
I. J. Computer Network and Information Security, 2015, 9, 19-31
Published Online August 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2015.09.03

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 9, 19-31

A Hybrid Real-time Zero-day Attack Detection

and Analysis System

Ratinder Kaur and Maninder Singh
Computer Science and Engineering Department, Thapar University, Patiala, 147004, India

Email: ratinder.kaur@thapar.edu, msingh@thapar.edu

Abstract—A zero-day attack poses a serious threat to the

Internet security as it exploits zero-day vulnerabilities in

the computer systems. Attackers take advantage of the

unknown nature of zero-day exploits and use them in

conjunction with highly sophisticated and targeted attacks

to achieve stealthiness with respect to standard intrusion

detection techniques. Thus, it's difficult to defend against

such attacks. Present research exhibits various issues and

is not able to provide complete solution for the detection

and analysis of zero-day attacks. This paper presents a

novel hybrid system that integrates anomaly, behavior

and signature based techniques for detecting and

analyzing zero-day attacks in real-time. It has layered and

modular design which helps to achieve high performance,

flexibility and scalability. The system is implemented and

evaluated against various standard metrics like True

Positive Rate (TPR), False Positive Rate (FPR), F-

Measure, Total Accuracy (ACC) and Receiver Operating

Characteristic (ROC) curve. The result shows high

detection rate with nearly zero false positives.

Additionally, the proposed system is compared with

Honeynet system.

Index Terms—Zero-day Attacks, Unknown Attacks,

Intrusion Detection, One-Class SVM, Malware Analysis,

Network Security.

I. INTRODUCTION

Today the Internet has become a pervasive threat

vector for various types of organizations. As new

technologies are developed and adopted to meet changing

business requirements, sneaky sources lie in wait to

exploit vulnerabilities exposed. In recent years, zero-day

attacks have been dominating the headlines for political

and monetary gains. They are being used as essential

success vectors in various sophisticated and targeted

attacks like Aurora, Advanced Persistent Threat (APT),

Stuxnet, Duqu and Flame. Also, the number of such

attacks reported each year increases immensely.

According to Symantec's Internet Security Threat Report

of 2014 [1] there is 91% increase in targeted attacks

campaigns in 2013, 62% increase in the number of

security breaches and 23 zero-day vulnerabilities were

discovered. Another security threat report by Sophos [2]

reported that large tech companies like Apple, Facebook,

Microsoft, Twitter and others were targeted with same

zero-day Java vulnerability that attacks multiple

customers. All such facts and figures represent a serious

concern in today's network security. And the zero-day

attacks are among the top security concerns that the

modern enterprises face today. People talked about zero-

day attacks few years back, but today every industry

faces it. Another day, another breach and a company

losses sensitive data.

To defend against zero-day attacks, the research

community has proposed various techniques. These are

divided into Statistical-based, Signature-based, Behavior-

based and Hybrid techniques [3]. Most of the statistical-

based techniques [4, 5, 6] are dependent on attack profiles

build from historical data. Due to the static nature of

attack profiles, the detection techniques are unable to

adapt to the timely changes in the environment. For any

change in the data pattern the system will require an

updated profile with constant training. Setting the limit

(or detection parameters) for judging new observations

(new attacks) is a critical step in designing a statistical

detection approach since it has a dramatic effect on the

quality of the detection. If the threshold value is very

narrow, it will frequently be exceeded resulting in a high

rate of false positive alarms, and if it is very wide the

limit will never be exceeded, resulting in many false

negative alarms. At times, the detection parameters are

either manually extracted or adjusted to detect new

attacks. All these factors, limit the statistical detection

approaches to work in offline mode. And hence, they

cannot be used for instant detection and protection in real

time.

The signature based detection techniques mainly focus

on polymorphic worms. There are three types of

signatures: content-based, semantic-based and

vulnerability-based. The content-based signatures [7, 8, 9]

capture the features specific to a worm implementation,

thus might not be generic enough and can be evaded by

other exploits. Furthermore, various attacks can evade the

content-based signatures by misleading signature

generation processes by using crafted packet injection

into normal traffic. Semantic-based signatures [10] are

computationally expensive to generate as compared to

approaches based on substrings. Moreover, they cannot

be implemented in existing IDS like Snort. Vulnerability-

driven signatures [11] capture the characteristics of the

vulnerability the worm exploits and are difficult to

generate.

Behavior-based techniques [12], looks for the essential

20 A Hybrid Real-time Zero-day Attack Detection and Analysis System

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 9, 19-31

characteristics of worms which do not require the

examination of payload byte patterns. They suffer from

the fact that they cannot effectively capture the context in

which the worm program interacts with the real victim

machine and they are also prone to evasion [13]. Hybrid

techniques [14, 15, 40] combines heuristics and different

intrusion detection techniques like signature-based,

anomaly-based, etc. to detect zero-day polymorphic

worms.

A. Motivation and Contributions

The results of recent studies have been the prime

motivation for this research. Various techniques were

surveyed. The existing zero-day detection techniques do

not raise the bar for the attackers, while their cost for the

defender in terms of resources that need to be devoted to

detection can be significant. Several research projects

have addressed the problem of zero-day detection but

unfortunately they exhibit one or more problems. As per

literature survey there exist certain research proposals

that have been promising, but they can also be easily

defeated by using minor enhancements to the attack

vectors. As attack tools are improving, reliance on minor

improvements in the detection processes is insufficient.

The current techniques have several drawbacks.

Statistical-based detection techniques cannot be used for

instant detection and protection in real time. They are

dependent on static attack profiles and require manual

adjustment of detection parameters. Signature-based

techniques are widely used but, need improvement in

generating good quality signatures. They suffer from one

or more limitations of high false positives, false negatives,

reduced sensitivity and specificity. Behavior-based

techniques may detect a wide range of novel attacks but

they are prone to evasion, computationally expensive and

may not effectively capture the context in which the new

attacks interact with the real victim machine. Other

hybrid techniques combine heuristics and different

intrusion detection techniques like signature-based,

anomaly-based, etc. to detect zero-day attacks but they

also suffer from high false positives, false negatives.

In this paper, a hybrid real-time system is presented

which is a novel zero-day attack detection and analysis

system. It tries to provide a single solution for the above

stated issues and the main contributions of the research

reported are:

 The proposed system has been designed and

implemented to detect zero-day attacks. To the best

of our knowledge this is the first hybrid approach

that combines features of all three, anomaly,

behavior and signature based detection techniques.

 The layered architecture has been designed which

represents a modular and flexible approach that

helps to improve system performance and scalability.

 A component-based analysis stub has also been

designed to analyze malware. It integrates the

advantages of static and dynamic and analysis.

 The proposed system has been tested with a dataset

of malware collected from various online malware

repositories and has achieved high accuracy with

near zero-false positives.

