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Abstract—Linear-bounded automata (LBA) accept 

context-sensitive languages (CSLs) and CSLs are 

generated by context-sensitive grammars (CSGs). So, for 

every CSG/CSL there is a LBA. A CSG is converted into 

normal form like Kuroda normal form (KNF) and then 

corresponding LBA is designed. There is no algorithm or 

theorem for designing a linear-bounded automaton (LBA) 

for a context-sensitive grammar without converting the 

grammar into some kind of normal form like Kuroda 

normal form (KNF). I have proposed an algorithm for 

this purpose which does not require any modification or 

normalization of a CSG.  

 

Index Terms—Context-sensitive Grammars (CSGs), 

Context-sensitive Languages (CSLs), Linear-Bounded 

Automata (LBA), Replaceable Sentence (RS). 

 

I.  INTRODUCTION 

Phrase-structured grammars were proposed by N. 

Chomsky [1] and there are four types of grammars: Type 

0 to Type 3. There are four types of languages 

corresponding to four types of grammar. These languages 

are known as recursive enumerable (Type 0), context-

sensitive (Type 1), context-free (Type 2) and regular 

(Type 3). There are different automata proposed to 

recognize these languages. For example, context-sensitive 

languages are recognized by linear-bounded automata 

(LBA) [2, 3, 4].  

 

 
Tape 

Finite Control 

Read/Write Head (L, R, S) 

 

$                     

Fig.1. Model of Linear Bounded Automaton 

A linear bounded automaton (LBA) is multi-track 

single tape Turing machine (TM) and its input tape length 

is in proportion of the input. The model of linear bounded 

automata (LBA) is shown in Fig. 1. It possesses a single 

track tape made up of cells that can contain symbols from 

an alphabet, a head that can read and write on the tape. 

The head moves left or right on the tape utilizing finite 

number of states. A finite contiguous portion of the tape 

whose length is a linear function of the length of the 

initial input can be accessed by the read/write head. This 

limitation makes LBA a more accurate model of 

computers that actually exists than a Turing machine in 

some respects. 

LBA are designed to use limited storage (limited tape). 

So, as a safety feature, we shall employ end markers 

($ on the left and  on the right) on tape and the head 

never goes past these markers.  This will ensure that the 

storage bound is maintained and helps to keep LBA from 

leaving their tape. In case of multi-track tape, the first 

track is used for input always and other tracks are used 

for processing the input. But it does not mean that first 

track is read-only. Linear bounded automata can read and 

write on either of the tracks of the tape. 

Linear bounded automata can be described by 5-tuples 

(Q, , , s, F), where 

 

(1) Q is the finite and non-empty set of states,  

(2)  is the alphabet containing the blank symbol (), 

two end markers symbols „$‟ and „‟, but not containing 

the symbols L (left), R (right), and S(static). Symbols 

from this alphabet can be read or write (excluding end 

markers) on the tape, 

(3)  is the transition function which maps from  

Q(ti) to (Q((ti) {L, R, S}), where ti is the track 

on which symbol is to be read and write, 

(4) sQ, it is the initial state or starting state, 

(5) FQ, it is the finite and non-empty set of final 

states 

 

The configuration of a LBA, M=(Q, , , s, F)  defined 

as a member of  

 

Q*(*-{}), where  stands for blank 

 

In other words, a configuration for single track LBA 

consist of present state, w1, a, and w2 where input string 

w=w1aw2 and symbol a is the present input symbol under 

the head, w1 is already read substring and w2 is the 

substring after the head. For example, (s, aa, a, ), (q, 

abab, b, aba) are two valid configurations. Suppose, if 

transition (s, a)=(q, b, R) then we have following 

relation  

     (s, $, a, bw)    
 

M     (q, $a, b, w) 
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where $ and  are left and right end markers respectively 

of the tape  

If string w* is accepted by some LBA M if the head 

of M reaches the rightmost cell on the tape and 

processing ends in one of the final states. If the 

processing not ends in some of final states (F), the string 

is rejected. Such LBA are known as deterministic LBA 

(DLBA) by the definition given by J. Myhill [2]. The set 

of all strings accepted by M is known as language 

accepted by M also represented by L(M). The transition 

function of M is multivalued, in other words, for certain 

input symbol there is one or more transition. Such LBA 

are known as nondeterministic LBA (NLBA). We then 

mean by a string accepted by NLBA M, for which there 

is a processing of M which, given the string as an input 

ends up off the right end of the tape in a final state. On 

the other hand, a string w is said to be rejected by NLBA 

M if one of the following conditions occurs: 

 

(1) Processing never ends 

(2) Ends up off the left end of the tape 

(3) Finally ends up off the right end of the tape in 

non-final state 

 

The strings accepted by NLBA M are known as the 

languages accepted by M and the strings rejected by M 

are called the languages rejected by M. It is important to 

know that because of the non-determinacy characteristic 

of NLBA M, a certain string can be accepted or rejected 

both by M.  When we say LBA it means NLBA in the 

rest of this chapter. So, readers are advised not to be 

confused about this unless it is specified.   

