false positives, false negatives. 

In this paper, a hybrid real-time system is presented 

which is a novel zero-day attack detection and analysis 

system. It tries to provide a single solution for the above 

stated issues and the main contributions of the research 

reported are: 

 
 The proposed system has been designed and 

implemented to detect zero-day attacks. To the best 

of our knowledge this is the first hybrid approach 

that combines features of all three, anomaly, 

behavior and signature based detection techniques. 

 The layered architecture has been designed which 

represents a modular and flexible approach that 

helps to improve system performance and scalability. 

 A component-based analysis stub has also been 

designed to analyze malware. It integrates the 

advantages of static and dynamic and analysis. 

 The proposed system has been tested with a dataset 

of malware collected from various online malware 

repositories and has achieved high accuracy with 

near zero-false positives. 

 

The remainder of the paper is organized as follows. In 

Section II, related work is summarized. In Section III, the 

detailed working of the proposed system is presented. 

Finally in Section IV, describes the results and the paper 

is concluded in Section V.  

 

II.  RELATED WORK 

Supervised Learning [16] is a novel method of 

employing several data mining techniques to detect and 

classify zero-day malware based on the frequency of 

Windows API calls. A machine learning framework is 

developed using eight different classifiers, namely Naïve 

Bayes (NB) Algorithm, k-Nearest Neighbor (kNN) 

Algorithm, Sequential Minimal Optimization (SMO) 

Algorithm with 4 different kernels (SMO-Normalized 

PolyKernel, SMO-PolyKernel, SMO-Puk, and SMO-

Radial Basis Function (RBF)), Backpropagation Neural 

Networks Algorithm, and J48 decision tree.  

Contextual Anomaly Detection [17] is a contextual 

misuse and anomaly detection prototype to detect zero-

day attacks. The contextual misuse detection utilizes 

similarity with attack context profiles, and the anomaly 

detection technique identifies new types of attacks using 

the One Class Nearest Neighbor (1-NN) algorithm. It 

uses information entropy and linear data transformation 

to generate feature-based and linear function-based attack 

profiles [18, 19] and systematically creates contextual 

relationships between known attacks to generate attack 

profiles that capture activities of zero-day attacks.  

Combined Supervised and Unsupervised Learning [20] 

technique is presented for zero-day malware detection. It 

employs machine learning based framework to detect 

malware using layer 3 and layer 4 network traffic features. 

It utilizes supervised classification to detect known 

malware and unsupervised learning to detect new 

malware and known variants.  

Unsupervised Anomaly Detection System [21] is based 

on clustering and multiple one-class SVM to detect 0-day 

attacks and to improve the detection rate while 

maintaining a low false positive rate. It is able to 

construct intrusion detection models automatically 

without using labeled training data. In [22] the authors 

have optimized the values of parameters without 

predefining. This helps to construct models based on 

without tuning the parameters, and thus contributes to 

more practical operations in the real environment.  

Integrated Anomaly and Misuse Detection [23] method 

hierarchically integrates a misuse detection model and an 

anomaly detection model in a decomposition structure. 

First, the C4.5 decision tree (DT) is used to create the 

misuse detection model that is used to decompose the 

normal training data into smaller subsets. Then, the one-

class support vector machine (1-class SVM) is used to 

create an anomaly detection model in each decomposed 

region. Throughout the integration, the anomaly detection 

model indirectly uses the known attack information to 
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enhance its ability when building profiles of normal 

behavior.  

Data Mining based [24] method to detect unknown 

malware variants. The model is based on the frequency of 

the appearance of opcode sequences to detect and classify 

malware. It describes a weighting technique to mine the 

relevance of each opcode to malicious and benign 

executables and assess the frequency of each opcode 

sequence. It then constructs a vector representation of the 

executables to train machine-learning algorithms to detect 

unknown malware variants. 

SweetBait [9] is a distributed system that is a 

combination of network intrusion detection and 

prevention techniques. It employs different types of 

honeypot sensors, both high-interaction and low-

interaction to recognize and capture suspicious traffic. 

SweetBait automatically generates signatures for random 

IP address space scanning worms without any prior 

knowledge. And for the non-scanning worms, Argos is 

used to do the job. A novel aspect of this signature 

generation approach is that a forensics shellcode is 

inserted, replacing malevolent shellcode, to gather useful 

information about the attack process.  

LISABETH [25] automatically generate signatures for 

polymorphic worms, Lisabeth uses invariant byte analysis 

of traffic content, as originally proposed in Polygraph [7] 

and refined by Hamsa [8] Lisabeth leverages on the 

hypothesis that every worm has its invariant set and that 

an attacker must insert in all worm samples all the 

invariants bytes.  