The remainder of the paper is organized as follows. In

Section II, related work is summarized. In Section III, the

detailed working of the proposed system is presented.

Finally in Section IV, describes the results and the paper

is concluded in Section V.

II. RELATED WORK

Supervised Learning [16] is a novel method of

employing several data mining techniques to detect and

classify zero-day malware based on the frequency of

Windows API calls. A machine learning framework is

developed using eight different classifiers, namely Naïve

Bayes (NB) Algorithm, k-Nearest Neighbor (kNN)

Algorithm, Sequential Minimal Optimization (SMO)

Algorithm with 4 different kernels (SMO-Normalized

PolyKernel, SMO-PolyKernel, SMO-Puk, and SMO-

Radial Basis Function (RBF)), Backpropagation Neural

Networks Algorithm, and J48 decision tree.

Contextual Anomaly Detection [17] is a contextual

misuse and anomaly detection prototype to detect zero-

day attacks. The contextual misuse detection utilizes

similarity with attack context profiles, and the anomaly

detection technique identifies new types of attacks using

the One Class Nearest Neighbor (1-NN) algorithm. It

uses information entropy and linear data transformation

to generate feature-based and linear function-based attack

profiles [18, 19] and systematically creates contextual

relationships between known attacks to generate attack

profiles that capture activities of zero-day attacks.

Combined Supervised and Unsupervised Learning [20]

technique is presented for zero-day malware detection. It

employs machine learning based framework to detect

malware using layer 3 and layer 4 network traffic features.

It utilizes supervised classification to detect known

malware and unsupervised learning to detect new

malware and known variants.

Unsupervised Anomaly Detection System [21] is based

on clustering and multiple one-class SVM to detect 0-day

attacks and to improve the detection rate while

maintaining a low false positive rate. It is able to

construct intrusion detection models automatically

without using labeled training data. In [22] the authors

have optimized the values of parameters without

predefining. This helps to construct models based on

without tuning the parameters, and thus contributes to

more practical operations in the real environment.

Integrated Anomaly and Misuse Detection [23] method

hierarchically integrates a misuse detection model and an

anomaly detection model in a decomposition structure.

First, the C4.5 decision tree (DT) is used to create the

misuse detection model that is used to decompose the

normal training data into smaller subsets. Then, the one-

class support vector machine (1-class SVM) is used to

create an anomaly detection model in each decomposed

region. Throughout the integration, the anomaly detection

model indirectly uses the known attack information to

 A Hybrid Real-time Zero-day Attack Detection and Analysis System 21

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 9, 19-31

enhance its ability when building profiles of normal

behavior.

Data Mining based [24] method to detect unknown

malware variants. The model is based on the frequency of

the appearance of opcode sequences to detect and classify

malware. It describes a weighting technique to mine the

relevance of each opcode to malicious and benign

executables and assess the frequency of each opcode

sequence. It then constructs a vector representation of the

executables to train machine-learning algorithms to detect

unknown malware variants.

SweetBait [9] is a distributed system that is a

combination of network intrusion detection and

prevention techniques. It employs different types of

honeypot sensors, both high-interaction and low-

interaction to recognize and capture suspicious traffic.

SweetBait automatically generates signatures for random

IP address space scanning worms without any prior

knowledge. And for the non-scanning worms, Argos is

used to do the job. A novel aspect of this signature

generation approach is that a forensics shellcode is

inserted, replacing malevolent shellcode, to gather useful

information about the attack process.

LISABETH [25] automatically generate signatures for

polymorphic worms, Lisabeth uses invariant byte analysis

of traffic content, as originally proposed in Polygraph [7]

and refined by Hamsa [8] Lisabeth leverages on the

hypothesis that every worm has its invariant set and that

an attacker must insert in all worm samples all the

invariants bytes.

In Honeycyber [26] a “Double-honeynet” is proposed

as a new detection method to identify zero-day worms

and to isolate the attack traffic from innocuous traffic. It

uses unlimited Honeynet outbound connections to capture

different payloads in every infection of the same worm. It

uses Principal Component Analysis (PCA) to determine

the most significant substrings that are shared between

polymorphic worm instances to use them as signatures

[27].

ZASMIN [28] a Zero-day Attack Signature

Management Infrastructure is an early detection system

for novel network attack detection. To detect unknown

network attacks, the system adopted various technologies.

To filter malicious traffic it uses dispersion of destination

IP address, TCP connection trial count, TCP connection

success count and stealth scan trial count. Attack

validation is done by call function and instruction

spectrum analysis. And it generates signatures using

content analysis.

LESG [11] is a network-based automatic worm

signature generator that generates length-based signatures

for zero day polymorphic worms, which exploits buffer

overflow vulnerabilities. The system generates

vulnerability - driven signatures at network level without

any host level analysis of worm execution or vulnerable

programs.

Network-Level Emulation [12] is a heuristic detection

method to scan network traffic streams for the presence

of previously unknown polymorphic shellcode. Their

approach relies on a NIDS-embedded CPU emulator that

executes every potential instruction sequence in the

inspected traffic, aiming to identify the execution

behavior of polymorphic shellcode. The proposed

approach is robust to obfuscation techniques like self-

modifications and non-self-contained polymorphic

shellcodes [29].

SGNET [30] is a distributed framework to collect rich

information and download malware for zero-day attacks.

It automatically generates approximations of the protocol

behavior in form of Finite State Machines (FSMs).

Whenever the network interaction falls outside the FSM

knowledge (newly observed activity), SGNET takes

advantage of a real host to continue the network

interaction with the attacker. In that case, the honeypot

acts as a proxy for the real host. This allows building

samples of network conversation for the new activity that

are then used to refine the current FSM knowledge.

ENDMal [31] is an anti-obfuscation, scalable and

collaborative malware detection system. It consists of

multiple monitors where each monitor takes charge of a

network area and receives suspicious programs from end-

host. Each monitor uses Iterative Sequence Alignment

(ISA) method to defeat malware obfuscation and utilizes

Handle dependences and Probabilistic Ordering

Dependence (HPOD) technology to represent the

program behaviors. All the monitors collaboratively

identify the malicious program families by sharing

HPOD-based behaviors via RENdezvous-based Sharing

infrastructure (RENShare), based on Distributed Hash

Tables (DHT).

Hybrid Detection for Zero-day Polymorphic

Shellcodes (HDPS) [14] is a hybrid detection approach. It

uses an elaborate approach to detect NOP Sleds to be

robust against polymorphism, metamorphism and other

obfuscations. It employs a heuristic method to detect

return address, and achieves high efficiency by

incorporating Markov Model to detect executable codes.

Honeyfarm [15] is a hybrid scheme that combines

anomaly and signature detection with honeypots. This

system takes advantage of existing detection approaches

to develop an effective defense against Internet worms.

The system works on three levels. At first level signature

based detection is used to filter known worm attacks. At

second level an anomaly detector is set up to detect any

deviation from the normal behavior. In the last level

honeypots are deployed to detect zero day attacks. Low

interaction honeypots track attacker activities while high

interaction honeypots analyze new attacks and

vulnerabilities.

SBE [32] is a shellcode detection technique based on

emulation and Support Vector Machine. It comprises of

two stages: train and classification. In the train phrase,

data (including both shellcode and benign data) is

obtained and labeled first, then it is emulated and all

features (loop, xor, GetPC) are recorded before trimming

redundant features with PCA algorithm, and finally a

predictive model is achieved after training procedure. In

the classification phase, network traffic is emulated and

classified by the SVM engine with the model acquired

before to separate benign and malicious.

22 A Hybrid Real-time Zero-day Attack Detection and Analysis System

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 9, 19-31

Analysis of Opcode Sequences [33] is an anomaly

detection approach which can detect new malware. First,

executable files are analyzed in order to extract operation

code sequences and then n-gram models are employed to

discover essential features from these sequences. The

iterative SVM clustering and Support Vector Data

Descriptions (SVDDs) are applied to analyze feature

vectors obtained and to build a benign software behavior

model. This model is then used to detect new malicious

executable files.

Two-level automated analysis technique [40, 41]

combines anomaly, behavior and signature based

techniques for detecting such zero-day attacks. The

proposed approach detects obfuscated zero-day attacks

with two-level evaluation. At first level the system

detects “unknown” by using Honeynet as an anomaly

detector and at second level the system confirms

“malicious” by analyzing behavior of unknown attack in

an emulator. At last it generates new signatures

automatically to update other IDS/IPS sensors via global

hotfix update.

Fig.1. Layered Architecture of Proposed System.

III. PROPOSED SYSTEM

Fig. 1 provides an overall layered architecture of the

proposed system. It has three layers namely; Detection

Layer, Analysis Layer and Resource Layer. The detection

layer is responsible for detecting unknown attack. The

analysis layer is required to analyze the behavior of

captured binary. The resource layer provides hardware

resources like network, database and processing servers

which helps in execution of components in above two

layers. All these layers work in parallel to improve

overall performance of the system.

A. Detection Layer

The detection layer is the first layer of defense that

detect unknown attacks. It constitutes of the following

components:

Misuse Detector: A misuse detector basically models

abnormal behavior. It has a well-defined set of malicious

behaviors in terms of rules. Misuse detection systems are

used to filter all known attacks as they are highly accurate

in their decisions and have excellent throughput. In the

proposed system, Snort [34] has been used as a misuse

detector. Snort is the most popular open source network

intrusion prevention and detection system (IDS/IPS). It

avoids known intrusions through signature matching.

Snort analyzes the packets that arrive to the network

interface, match their characteristics with those contained

in the rules stored in its rule base. If a specific packet

matches the premises of any rule, this rule is executed

and a specific action is generated to give notification of

the fact. Here the snort drops all the known attack packets

and passes filtered traffic for further processing. To drop

known attacks snort is used in inline mode. All the “alert”

rule actions of well-known attacks were changed to “drop”

by a script. All the filtered traffic is then stored in a

central database.

Tagger: After filtering known attacks, all the

remaining traffic is tainted and passed through an

anomaly detector. As the anomaly detectors have either

score or label based output techniques, therefore tainting

is done to track the network packets which deviate from

the normal profile. This way the unknown network

packets are identified for further analysis. Traffic tainting

is done by a component called “Tagger”. It monitors all

filtered traffic, tags it and sends it to the preprocessor.

The tagger creates a new identifier based on 16-bit hash

of a packet. The tag value and label for the filtered packet

is stored in a table <Tag, Label> for later use. The value

 A Hybrid Real-time Zero-day Attack Detection and Analysis System 23

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 9, 19-31

for Tag is calculated for the 6-tuple {arrival_time, src_ip,

dst_ip, src_port, dst_port, and protocol} by using a fast

and effective method of “XOR and shift”. The Label field

is updated later with the result of detection engine as, <1:

anomaly, 0: benign>.

Anomaly Detector: A misuse detector is unable to

respond against unknown attacks. So, to overcome this

shortcoming, anomaly detector is used in the next step.

Anomaly detector model legitimate network traffic in

order to obtain potential deviations from the normal

profile. Each deviation that is found significant enough is

considered for further analysis. Also establishing a “good”

network profile makes it easier to spot previously

unknown bad behavior. Therefore, modified Snort-AD is

deployed as an anomaly detector. The challenge with

using Snort-AD is that the probability of detecting new

attacks is low. So there is a need to improve this by

modifying preprocessor of Snort-AD in order to increase

the probability of detecting new or unknown anomalies.

The modified pre-processor receives the filtered tagged

packets from the tagger and processes them. It extracts

features, identifies most relevant parts of network traffic

and normalizes data before sending to the detection

engine. For constructing a candidate set of traffic features,

total 17 significant and essential features were extracted

and stored in a log file. These features identify relevant

network traffic characteristics that may be part of a zero-

day attack. The extracted network traffic features are

listed in Table 1.

Table 1. Extracted Features

Features Description

Duration the length (number of seconds) of the connection

Protocol_type type of the protocol, e.g. tcp, udp, etc.

Service the connection's service type, e.g., http, telnet, etc

Source bytes the number of data bytes sent by the source IP address

Destination bytes the number of data bytes sent by the destination IP address

Count the number of connections whose source IP address and destination IP

address are

the same to those of the current connection in the past two seconds.

Same_srv_rate percentage of connections to the same service in Count feature

Serror_rate percentage of connections that have SYN errors in Count feature

Srv_serror_rate percentage of connections that have SYN errors in Srv_count(the number

of

connections whose service type is the same to that of the current

connection in the past

two seconds) feature

Dst_host_count among the past 100 connections whose destination IP address is the same

to that of the current connection, the number of connections whose source

IP address is also
the same to that of the current connection.