In Honeycyber [26] a “Double-honeynet” is proposed 

as a new detection method to identify zero-day worms 

and to isolate the attack traffic from innocuous traffic. It 

uses unlimited Honeynet outbound connections to capture 

different payloads in every infection of the same worm. It 

uses Principal Component Analysis (PCA) to determine 

the most significant substrings that are shared between 

polymorphic worm instances to use them as signatures 

[27].  

ZASMIN [28] a Zero-day Attack Signature 

Management Infrastructure is an early detection system 

for novel network attack detection. To detect unknown 

network attacks, the system adopted various technologies. 

To filter malicious traffic it uses dispersion of destination 

IP address, TCP connection trial count, TCP connection 

success count and stealth scan trial count. Attack 

validation is done by call function and instruction 

spectrum analysis. And it generates signatures using 

content analysis.  

LESG [11] is a network-based automatic worm 

signature generator that generates length-based signatures 

for zero day polymorphic worms, which exploits buffer 

overflow vulnerabilities. The system generates 

vulnerability - driven signatures at network level without 

any host level analysis of worm execution or vulnerable 

programs.  

Network-Level Emulation [12] is a heuristic detection 

method to scan network traffic streams for the presence 

of previously unknown polymorphic shellcode. Their 

approach relies on a NIDS-embedded CPU emulator that 

executes every potential instruction sequence in the 

inspected traffic, aiming to identify the execution 

behavior of polymorphic shellcode. The proposed 

approach is robust to obfuscation techniques like self- 

modifications and non-self-contained polymorphic 

shellcodes [29].  

SGNET [30] is a distributed framework to collect rich 

information and download malware for zero-day attacks. 

It automatically generates approximations of the protocol 

behavior in form of Finite State Machines (FSMs). 

Whenever the network interaction falls outside the FSM 

knowledge (newly observed activity), SGNET takes 

advantage of a real host to continue the network 

interaction with the attacker. In that case, the honeypot 

acts as a proxy for the real host. This allows building 

samples of network conversation for the new activity that 

are then used to refine the current FSM knowledge.  

ENDMal [31] is an anti-obfuscation, scalable and 

collaborative malware detection system. It consists of 

multiple monitors where each monitor takes charge of a 

network area and receives suspicious programs from end-

host. Each monitor uses Iterative Sequence Alignment 

(ISA) method to defeat malware obfuscation and utilizes 

Handle dependences and Probabilistic Ordering 

Dependence (HPOD) technology to represent the 

program behaviors. All the monitors collaboratively 

identify the malicious program families by sharing 

HPOD-based behaviors via RENdezvous-based Sharing 

infrastructure (RENShare), based on Distributed Hash 

Tables (DHT). 

Hybrid Detection for Zero-day Polymorphic 

Shellcodes (HDPS) [14] is a hybrid detection approach. It 

uses an elaborate approach to detect NOP Sleds to be 

robust against polymorphism, metamorphism and other 

obfuscations. It employs a heuristic method to detect 

return address, and achieves high efficiency by 

incorporating Markov Model to detect executable codes.  

Honeyfarm [15] is a hybrid scheme that combines 

anomaly and signature detection with honeypots. This 

system takes advantage of existing detection approaches 

to develop an effective defense against Internet worms. 

The system works on three levels. At first level signature 

based detection is used to filter known worm attacks. At 

second level an anomaly detector is set up to detect any 

deviation from the normal behavior. In the last level 

honeypots are deployed to detect zero day attacks. Low 

interaction honeypots track attacker activities while high 

interaction honeypots analyze new attacks and 

vulnerabilities.  

SBE [32] is a shellcode detection technique based on 

emulation and Support Vector Machine. It comprises of 

two stages: train and classification. In the train phrase, 

data (including both shellcode and benign data) is 

obtained and labeled first, then it is emulated and all 

features (loop, xor, GetPC) are recorded before trimming 

redundant features with PCA algorithm, and finally a 

predictive model is achieved after training procedure. In 

the classification phase, network traffic is emulated and 

classified by the SVM engine with the model acquired 

before to separate benign and malicious.  
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Analysis of Opcode Sequences [33] is an anomaly 

detection approach which can detect new malware. First, 

executable files are analyzed in order to extract operation 

code sequences and then n-gram models are employed to 

discover essential features from these sequences. The 

iterative SVM clustering and Support Vector Data 

Descriptions (SVDDs) are applied to analyze feature 

vectors obtained and to build a benign software behavior 

model. This model is then used to detect new malicious 

executable files.  

Two-level automated analysis technique [40, 41] 

combines anomaly, behavior and signature based 

techniques for detecting such zero-day attacks. The 

proposed approach detects obfuscated zero-day attacks 

with two-level evaluation.  At first level the system 

detects “unknown” by using Honeynet as an anomaly 

detector and at second level the system confirms 

“malicious” by analyzing behavior of unknown attack in 

an emulator. At last it generates new signatures 

automatically to update other IDS/IPS sensors via global 

hotfix update. 