Dst_host_srv_count among the past 100 connections whose destination IP address is the

same to that of the current connection, the number of connections whose

service type is
also the same to that of the current connection

Dst_host_same_src_port_rate percentage of connections whose source port is the same to that of

the current connection in Dst_host_count feature

Dst_host_serror_rate percentage of connections that have SYN errors in Dst_host _count feature

Dst_host_srv_serror_rate percentage of connections that SYN errors in Dst_host_ srv_count

feature

Flag the state of the connection at the time the summary was written (which is

usually when the connection terminated)

Pkt_count_legitimate_ports among the past 100 connections whose destination port is same to the port

in the legitimate ports list

Pkt_count_unexpected_ports among the past 100 connections whose destination port is same to the port
in unexpected ports list, especially on ports known to be backdoor ports

Detection Engine: It receives the parsed packets from

the preprocessor and then compares them with existing

good traffic profile and uses machine learning to detect

unknown observations. For collecting good traffic a

subnet of safe machines in the network have been

identified which does not generate or generates less

malicious content like network admin‟s system, analysts‟

system, HoD‟s (Head of Department) system and other

trusted faculty‟s or researcher‟s system. These systems

are hardened and all possible security mechanisms are

applied. These systems have defined security privileges

and policies and does not participate in any malicious

activity. A trust value has been assigned to these

machines based upon the past experience. This trust value

ranges from 1 to 10, with 1 as a compromised machine

generating malicious traffic and 10 as fully hardened with

no security loopholes. For e.g., the network admin's

computer system has a 9 trust value and the analyst's

computer system has trust value of 8. All the traffic

generated by this subnet is stored in a central database as

“known-good” traffic. An approximate of 50 GB raw

network traffic is collected from this trusted subnet in

Thapar University. This data is then used to train the

machine learning algorithm implemented in the detection

engine. The preprocessor extracts similar 17 statistical

features from the trusted traffic to construct a good traffic

24 A Hybrid Real-time Zero-day Attack Detection and Analysis System

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 9, 19-31

profile. The detection engine then applies machine

learning on two types of data, i.e., known-good traffic

(from trusted subnet) and filtered traffic (from Snort), to

detect zero-day attack. Fig.2 represents the creation of

good profile.

Support Vector Machines (SVM) [35, 36] is one of the

most developed machine learning techniques. They have

been succeeded in many applied applications due to their

good theoretical properties in generalization and

convergence as well as due to their excellent performance

in some hard problems. Let there be the only data of one

class and the aim is to test new data and to find out

whether it is alike or not like the training data then, the

best method is to use 1-class SVM [37]. It is easy to

gather training data for normal situations but a collection

of all possible abnormal scenarios is difficult, or just

impossible. To deal with such problem in detection of

zero-day attacks, 1-class SVM is used. By just providing

the normal traffic data, an algorithm will create a

representational model of this data. If the new

encountered traffic data is too different (based upon some

measurement), from the model, it will be labeled as out-

of-class.

Given the unlabeled l data points, {x1 ,… ,x2} where xi ϵ

R
n
; 1-class SVM maps the data points xi into the feature

space by using some non-linear mapping ɸ(xi), and finds

a hypersphere which contains most of the data points in

the feature space. Fig. 3 shows the formal illustration of

the hypersphere model. It is formulated with the center c

and the radius R > 0 in the feature space, of which the

volume R
2
 is minimized. The data points that lies outside

the hypersphere are regarded as anomalies.

Fig.2. Creation of Good Profile.

Fig.3. Hypersphere Model.

Mathematically the problem of fitting a hypersphere

around the data is formalized as:

 ∑

subject to: ‖ ()‖

 (1)

To prevent SVM from over-fitting with noisy data, the

non-negative slack variables ξi are introduced to allow

some data points to lie on the “wrong” side of the

hypersphere. Also, the parameter v ϵ [0, 1] determines the

tradeoff between the radius of the hypersphere and the

number of the data points that belong to the hypersphere.

When v is small, more data is put into the hypersphere.

When v is larger, its size decreases. Since the center c

belongs to the possibly high-dimensional feature space, it

is difficult to solve the fundamental equation (1) directly.

Instead, it is possible to solve the fundamental problem

by its dual form with kernel functions, k(x,y) as in (2).

∑ () ∑ ()

subject to: ∑

 ,

 (2)

After finding a hypersphere data can be classified as

either normal or attack. In this classification, the

following decision function, whether point x in the testing

data is normal (i.e., inside of the hypersphere), is used as

given in (3).

 ()

 (∑ ()

 ∑ ()

 ()) (3)

The points with f(x) = -1 are considered to be

anomalies because this means that they exist outside of

the hypersphere. Otherwise they are considered to be

normal, because they are members of the hypersphere.

LibSVM SDK has been used to implement 1-class SVM.

Updater: This component serves as the output-plugin

for anomaly detector and pushes the result to a central

database. Let Pi be one filtered packet. The tagger gives it

a tag, Ti. After feature extraction and comparison with

“good” profile, the detection engine output results as <Ti,

1> meaning, that the packet with tag Ti is anomalous. The

same information is updated in “Tagger” table and the

Label entry changes to 1. The corresponding packet Pi

with tag Ti is saved on the file system with same name as

the tag value. This packet is then processed by the second

layer for further investigation.

 A Hybrid Real-time Zero-day Attack Detection and Analysis System 25

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 9, 19-31

Algorithm 1. Explains the working of detection layer.

Algorithm 1 Detection Layer

1: procedure Detection()

2: for Pcur in P do

3: Snort(Pcur);

4: TagPacket();

5: NormalizeData();

6: DetectionEngine();

7: end for

8: end procedure

9: function FilteredPacket Snort(currentPacket)

10: if (pkt_content.matches(snort_rules)) then

11: drop(currentPacket);

12: return filtered_Pkt;

13: end if

14: end function

15: function TagPacket()

16: Calculate Tag = HASH(arrival_time, src_ip, dst_ip,

src_port, dst_port, protocol);

17: UpdateDatabase(Tag);

18: return Tagged_Pkt;

19: end function

20: function String NormalizeData()

21: for Tagged_Pkt from 1 to N do

22: PARSED PKT=„Use snort preprocessor module

for parsing packet‟.

23: Filter features defined in Table 1 from

PARSED_PKT.

24: Arrange the features in decimal format

understandable by SVM.

25: end for

26: return string;

27: end function

28: function DetectionEngine(String normalizeData,

boolean isTrain)

29: if (isTrain) then

30: for Trust_Value > threshold do

31: Capture good data from trustworthy systems.

32: Extract features and update the SVM database

to act as profiler.

33: end for

34: else

35: boolean unknown = Compare the normalizedData

with data as per SVM profile

36: if unknown then

37: resultSet = Form the INSERT statement.

38: UpdateDatabase();

39: end if

40: end if

41: end function

42: function UpdateDatabase(String resultSet)

43: INSERT resultset.

44: Save packet pkt with same Tag value at

/usr/home/packets.

45: end function

B. Analysis Layer

This layer is responsible for analyzing malicious

behavior of a zero-day malware. This layer comprises of

following components:

Extractor: The extractor on receiving suspicious

packet Pi, parses it and extracts the malicious binaryi for

further analysis. The head of the packet has an initial

header type, here in this case it is Ethernet. The structure

of each header is known to identify the location of fields

containing the current header length and the next header

type. Ethernet header contains information about next

header type i.e. IP header and length of current Ethernet

frame is 14. These two values are used to locate the

position of IP header in the packet. This process is

applied to subsequent headers and is repeated till all

headers are processed. In the end, the application protocol

stream is processed to strip the last header and to extract

the data. This data is then saved as a binary file and is

sent to next component for detailed examination.

Analysis Stub: Today, there is really no automated way

to understand completely the malicious behavior of a

zero-day malware. There is no single best approach for

malware analysis so it demands to combine static and

dynamic analysis techniques. The analysis stub in the

proposed system combines various static and dynamic

analysis functionalities in a component based architecture,

where any functionality can be replaced in the future.

Different analysis features integrated into the system to

behave as a single unit. The integrated functionalities

work together automatically to provide detailed insight

about the malware behavior. The captured binary is fed to

analysis stub for automated static and dynamic analysis.

And the analysis result of all the procedures is stored in a

central database.

Static Analysis Engine (SAE): It combines static

malware analysis functionalities to describe various static

features of the captured binary like anti-virus scanning,

obfuscation, structure, uniqueness, and strings. SAE is

completely modular and this makes it flexible and

extensible. With the preliminary static analysis it is

possible to extract valuable information that will shape

the profile of the malware.

 Antivirus Scanning: Before analyzing the

prospective malware, the first step is to run it

through multiple antivirus programs that may have

already identified it. For this, VirusTotal Public

APIs [38] are used to upload the binary for scanning

by multiple antivirus engines. VirusTotal provides

free checking for viruses and more than 50 different

antivirus products and scan engines. If the binary is

identified by VirusTotal, then SAE fetches existing

analysis results and uploads them to a central

database and exits. If the binary is not detected by

VirusTotal then, further analysis is done to capture

its behavior.

 Obfuscation: Malwares often use obfuscation

techniques to evade detection systems. One such

popular obfuscation technique is packing. To detect

the type of packer employed, a script is written to

access a text file containing packer signatures.

 Structure: Any binary executable file includes a

header to describe its structure like, the base

address/size of code section, data section, list of

functions imported, exported, etc. This functionality

thus, returns the information on file header, sections

and import/export tables.

26 A Hybrid Real-time Zero-day Attack Detection and Analysis System

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 9, 19-31

 Uniqueness: For uniqueness hashes are computed on

the captured binary. The main purpose of using this

feature is to verify that whether the captured binary

is unique or not. The hash is generated and checked

in a central database where known hashes of

existing binaries are stored. Thus, it avoids

duplicated malware samples.

 Strings: The legitimate programs always include

many embedded strings but an obfuscated or packed

malicious program contains very few strings. So, if

Strings return few embedded strings (either make

sense or not) then the tested binary is likely to be

malicious. This functionality extracts ASCII and

Unicode strings in binary file.

Dynamic Analysis Engine (DAE): After describing

static properties the binary is passed to DAE for dynamic

analysis since static analysis is not foolproof. DAE

focuses on behavioral analysis, by executing and

monitoring the binary. This helps to understand the nature

and the purpose of the malicious binary and reveals

which files are read or accessed and which operations has

been carried out. DAE comprises of an emulator running

32-bit Windows Operating System. The emulator has an

integrated functionality running in analysis component to

track running processes, network statistics, system calls,

and file system changes. Following are the integrated

functionalities in the analysis component:

 Running Processes: When the captured binary is

executed, the active processes are monitored in

emulator to identify loaded DLLs for individual

processes and open handles.

 Network Statistics: It is important to keep a check

on network connections and this functionality

provides information about active connections

established by the running malware. It also records

network traffic for malicious communication

attempts, such as DNS resolution requests, bot

traffic, or downloads.

 System Calls: The system calls provide useful

information about a process behavior. So, to

intercept and record the system calls which are

called by a process and the signals which are

received by a process, this feature is used. It

monitors interactions between processes and the OS

kernel, which include system calls, signal deliveries,

and changes of process state.

 File System: This functionality monitors real-time

file system and registry activity. It returns list of

added, deleted and modified files and registry keys.

Signature Generation: After analysis, new signature for

malicious binary is generated in ClamAV format. The

easiest way to create ClamAV signature is to use file hash

checksums. To create MD5 signature the --md5 option of

the ClamAV command-line sigtool (signature and

database management tool) is used and all the signatures

are stored in the central database. A small script is written

to perform this task automatically. The generated

signature has three fields. They are MD5 checksum of the

binary, size of the binary and type of binary. The size and

type of binary are determined during analysis. The

generated signature is then uploaded in a central database

for future access. The format for the ClamAV signature

thus generated is as:

Signature = <HashString:FileSize:MalwareType>.

Algorithm 2. Explains the working analysis layer.

Algorithm 2 Analysis Layer

1: procedure Analysis()

2: List binaries = extractBinary();

3: for binary in binaries do

4: StaticAnalysis(binary);

5: DynamicAnalysis(binary);

6: end for

7: end procedure

8: function List ExtractBinary()

9: Read pkt from /usr/home/packets.

10: hdr = initialType

11: pos = 0

12: while hdr != DONE do

13: len = GetHeaderLen(pkt, hdr, pos)

14: hdr = GetNextHeaderType(pkt, hdr, pos)

15: pos = pos + len

16: end while

17: Extract MessageBody of the application protocol.

18: Save MessageBody into a binary file.

19: return Packet_Binary;

20: end function

21: function StaticAnalysis(binary)

22: invoke uploadVirusTotal(binary);

23: repeat

24: response = getVirusTotalResponse();

25: until response==null

26: if (detectionRatio != 0) then

27: Upload VirusTotal result in database.

28: BREAK;

29: else Continue;

30: end if

31: packer = obfuscation(binary);

32: Upload packer information

33: response= structure();

34: Upload response

35: hash= calculate_hash(binary);

36: if (hash = hash(existingBinary)) then

37: BREAK;

38: else Upload information in database

39: end if

40: response[] = strings(binary);

41: Upload list of embedded strings in database

42: end function

43: function DynamicAnalysis(binary)

44: analysis_result = Emulator(binary);

45: Upload database.

46: end function

47: function SignatureGeneration(binary)

48: hashString = Calculate Md5sum on binary

49: Size = Determine filesize

50: Type = MalwareType

51: Signature =< hashString : Size : Type >

52: end function

 A Hybrid Real-time Zero-day Attack Detection and Analysis System 27

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 9, 19-31

IV. IMPLEMENTATION AND RESULTS

To evaluate the proposed system a prototype was

implemented using the Oracle Java6 SDK, Python

language, Eclipse IDE, MySql database. Various off-the-

shelf solutions have been employed wherever possible in

an attempt to combine static analysis and dynamic

analysis functionalities. For that many existing utilities

were modified and incorporated in the system to work as

a single unit. The implementation setup of proposed

system comprises of router, IDS/IPS sensor, Ethernet

switch, Intranet machines and system components like

the detection system, analysis system, emulator machine

and central database as depicted in Fig. 4. The detection

server receive Internet traffic directly from the router,

detects unknown attack and passes results to a central

database. From central database the analysis system

fetches the current results and accordingly extracts binary

for further analysis in QEMU emulator.

Fig.4. Experimental Setup.