 

 

Fig.1. Layered Architecture of Proposed System. 

III.  PROPOSED SYSTEM 

Fig. 1 provides an overall layered architecture of the 

proposed system. It has three layers namely; Detection 

Layer, Analysis Layer and Resource Layer. The detection 

layer is responsible for detecting unknown attack. The 

analysis layer is required to analyze the behavior of 

captured binary. The resource layer provides hardware 

resources like network, database and processing servers 

which helps in execution of components in above two 

layers. All these layers work in parallel to improve 

overall performance of the system. 

A.  Detection Layer 

The detection layer is the first layer of defense that 

detect unknown attacks. It constitutes of the following 

components: 

Misuse Detector: A misuse detector basically models 

abnormal behavior. It has a well-defined set of malicious 

behaviors in terms of rules. Misuse detection systems are 

used to filter all known attacks as they are highly accurate 

in their decisions and have excellent throughput. In the 

proposed system, Snort [34] has been used as a misuse 

detector. Snort is the most popular open source network 

intrusion prevention and detection system (IDS/IPS). It 

avoids known intrusions through signature matching. 

Snort analyzes the packets that arrive to the network 

interface, match their characteristics with those contained 

in the rules stored in its rule base. If a specific packet 

matches the premises of any rule, this rule is executed 

and a specific action is generated to give notification of 

the fact. Here the snort drops all the known attack packets 

and passes filtered traffic for further processing. To drop 

known attacks snort is used in inline mode. All the “alert” 

rule actions of well-known attacks were changed to “drop” 

by a script. All the filtered traffic is then stored in a 

central database. 

Tagger: After filtering known attacks, all the 

remaining traffic is tainted and passed through an 

anomaly detector. As the anomaly detectors have either 

score or label based output techniques, therefore tainting 

is done to track the network packets which deviate from 

the normal profile. This way the unknown network 

packets are identified for further analysis. Traffic tainting 

is done by a component called “Tagger”. It monitors all 

filtered traffic, tags it and sends it to the preprocessor. 

The tagger creates a new identifier based on 16-bit hash 

of a packet. The tag value and label for the filtered packet 

is stored in a table <Tag, Label> for later use. The value 
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for Tag is calculated for the 6-tuple {arrival_time, src_ip, 

dst_ip, src_port, dst_port, and protocol} by using a fast 

and effective method of “XOR and shift”. The Label field 

is updated later with the result of detection engine as, <1: 

anomaly, 0: benign>.  

Anomaly Detector: A misuse detector is unable to 

respond against unknown attacks. So, to overcome this 

shortcoming, anomaly detector is used in the next step. 

Anomaly detector model legitimate network traffic in 

order to obtain potential deviations from the normal 

profile. Each deviation that is found significant enough is 

considered for further analysis. Also establishing a “good” 

network profile makes it easier to spot previously 

unknown bad behavior. Therefore, modified Snort-AD is 

deployed as an anomaly detector. The challenge with 

using Snort-AD is that the probability of detecting new 

attacks is low. So there is a need to improve this by 

modifying preprocessor of Snort-AD in order to increase 

the probability of detecting new or unknown anomalies. 

The modified pre-processor receives the filtered tagged 

packets from the tagger and processes them. It extracts 

features, identifies most relevant parts of network traffic 

and normalizes data before sending to the detection 

engine. For constructing a candidate set of traffic features, 

total 17 significant and essential features were extracted 

and stored in a log file. These features identify relevant 

network traffic characteristics that may be part of a zero-

day attack. The extracted network traffic features are 

listed in Table 1.  

Table 1. Extracted Features 

Features Description 

Duration the length (number of seconds) of the connection 

Protocol_type type of the protocol, e.g. tcp, udp, etc. 

Service the connection's service type, e.g., http, telnet, etc 

Source bytes the number of data bytes sent by the source IP address 

Destination bytes the number of data bytes sent by the destination IP address 

Count the number of connections whose source IP address and destination IP 

address are 

the same to those of the current connection in the past two seconds. 

Same_srv_rate percentage of connections to the same service in Count feature 

Serror_rate percentage of connections that have SYN errors in Count feature 

Srv_serror_rate percentage of connections that have SYN errors in Srv_count(the number 

of 

connections whose service type is the same to that of the current 

connection in the past 

two seconds) feature 

Dst_host_count among the past 100 connections whose destination IP address is the same 

to that of the current connection, the number of connections whose source 

IP address is also 
the same to that of the current connection. 

Dst_host_srv_count among the past 100 connections whose destination IP address is the 

same to that of the current connection, the number of connections whose 

service type is 
also the same to that of the current connection 

Dst_host_same_src_port_rate percentage of connections whose source port is the same to that of 

the current connection in Dst_host_count feature 

Dst_host_serror_rate percentage of connections that have SYN errors in Dst_host _count feature 

Dst_host_srv_serror_rate percentage of connections that SYN errors in Dst_host_ srv_count 

feature 

Flag the state of the connection at the time the summary was written (which is 

usually when the connection terminated) 

Pkt_count_legitimate_ports among the past 100 connections whose destination port is same to the port 

in the legitimate ports list 

Pkt_count_unexpected_ports among the past 100 connections whose destination port is same to the port 
in unexpected ports list, especially on ports known to be backdoor ports 

 

Detection Engine: It receives the parsed packets from 

the preprocessor and then compares them with existing 

good traffic profile and uses machine learning to detect 

unknown observations. For collecting good traffic a 

subnet of safe machines in the network have been 

identified which does not generate or generates less 

malicious content like network admin‟s system, analysts‟ 

system, HoD‟s (Head of Department) system and other 

trusted faculty‟s or researcher‟s system. These systems 

are hardened and all possible security mechanisms are 

applied. These systems have defined security privileges 

and policies and does not participate in any malicious 

activity. A trust value has been assigned to these 

machines based upon the past experience. This trust value 

ranges from 1 to 10, with 1 as a compromised machine 

generating malicious traffic and 10 as fully hardened with 

no security loopholes. For e.g., the network admin's 

computer system has a 9 trust value and the analyst's 

computer system has trust value of 8. All the traffic 

generated by this subnet is stored in a central database as 

“known-good” traffic. An approximate of 50 GB raw 

network traffic is collected from this trusted subnet in 

Thapar University. This data is then used to train the 

machine learning algorithm implemented in the detection 

engine. The preprocessor extracts similar 17 statistical 

features from the trusted traffic to construct a good traffic 
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profile. The detection engine then applies machine 

learning on two types of data, i.e., known-good traffic 

(from trusted subnet) and filtered traffic (from Snort), to 

detect zero-day attack.  Fig.2 represents the creation of 

good profile. 

Support Vector Machines (SVM) [35, 36] is one of the 

most developed machine learning techniques. They have 

been succeeded in many applied applications due to their 

good theoretical properties in generalization and 

convergence as well as due to their excellent performance 

in some hard problems. Let there be the only data of one 

class and the aim is to test new data and to find out 

whether it is alike or not like the training data then, the 

best method is to use 1-class SVM [37]. It is easy to 

gather training data for normal situations but a collection 

of all possible abnormal scenarios is difficult, or just 

impossible. To deal with such problem in detection of 

zero-day attacks, 1-class SVM is used. By just providing 

the normal traffic data, an algorithm will create a 

representational model of this data. If the new 

encountered traffic data is too different (based upon some 

measurement), from the model, it will be labeled as out-

of-class. 

Given the unlabeled l data points, {x1 ,… ,x2} where xi ϵ 

R
n
; 1-class SVM maps the data points xi into the feature 

space by using some non-linear mapping ɸ(xi), and finds 

a hypersphere which contains most of the data points in 

the feature space. Fig. 3 shows the formal illustration of 

the hypersphere model. It is formulated with the center c 

and the radius R > 0 in the feature space, of which the 

volume R
2
 is minimized. The data points that lies outside 

the hypersphere are regarded as anomalies. 

 

 

Fig.2. Creation of Good Profile. 

 

Fig.3. Hypersphere Model. 

Mathematically the problem of fitting a hypersphere 

around the data is formalized as: 
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To prevent SVM from over-fitting with noisy data, the 

non-negative slack variables ξi are introduced to allow 

some data points to lie on the “wrong” side of the 

hypersphere. Also, the parameter v ϵ [0, 1] determines the 

tradeoff between the radius of the hypersphere and the 

number of the data points that belong to the hypersphere. 

When v is small, more data is put into the hypersphere. 

When v is larger, its size decreases. Since the center c 

belongs to the possibly high-dimensional feature space, it 

is difficult to solve the fundamental equation (1) directly. 

Instead, it is possible to solve the fundamental problem 

by its dual form with kernel functions, k(x,y) as in (2). 
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After finding a hypersphere data can be classified as 

either normal or attack. In this classification, the 

following decision function, whether point x in the testing 

data is normal (i.e., inside of the hypersphere), is used as 

given in (3). 

 

 ( )  

   (    ∑      (     )
 
         ∑    (    )   

  (   ))                                                                           (3) 

 

The points with f(x) = -1 are considered to be 

anomalies because this means that they exist outside of 

the hypersphere. Otherwise they are considered to be 

normal, because they are members of the hypersphere. 