Following standard metrics were used to evaluate the

performance of our system: True Positive Rate (TPR),

False Positive Rate (FPR), F-Measure, Total Accuracy

(ACC) and Receiver Operating Characteristic (ROC)

curve. TPR is the percentage of correctly identified

malicious code. FPR is the percentage of wrongly

identified benign code. F-measure is a measure of a test‟s

accuracy by combining recall (same as TPR) and

precision scores into a single measure of performance.

ACC is the percentage of absolutely correctly identified

code, either positive or negative, divided by the entire

number of instances. In ROC curve the TPR rate is

plotted in function of the FPR for different points. The

ROC curve shows a trade-off between true positive and

false positive.

The experimental dataset comprises of 5000 samples in

total consisting of 4000 malware samples (both

obfuscated & non-obfuscated) and 1000 benign samples.

The dataset with obfuscated and unknown malware have

been collected from various sources like Honeynet

project, VX heavens [39] and other online malware

repositories. The benign data samples include application

software, system software, legitimate executables,

documents and many other user applications. These

benign samples were collected from various trusted

systems in the production network. The distribution of

benign samples are represented in Table 2.

28 A Hybrid Real-time Zero-day Attack Detection and Analysis System

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 9, 19-31

Table 2. Distribution of Benign Samples

Benign Sample Type No. of Samples

Application Software 300

System Software 250

User Applications 200

Legitimate Executables 150

Legitimate Documents 100

The distribution of malware samples both non-

obfuscated and obfuscated are shown in Table 3.

Common malware types like viruses, network worms and

trojans constitutes the major samples in the dataset. Other

types included backdoors, buffer overflow exploits and

rootkits. Some of the polymorphic exploits have been

generated using Metasploit Framework by applying

various encoding engines like Shikata ga nai, XOR

encoder and Jmp/Call Additive.

Table 3. Distribution of Zero-day Malware Samples

Malware
Type

No. of Samples Non-
Obfuscated

Obfuscated

Virus 1200 500 700

Worm 1000 400 600

Rootkit 100 50 50

Backdoor 600 250 350

Exploit 200 50 150

Trojan 900 350 550

To compute the accuracy of the proposed system both

benign and malicious packets were directed to the system

set up. These packets were included in tcpdump file for

Snort to read. The packets unknown to the system were

identified by the detection layer with few escapes. The

recorded values of TPR, FPR, Precision, Recall, F-

Measure, ACC and ROC for non-obfuscated zero-day

malware are presented in Table 4.

Table 4. Detection Accuracy for Zero-day Non-Obfuscated Malware

Malware Type
Non-Obfuscated

TPR FPR Precision Recall F-

Measure

ACC ROC

Virus 0.937 0.04 0.961 0.937 0.95 0.951 0.965

Worm 0.966 0.05 0.954 0.966 0.93 0.944 0.934

Rootkit 0.984 0.023 0.99 0.984 0.986 0.971 0.981

Backdoor 0.973 0.026 0.98 0.973 0.982 0.976 0.975

Exploit 0.984 0.032 0.968 0.984 0.983 0.985 0.982

Trojan 0.902 0.033 0.959 0.902 0.935 0.956 0.935

Same standard intrusion detection metrics were

recorded for obfuscated zero-day malware are shown in

Table 5. The overall results were very promising

achieving the best detection rate of nearly 98% with 0.02

false positive rate and in the worst case, detection rate

was 89% with 0.03 false positive rate. Thus, the proposed

system has achieved high accuracy with few (near to zero)

false positives.

Table 5. Detection Accuracy for Zero-day Obfuscated Malware

Malware Type
Obfuscated

TPR FPR Precision Recall F-

Measure

ACC ROC

Virus 0.918 0.056 0.946 0.918 0.933 0.93 0.931

Worm 0.94 0.081 0.924 0.94 0.932 0.931 0.927

Rootkit 0.966 0.033 0.97 0.966 0.961 0.964 0.956

Backdoor 0.959 0.061 0.933 0.959 0.945 0.96 0.967

Exploit 0.982 0.301 0.82 0.982 0.894 0.785 0.748

Trojan 0.898 0.035 0.96 0.898 0.928 0.945 0.935

A. Comparison with Honeynet

In this section features of proposed system are

compared with Honeynet system in Table 6. A Honeynet

is a network setup that invites attackers to compromise

the system (honeypots) and do harm in a controlled and

isolated environment, while their activities are monitored

and studied to increase network security. Honeynet has

been found effective against zero day attacks. It identifies

the mechanism of a new attack and collects evidence for

attacker‟s activities, which is later analyzed by a human

expert. This analysis is done by first preparing a toolkit

comprised of (but not limited to) physical or virtual

systems, behavioral analysis tools, code analysis tools

and online analysis tools. All such tools are run

separately with human intervention. This takes time

sometimes weeks or months and requires high expertise

to report a zero-day attack behavior. To address these

issues the proposed system provides a single automated

solution combining static and dynamic malware analysis.

On the other hand, Honeynet is not a detection system, it

only traps and monitors unknown attack activities. The

detection layer of proposed system detects zero-day

attacks against good traffic profile build from trustworthy

systems. The following comparison shows that the

proposed system is more efficient in delivering a

 A Hybrid Real-time Zero-day Attack Detection and Analysis System 29

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 9, 19-31

complete solution to zero-day attack detection and analysis.

Table 6. Comparison with Honeynet System

Techniques →

Features ↓

Honeynet System Proposed System

Known Attack

Detection

Snort in honeywall log and report

known attacks

Snort in inline mode and VirusTotal is used to

keep check on known attacks

Zero-day Attack

Detection

The unknown traffic is redirected to

honeypots to monitor interactions

between the attacker and honeypot

Utilized machine learning algorithm, 1-class

SVM to detect unknown attacks that deviate

from the good network traffic profile

Obfuscation Detection The obfuscated binary is allowed to run
on honeypot with Sebek to track

commands

Detect obfuscation in SAE and later the
binary is allowed to run on a real host.

Attack Analysis Analysis is only done manually Automated analysis: static, dynamic.

Signature Generation No Yes in ClamAV format

Response Time Manual analysis takes time to analyze

the behavior of malicious binary

Layered architecture does detection and

analysis in parallel. Further, SAE and DAE

provides detailed and useful information for
manual analysis (if required). Hence reducing

response time.

V. CONCLUSIONS AND FUTURE WORK

In this paper a hybrid real-time zero-day attack

detection and analysis system is discussed. The proposed

system is a combination of anomaly-based detection,

behavior-based detection and signature-based detection

techniques. The proposed system addresses the research

problems with existing approaches in zero-day attack

detection and analysis and tries to provide a complete

solution to the whole problem. It does so by a layered

designed where each layer is dedicated to a single

functionality and works in parallel to improve

performance. The system employs 1-class SVM as an

anomaly detection technique in detection layer to detect

zero-day attacks that diverts from the good traffic profile.