LibSVM SDK has been used to implement 1-class SVM. 

Updater: This component serves as the output-plugin 

for anomaly detector and pushes the result to a central 

database. Let Pi be one filtered packet. The tagger gives it 

a tag, Ti. After feature extraction and comparison with 

“good” profile, the detection engine output results as <Ti, 

1> meaning, that the packet with tag Ti is anomalous. The 

same information is updated in “Tagger” table and the 

Label entry changes to 1. The corresponding packet Pi 

with tag Ti is saved on the file system with same name as 

the tag value. This packet is then processed by the second 

layer for further investigation.  
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Algorithm 1. Explains the working of detection layer. 

Algorithm 1 Detection Layer 

 

1: procedure Detection() 

2:       for Pcur in P do 

3: Snort(Pcur); 

4: TagPacket(); 

5: NormalizeData(); 

6: DetectionEngine(); 

7:       end for 

8: end procedure 

9: function FilteredPacket Snort(currentPacket) 

10:      if (pkt_content.matches(snort_rules)) then 

11:            drop(currentPacket); 

12: return filtered_Pkt; 

13:     end if 

14: end function 

15: function TagPacket() 

16:      Calculate Tag = HASH(arrival_time, src_ip, dst_ip, 

src_port,               dst_port, protocol); 

17:     UpdateDatabase(Tag); 

18: return Tagged_Pkt; 

19: end function 

20: function String NormalizeData() 

21:       for Tagged_Pkt from 1 to N do 

22:             PARSED PKT=„Use snort preprocessor module 

for parsing packet‟. 

23:             Filter features defined in Table 1 from 

PARSED_PKT. 

24:             Arrange the features in decimal format 

understandable by SVM. 

25:       end for 

26: return string; 

27: end function 

28: function DetectionEngine(String normalizeData, 

boolean isTrain) 

29:       if (isTrain) then 

30:            for Trust_Value > threshold do 

31:                  Capture good data from trustworthy systems. 

32:                  Extract features and update the SVM database 

to act as profiler. 

33:            end for 

34:       else 

35:            boolean unknown = Compare the normalizedData 

with data as per SVM profile 

36:            if unknown then 

37:                  resultSet = Form the INSERT statement. 

38: UpdateDatabase(); 

39:            end if 

40:       end if 

41: end function 

42: function UpdateDatabase(String resultSet) 

43:       INSERT resultset. 

44:       Save packet pkt with same Tag value at 

/usr/home/packets. 

45: end function 

 

B.  Analysis Layer 

This layer is responsible for analyzing malicious 

behavior of a zero-day malware. This layer comprises of 

following components: 

Extractor: The extractor on receiving suspicious 

packet Pi, parses it and extracts the malicious binaryi for 

further analysis. The head of the packet has an initial 

header type, here in this case it is Ethernet. The structure 

of each header is known to identify the location of fields 

containing the current header length and the next header 

type. Ethernet header contains information about next 

header type i.e. IP header and length of current Ethernet 

frame is 14. These two values are used to locate the 

position of IP header in the packet. This process is 

applied to subsequent headers and is repeated till all 

headers are processed. In the end, the application protocol 

stream is processed to strip the last header and to extract 

the data. This data is then saved as a binary file and is 

sent to next component for detailed examination. 

Analysis Stub: Today, there is really no automated way 

to understand completely the malicious behavior of a 

zero-day malware. There is no single best approach for 

malware analysis so it demands to combine static and 

dynamic analysis techniques. The analysis stub in the 

proposed system combines various static and dynamic 

analysis functionalities in a component based architecture, 

where any functionality can be replaced in the future. 

Different analysis features integrated into the system to 

behave as a single unit. The integrated functionalities 

work together automatically to provide detailed insight 

about the malware behavior. The captured binary is fed to 

analysis stub for automated static and dynamic analysis. 

And the analysis result of all the procedures is stored in a 

central database. 

Static Analysis Engine (SAE): It combines static 

malware analysis functionalities to describe various static 

features of the captured binary like anti-virus scanning, 

obfuscation, structure, uniqueness, and strings. SAE is 

completely modular and this makes it flexible and 

extensible. With the preliminary static analysis it is 

possible to extract valuable information that will shape 

the profile of the malware.  

 

 Antivirus Scanning: Before analyzing the 

prospective malware, the first step is to run it 

through multiple antivirus programs that may have 

already identified it.  For this, VirusTotal Public 

APIs [38] are used to upload the binary for scanning 

by multiple antivirus engines. VirusTotal provides 

free checking for viruses and more than 50 different 

antivirus products and scan engines. If the binary is 

identified by VirusTotal, then SAE fetches existing 

analysis results and uploads them to a central 

database and exits. If the binary is not detected by 

VirusTotal then, further analysis is done to capture 

its behavior. 

 Obfuscation: Malwares often use obfuscation 

techniques to evade detection systems. One such 

popular obfuscation technique is packing. To detect 

the type of packer employed, a script is written to 

access a text file containing packer signatures. 

 Structure: Any binary executable file includes a 

header to describe its structure like, the base 

address/size of code section, data section, list of 

functions imported, exported, etc. This functionality 

thus, returns the information on file header, sections 

and import/export tables.  
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 Uniqueness: For uniqueness hashes are computed on 

the captured binary. The main purpose of using this 

feature is to verify that whether the captured binary 

is unique or not. The hash is generated and checked 

in a central database where known hashes of 

existing binaries are stored. Thus, it avoids 

duplicated malware samples. 

 Strings: The legitimate programs always include 

many embedded strings but an obfuscated or packed 

malicious program contains very few strings. So, if 

Strings return few embedded strings (either make 

sense or not) then the tested binary is likely to be 

malicious. This functionality extracts ASCII and 

Unicode strings in binary file. 

 

Dynamic Analysis Engine (DAE): After describing 

static properties the binary is passed to DAE for dynamic 

analysis since static analysis is not foolproof. DAE 

focuses on behavioral analysis, by executing and 

monitoring the binary. This helps to understand the nature 

and the purpose of the malicious binary and reveals 

which files are read or accessed and which operations has 

been carried out. DAE comprises of an emulator running 

32-bit Windows Operating System. The emulator has an 

integrated functionality running in analysis component to 

track running processes, network statistics, system calls, 

and file system changes. Following are the integrated 

functionalities in the analysis component:  

 

 Running Processes: When the captured binary is 

executed, the active processes are monitored in 

emulator to identify loaded DLLs for individual 

processes and open handles.  

 Network Statistics: It is important to keep a check 

on network connections and this functionality 

provides information about active connections 

established by the running malware. It also records 

network traffic for malicious communication 

attempts, such as DNS resolution requests, bot 

traffic, or downloads. 

 System Calls: The system calls provide useful 

information about a process behavior. So, to 

intercept and record the system calls which are 

called by a process and the signals which are 

received by a process, this feature is used. It 

monitors interactions between processes and the OS 

kernel, which include system calls, signal deliveries, 

and changes of process state. 

 File System: This functionality monitors real-time 

file system and registry activity. It returns list of 

added, deleted and modified files and registry keys. 

 

Signature Generation: After analysis, new signature for 

malicious binary is generated in ClamAV format. The 

easiest way to create ClamAV signature is to use file hash 

checksums. To create MD5 signature the --md5 option of 

the ClamAV command-line sigtool (signature and 

database management tool) is used and all the signatures 

are stored in the central database. A small script is written 

to perform this task automatically. The generated 

signature has three fields. They are MD5 checksum of the 

binary, size of the binary and type of binary. The size and 

type of binary are determined during analysis. The 

generated signature is then uploaded in a central database 

for future access. The format for the ClamAV signature 

thus generated is as:  

 

Signature = <HashString:FileSize:MalwareType>. 

 

Algorithm 2. Explains the working analysis layer. 

Algorithm 2 Analysis Layer 

 

1: procedure Analysis() 

2:       List binaries = extractBinary(); 

3:       for binary in binaries do 

4: StaticAnalysis(binary); 

5: DynamicAnalysis(binary); 

6:       end for 

7: end procedure 

8: function List ExtractBinary() 

9:     Read pkt from /usr/home/packets. 

10:   hdr = initialType 

11:   pos = 0 

12:   while hdr != DONE do 

13:        len = GetHeaderLen(pkt, hdr, pos) 

14:        hdr = GetNextHeaderType(pkt, hdr, pos) 

15:        pos = pos + len 

16:    end while 

17:    Extract MessageBody of the application protocol. 

18:    Save MessageBody into a binary file. 

19: return Packet_Binary; 

20: end function 

21: function StaticAnalysis(binary) 

22:       invoke uploadVirusTotal(binary); 

23:       repeat 

24:             response = getVirusTotalResponse(); 

25:       until response==null 

26:       if (detectionRatio != 0) then 

27:             Upload VirusTotal result in database. 

28:             BREAK; 

29:       else Continue; 

30:       end if 

31:       packer = obfuscation(binary); 

32:       Upload packer information 

33:       response= structure(); 

34:       Upload response 

35:       hash= calculate_hash(binary); 

36:       if (hash = hash(existingBinary)) then 

37:            BREAK; 

38:       else Upload information in database 

39:       end if 

40:       response[] = strings(binary); 

41:       Upload list of embedded strings in database 

42: end function 

43: function DynamicAnalysis(binary) 

44:      analysis_result = Emulator(binary); 

45:       Upload database. 