The analysis layer in the system captures both static and

dynamic behavior of malicious binaries captured in the

detection layer. The analysis stub combines both static

and dynamic malware analysis functionalities to work as

a single unit in a component based architecture where any

feature can be replaced in the future. The SAE provides

basic information to profile the malicious binary and

DAE captures run-time behavior of a malicious binary by

executing it in an emulator. The system also generates

signatures in ClamAV format.

The proposed system was evaluated by various

standard metrics. In experiments it was shown that the

system provides the best detection rate of nearly 98%

with 0.02 false positives. Furthermore, comparison with

Honeynet system depicts that the proposed system will

minimize response time to a great extend in zero-day

attack detection and analysis. In the future work it is

planned to: (1) Achieve scalability and improve

throughput of the system by detecting and analyzing

multiple zero-day binaries at a time. (2) Address

defensive measures against anti-analysis techniques like

anti-emulation and to explore multiple execution paths

for malware analysis. (3) Generate better and more

detailed signatures for zero-day obfuscated binaries in

Snort format.

ACKNOWLEDGMENT

The authors would like to thank Tata Consultancy

Services (TCS) for their support to this research work.

The authors are highly obliged to the Computer Science

and Engineering Department of Thapar University,

Patiala for rendering their incessant help in providing best

infrastructure and work-environment.

REFERENCES

[1] Symantec, “Internet Security Threat Report,” Security

Response Publications, vol. 19, April 2014.

http://www.symantec.com/content/en/us/enterprise/other_

resources/bistr_main_report_v19_21291018.en-us.pdf.

[2] Sophos, “Security Threat Report: Smarter, Shadier,

Stealthier Malware” Sophos Publications, 2014.

[3] R. Kaur and M. Singh, “A Survey on Zero-Day

Polymorphic Worm Detection Techniques”, in IEEE

Communications Surveys & Tutorials, vol. 16, no. 3, pp.

1520-1549, March 2014.

[4] W. C. Sun and Y. M. Chen, “A Rough Set Approach for

Automatic Key Attributes Identification of Zero-day

Polymorphic Worms”, in Expert Systems with

Applications: An International Journal, vol. 36, no. 3, pp.

4672-4679, April 2009.

[5] S. Almotairi, A. Clark and G. Mohay and J. Zimmermann,

“A Technique for Detecting New Attacks in Low-

Interaction Honeypot Traffic”, Proc. of the IEEE 4th

International Conference on Internet Monitoring and

Protection, Washington DC, USA, 2009, pp. 7-13.

[6] J. Song, H. Takakura and Y. Kwon, “A Generalized

Feature Extraction Scheme to Detect 0-day Attacks via

IDS Alerts”, Proc. of the IEEE International Symposium

on Applications and the Internet, Washington, DC, USA,

2008, pp. 55-61.

[7] J. Newsome, B. Karp and D. Song, “Polygraph:

Automatically Generating Signatures for Polymorphic

Worms”, Proc. of the IEEE Symposium on Security and

Privacy (S&P’05), Oakland, CA, 2005, pp. 226-241.

[8] Z. Li, M. Sanghi, Y. Chen, M.Y. Kao and B. Chavez,

“Hamsa: Fast Signature Generation for Zero-day

Polymorphic Worms with Provable Attack Resilience”,

Proc. of the IEEE Symposium on Security and Privacy

(S&P’06), Berkeley/Oakland, CA, 2006, pp. 15-47.

[9] G. Portokalidis and H. Bos, “SweetBait: Zero-hour Worm

Detection and Containment using Low-and High-

Interaction Honeypots”, in Computer Networks: The

International Journal of Computer and

30 A Hybrid Real-time Zero-day Attack Detection and Analysis System

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 9, 19-31

Telecommunications Networking, vol. 51, no. 5, pp. 1256-

1274, April 2007.

[10] C. Kruegel, E. Kirda, D. Mutz, W. Robertson and G.

Vigna, “Polymorphic Worm Detection using Structural

Information of Executables”, Proc. of the LNCS Springer

8th International Symposium on Recent Advances in

Intrusion Detection (RAID’05), Seattle, 2005, pp. 207-227.

[11] L. Wang, Z. Li, Y. Chen, Z. Fu and X. Li, “Thwarting

Zero-day Polymorphic Worms with Network-level

Length-based Signature Generation”, in IEEE/ACM

Transactions on Networking (TON), vol. 18, no. 1, pp. 53-

66, February 2010.

[12] M. Polychronakis, K. G. Anagnostakis and E. P. Markatos,

“Network-level Polymorphic Shellcode Detection using

Emulation”, in Journal in Computer Virology, vol. 2, no.

4, pp. 257-274, July 2006.

[13] A. Abbasi, J. Wetzels, W. Bokslag, E. Zambon and S.

Etalle, “On Emulation-Based Network Intrusion Detection

Systems”, Proc. of the LNCS, Springer 17th International

Symposium on Research in Attacks, Intrusions and

Defenses (RAID’14), Gothenburg, Sweden, 2014, pp. 384-

404.

[14] C. Ting, Z. Xiaosong and L. Zhi, “A Hybrid Detection

Approach for Zero-day Polymorphic Shellcodes”, Proc. of

the IEEE International Conference on E-Business and

Information System Security, Wuhan, 2009, pp. 1-5.

[15] P. Jain and A. Sardana, “Defending against Internet

Worms using Honeyfarm”, Proc. CUBE International

Information Technology Conference (CUBE’12), Pune,

India, 2012, pp. 795-800.

[16] M. Alazab, S. Venkatraman, P. Watters and M. Alazab,

“Zero-day Malware Detection based on Supervised

Learning Algorithms of API call Signatures”, Proc. 9th

Australasian Data Mining Conference (AusDM’11),

Ballarat, Australia, 2011, pp. 171-182.

[17] A. AlEroud and G. Karabatis, “A Contextual Anomaly

Detection Approach to Discover Zero-Day Attacks”, Proc.

IEEE International Conference on Cyber Security

(CYBERSECURITY’12), Washington, DC, 2012, pp. 40-

45.

[18] A. AlEroud and G. Karabatis, “Detecting Zero-Day

Attacks Using Contextual Relations”, Proc. of the LNBIP,

Springer 9th International Conference on Knowledge

Management in Organizations (KMO’14), Santiago, Chile,

2014, pp. 373-385.

[19] A. AlEroud and G. Karabatis, “Toward Zero-Day Attack

Identification Using Linear Data Transformation

Techniques”, Proc. 7th IEEE International Conference on

Software Security and Reliability (SERE'13), Gaithersburg,

MD, 2013, pp. 159-168.