46: end function 

47: function SignatureGeneration(binary) 

48:       hashString = Calculate Md5sum on binary 

49:       Size = Determine filesize 

50:       Type = MalwareType 

51:       Signature =< hashString : Size : Type > 

52: end function 
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IV.  IMPLEMENTATION AND RESULTS 

To evaluate the proposed system a prototype was 

implemented using the Oracle Java6 SDK, Python 

language, Eclipse IDE, MySql database. Various off-the-

shelf solutions have been employed wherever possible in 

an attempt to combine static analysis and dynamic 

analysis functionalities. For that many existing utilities 

were modified and incorporated in the system to work as 

a single unit. The implementation setup of proposed 

system comprises of router, IDS/IPS sensor, Ethernet 

switch, Intranet machines and system components like 

the detection system, analysis system, emulator machine 

and central database as depicted in Fig. 4. The detection 

server receive Internet traffic directly from the router, 

detects unknown attack and passes results to a central 

database. From central database the analysis system 

fetches the current results and accordingly extracts binary 

for further analysis in QEMU emulator. 

 

 

Fig.4. Experimental Setup. 

Following standard metrics were used to evaluate the 

performance of our system: True Positive Rate (TPR), 

False Positive Rate (FPR), F-Measure, Total Accuracy 

(ACC) and Receiver Operating Characteristic (ROC) 

curve. TPR is the percentage of correctly identified 

malicious code. FPR is the percentage of wrongly 

identified benign code. F-measure is a measure of a test‟s 

accuracy by combining recall (same as TPR) and 

precision scores into a single measure of performance. 

ACC is the percentage of absolutely correctly identified 

code, either positive or negative, divided by the entire 

number of instances. In ROC curve the TPR rate is 

plotted in function of the FPR for different points. The 

ROC curve shows a trade-off between true positive and 

false positive.  

The experimental dataset comprises of 5000 samples in 

total consisting of 4000 malware samples (both 

obfuscated & non-obfuscated) and 1000 benign samples. 

The dataset with obfuscated and unknown malware have 

been collected from various sources like Honeynet 

project, VX heavens [39] and other online malware 

repositories. The benign data samples include application 

software, system software, legitimate executables, 

documents and many other user applications. These 

benign samples were collected from various trusted 

systems in the production network. The distribution of 

benign samples are represented in Table 2. 
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Table 2. Distribution of Benign Samples 

Benign Sample Type No. of Samples 

Application Software 300 

System Software 250 

User Applications 200 

Legitimate Executables 150 

Legitimate Documents 100 

 

The distribution of malware samples both non-

obfuscated and obfuscated are shown in Table 3. 

Common malware types like viruses, network worms and 

trojans constitutes the major samples in the dataset. Other 

types included backdoors, buffer overflow exploits and 

rootkits. Some of the polymorphic exploits have been 

generated using Metasploit Framework by applying 

various encoding engines like Shikata ga nai, XOR 

encoder and Jmp/Call Additive. 

Table 3. Distribution of Zero-day Malware Samples 

Malware 
Type 

No. of Samples Non-
Obfuscated 

Obfuscated 

Virus 1200 500 700 

Worm 1000 400 600 

Rootkit 100 50 50 

Backdoor 600 250 350 

Exploit 200 50 150 

Trojan 900 350 550 

 

To compute the accuracy of the proposed system both 

benign and malicious packets were directed to the system 

set up. These packets were included in tcpdump file for 

Snort to read.  The packets unknown to the system were 

identified by the detection layer with few escapes. The 

recorded values of TPR, FPR, Precision, Recall, F-

Measure, ACC and ROC for non-obfuscated zero-day 

malware are presented in Table 4.  

Table 4. Detection Accuracy for Zero-day Non-Obfuscated Malware 

 

Malware Type 
Non-Obfuscated 

TPR FPR Precision Recall F- 

Measure 

ACC ROC 

Virus 0.937 0.04 0.961 0.937 0.95 0.951 0.965 

Worm 0.966 0.05 0.954 0.966 0.93 0.944 0.934 

Rootkit 0.984 0.023 0.99 0.984 0.986 0.971 0.981 

Backdoor 0.973 0.026 0.98 0.973 0.982 0.976 0.975 

Exploit 0.984 0.032 0.968 0.984 0.983 0.985 0.982 

Trojan 0.902 0.033 0.959 0.902 0.935 0.956 0.935 

 

Same standard intrusion detection metrics were 

recorded for obfuscated zero-day malware are shown in 

Table 5. The overall results were very promising 

achieving the best detection rate of nearly 98% with 0.02 

false positive rate and in the worst case, detection rate 

was 89% with 0.03 false positive rate. Thus, the proposed 

system has achieved high accuracy with few (near to zero) 

false positives.  