[20] P. M. Comar, L. Liu, S. Saha, P. N. Tan and A. Nucci,

“Combining supervised and unsupervised learning for

zero-day malware detection”, Proc. of the IEEE

INFOCOM'13, Turin, 2013, pp. 2022–2030.

[21] J. Song, H. Takakura, Y. Okabe and Y. Kwon,

“Unsupervised Anomaly Detection Based on Clustering

and Multiple One-class SVM”, in IEICE Transactions on

Communications, vol. E92-B, no. 6, pp.1981–1990, June

2009.

[22] J. Song, H. Takakura, Y. Okabe and K. Nakao, “Toward a

More Practical Unsupervised Anomaly Detection System”,

in Information Sciences, vol. 231, pp. 4-14, May 2013.

[23] G. Kim, S. Lee and S. Kim, “A novel hybrid intrusion

detection method integrating anomaly detection with

misuse detection”, in Expert Systems with Applications,

vol. 41, no. 4, pp. 1690–1700, March 2014.

[24] I. Santos, F. Brezo, X. Ugarte-Pedrero and P. G. Bringas,

“Opcode sequences as representation of executables for

data-mining-based unknown malware detection”, in

Information Sciences, vol. 231, pp. 64–82, May 2013.

[25] L. Cavallaro, A. Lanzi, L. Mayer and M. Monga,

“LISABETH: Automated Content-based Signature

Generator for Zero-day Polymorphic Worms”, Proc. of

the ACM 4th International Workshop on Software

Engineering for Secure Systems, Leipzig, German, 2008,

pp. 41-48.

[26] M. M. Z. E. Mohammed, H. A. Chan and N. Ventura,

“Honeycyber: Automated Signature Generation for Zero-

day Polymorphic Worms”, Proc. of the IEEE Military

Communications Conference (MILCOM’ 2008), San

Diego, CA, 2008, pp. 1-6.

[27] M. M. Z. E. Mohammed, H. A. Chan, N. Ventura, M.

Hashim, I. Amin and E. Bashier, “Detection of Zero-day

Polymorphic Worms using Principal Component

Analysis”, Proc. of the IEEE 6th International Conference

on Networking and Services, Cancun, 2010, pp. 277-281.

[28] I. Kim, D. Kim, B. Kim, Y. Choi, S. Yoon, J. Oh and J.

Jang, “A Case Study of Unknown Attack Detection

against Zero-day Worm in the Honeynet Environment”,

Proc. of the IEEE 11th International Conference on

Advanced Communication Technology (ICACT’ 2009),

Phoenix Park, 2009, pp. 1715-1720.

[29] M. Polychronakis, K. G. Anagnostakis and E. P. Markatos,

“Emulation-based Detection of Non-self-contained

Polymorphic Shellcode”, Proc. of the LNCS Springer 10th

International Conference on Recent Advances in Intrusion

Detection (RAID’07), Gold Goast, Australia, 2007, pp.

87-106.

[30] C. Leita and M. Dacier, SGNET: A Distributed

Infrastructure to Handle Zero-day Exploits, Technical

Report EURECOM+2164, EURECOM institute, France,

2007.

[31] H. Lu, X. Wang, B. Zhao, F. Wang and J. Su, “ENDMal:

An anti-obfuscation and collaborative malware detection

system using syscall sequences”, in Mathematical and

Computer Modelling, vol. 58, no. 5, pp. 1140–1154,

September 2013.

[32] Y. Hou, J.W. Zhuge, D. Xin and W. Feng, “SBE - A

Precise Shellcode Detection Engine Based on Emulation

and Support Vector Machine”, Proc. of the LNCS,

Springer 10th International Conference on Information

Security Practice and Experience (ISPEC’14), Fuzhou,

China, 2014, pp. 159-171.

[33] M. Zolotukhin and T. Hamalainen, “Detection of zero-day

malware based on the analysis of opcode sequences”,

Proc. of the IEEE 11th International Conference on

Consumer Communications and Networking Conference

(CCNC’14), Las Vegas, Nevada, USA, 2014, pp. 386-391.

[34] M. Roesch, “Snort lightweight intrusion detection for

networks”, Proc. of the 13th Systems Administration

Conference USENIX LISA’99, Seattle, Washington, USA,

1999, pp. 229–238.

[35] V. Vapnik, The nature of statistical learning theory,

Springer Verlag, 1999.

[36] V. Vapnik, Statistical Learning Theory, Wiley-

Interscience, 1998.

[37] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola and R.

Williamson, “Estimating the support of a high-

dimensional distribution”, in Neural Computation, vol. 13,

no. 7, pp. 1443-1471, 2001.

[38] VirusTotal, Public API v2.0, VirusTotal Community,

https://www.virustotal.com/en/documentation/public-api/.

[39] VX Heavens, VX Heavens Site, http://vxheaven.org/.

[40] R. Kaur and M. Singh, “Automatic Evaluation and

 A Hybrid Real-time Zero-day Attack Detection and Analysis System 31

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 9, 19-31

Signature Generation Technique for Thwarting Zero-Day

Attacks”, in Recent Trends in Computer Networks and

Distributed Systems Security, CCIS, vol. 420, pp. 298-309,

March 2014.

[41] R. Kaur and M. Singh, “Two-Level Automated Approach

for Defending Against Obfuscated Zero-Day Attacks”, in

Risks and Security of Internet and Systems, LNCS, vol.

8924, pp 164-179, April 2015.

Authors’ Profiles

Ratinder Kaur is a PhD scholar at Thapar

University carrying out her research in the

field of Network Security. She holds strong

academic record. She received her

Bachelor's Degree from Punjab Technical

University and holds a Master's Degree,

with honors in Software Engineering from

Thapar University. She showcases strong

inclination towards Computer Security field which is evident

from her master thesis on Operating System fingerprinting, for

which she won TCS (Tata Consultancy Services) Best Student

Project Award, and now exploring Zero-day attack frontiers.

Email: ratinder.kaur@thapar.edu.

Maninder Singh received his Bachelor's

Degree from Pune University in 1994, and

holds a Master's Degree, with honors in

Software Engineering from Thapar Institute

of Engineering & Technology, as well as a

Doctoral Degree specialization in Network

Security from Thapar University. He is

currently working as Associate Professor in

Computer Science and Engineering Department at Thapar

University. Dr. Singh is on the Roll-of-honour at EC-Council

USA, being certified as Ethical Hacker (C|EH), Security

Analyst (ECSA) and Licensed Penetration Tester (LPT). Dr.

Singh has successfully completed many consultancy projects for

renowned national bank(s). His research interests include

network security and grid computing, and he is a torchbearer for

the open source community. He can be reached at,

msingh@thapar.edu.

How to cite this paper: Ratinder Kaur, Maninder Singh,"A Hybrid Real-time Zero-day Attack Detection and Analysis

System", IJCNIS, vol.7, no.9, pp.19-31, 2015.DOI: 10.5815/ijcnis.2015.09.03