Table 5. Detection Accuracy for Zero-day Obfuscated Malware 

 

Malware Type 
Obfuscated 

TPR FPR Precision Recall F- 

Measure 

ACC ROC 

Virus 0.918 0.056 0.946 0.918 0.933 0.93 0.931 

Worm 0.94 0.081 0.924 0.94 0.932 0.931 0.927 

Rootkit 0.966 0.033 0.97 0.966 0.961 0.964 0.956 

Backdoor 0.959 0.061 0.933 0.959 0.945 0.96 0.967 

Exploit 0.982 0.301 0.82 0.982 0.894 0.785 0.748 

Trojan 0.898 0.035 0.96 0.898 0.928 0.945 0.935 

 

A.  Comparison with Honeynet 

In this section features of proposed system are 

compared with Honeynet system in Table 6. A Honeynet 

is a network setup that invites attackers to compromise 

the system (honeypots) and do harm in a controlled and 

isolated environment, while their activities are monitored 

and studied to increase network security. Honeynet has 

been found effective against zero day attacks. It identifies 

the mechanism of a new attack and collects evidence for 

attacker‟s activities, which is later analyzed by a human 

expert. This analysis is done by first preparing a toolkit 

comprised of (but not limited to) physical or virtual 

systems, behavioral analysis tools, code analysis tools 

and online analysis tools. All such tools are run 

separately with human intervention. This takes time 

sometimes weeks or months and requires high expertise 

to report a zero-day attack behavior. To address these 

issues the proposed system provides a single automated 

solution combining static and dynamic malware analysis. 

On the other hand, Honeynet is not a detection system, it 

only traps and monitors unknown attack activities. The 

detection layer of proposed system detects zero-day 

attacks against good traffic profile build from trustworthy 

systems. The following comparison shows that the 

proposed system is more efficient in delivering a 
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complete solution to zero-day attack detection and analysis. 

Table 6. Comparison with Honeynet System 

Techniques → 

Features ↓ 

Honeynet System Proposed System 

Known Attack 

Detection 

Snort in honeywall log and report 

known attacks 

Snort in inline mode and VirusTotal is used to 

keep check on known attacks 

Zero-day Attack 

Detection 

The unknown traffic is redirected to 

honeypots to monitor interactions 

between the attacker and honeypot 

Utilized machine learning algorithm, 1-class 

SVM to detect unknown attacks that deviate 

from the good network traffic profile 

Obfuscation Detection The obfuscated binary is allowed to run 
on honeypot with Sebek to track 

commands 

Detect obfuscation in SAE and later the 
binary is allowed to run on a real host. 

Attack Analysis Analysis is only done manually Automated analysis: static, dynamic. 

Signature Generation No Yes in ClamAV format 

Response Time Manual analysis takes time to analyze 

the behavior of malicious binary 

Layered architecture does detection and 

analysis in parallel. Further, SAE and DAE 

provides detailed and useful information for 
manual analysis (if required). Hence reducing 

response time. 

 

V.  CONCLUSIONS AND FUTURE WORK 

In this paper a hybrid real-time zero-day attack 

detection and analysis system is discussed. The proposed 

system is a combination of anomaly-based detection, 

behavior-based detection and signature-based detection 

techniques. The proposed system addresses the research 

problems with existing approaches in zero-day attack 

detection and analysis and tries to provide a complete 

solution to the whole problem. It does so by a layered 

designed where each layer is dedicated to a single 

functionality and works in parallel to improve 

performance. The system employs 1-class SVM as an 

anomaly detection technique in detection layer to detect 

zero-day attacks that diverts from the good traffic profile. 

The analysis layer in the system captures both static and 

dynamic behavior of malicious binaries captured in the 

detection layer. The analysis stub combines both static 

and dynamic malware analysis functionalities to work as 

a single unit in a component based architecture where any 

feature can be replaced in the future. The SAE provides 

basic information to profile the malicious binary and 

DAE captures run-time behavior of a malicious binary by 

executing it in an emulator. The system also generates 

signatures in ClamAV format. 

The proposed system was evaluated by various 

standard metrics. In experiments it was shown that the 

system provides the best detection rate of nearly 98% 

with 0.02 false positives. Furthermore, comparison with 

Honeynet system depicts that the proposed system will 

minimize response time to a great extend in zero-day 

attack detection and analysis. In the future work it is 

planned to: (1) Achieve scalability and improve 

throughput of the system by detecting and analyzing 

multiple zero-day binaries at a time. (2) Address 

defensive measures against anti-analysis techniques like 

anti-emulation and to explore multiple execution paths 

for malware analysis. (3) Generate better and more 

detailed signatures for zero-day obfuscated binaries in 

Snort format. 
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