Generally, LBA are non-deterministic automata. LBA 

are accepters for the class of context-sensitive languages. 

The only restriction placed on grammars for such 

languages is that no production maps a string to a shorter 

string. Thus no derivation of a string in a context-

sensitive language can contain a sentential form longer 

than the string itself. Since there is a one-to-one 

correspondence between linear-bounded automata and 

such grammars, no more tape than that occupied by the 

original string is necessary for the string to be recognized 

by the automata. 

 

II.  RELATED WORK 

First time in 1960, John Myhill introduced the notion 

of deterministic linear bounded automata (DLBA) [2]. In 

1963, Peter S. Landweber proved that the languages 

accepted by DLBA are context-sensitive languages [3]. In 

1964, S. Y. Kuroda in his paper titled “Classes of 

Languages of & Linear-Bounded Automata”, Information 

and Control Journal, Vol. 7, pages 207-223 introduced 

the more general model which is known as 

nondeterministic linear bounded automata (NLBA) and 

showed that the languages accepted by NLBA are 

precisely the context-sensitive languages [4]. Later on so 

many research papers are published on LBA describing 

the decidability and undecidability problems.  By 

combining the findings for Landweber [3] and Kuroda [4], 

we say that a language is context-sensitive if and only if it 

is accepted by some linear-bounded automaton. But there 

is a requirement associated with the Kuroda‟s theorem [4]. 

The grammar should be in a normal form which is known 

as Kuroda normal form (KNF). Kuroda [4] showed that a 

context-sensitive grammar can be converted into linear-

bounded grammar and there is a linear-bounded 

automaton for it. There are many steps involved in 

conversion of a context-sensitive grammar into linear-

bounded grammar namely 

 

(1) Converting the given grammar into order 2, 

(2) Converting order 2 grammar into length 

preserving grammar, and 

(3) Converting length preserving grammar into linear-

bounded grammar 

 

The grammar G is said to be of order n if there appears 

no string of length greater than n in any production rule 

of the G. Kuroda proved that any context-sensitive 

grammar can be reduced to equivalent order 2 context-

sensitive grammar [4].  

A context-sensitive grammar is length-preserving if 

for any production rule , it satisfies either of the 

following two conditions: 

 

(1)  is the initial symbol 

(2)  does not contain the initial symbol and lengths 

of  and  are equal 

 

A context-sensitive grammar G is linear-bounded if it 

satisfies following conditions: 

 

(1) G is order 2 

(2) Length preserving and 

(3) Production rule SEF shows E=S, where S is the 

initial symbol of G 

 

Lemma 1 (Kuroda Normal Form): For any context-

sensitive grammar G of order 2, there exists a linear-

bounded grammar G1 equivalent to G. 

Proof: Let given grammar G=(Vn, , P, S) and 

equivalent linear-bounded grammar G1=(V1, , P1, S1). 

We defined the set of variables V1=Vn{S1, Q} where Q 

is new variable and S1 is initial symbol. The production 

rules of G1 are defined by rules R1, R2 and R3 [4]. 

 

Rule R1: New production rules to derive initial 

symbol of G 

S1S1Q, 

S1S   where S is the initial symbol of G 

Rule R2: New production rules for all symbols in 

(Vn) 

QQ, 

QQ  where (Vn) 

Rule R3: For given production rules of G 

 AB  if AB is a rule in G, 

 ABCD if ABCD is a rule in G, 

 AQBC if ABC is a rule in G
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All the production rules of G1 are linear-bounded. If G1 

derives string w*, it means   
 
⇒ . It follows  

 
⇒  

from rule R1. Therefore, L(G1)L(G). If the string w is 

derived by G then  
 
⇒  it means SQ

n
w is in G1. So 

by applying R1, we have   
 
⇒ . It means L(G)L(G1). 

Therefore, grammars G and G1 are equivalent. 

There is a proposal by Hoffcroft and Ullman [5] to 

design a linear-bounded automaton for a given context-

sensitive grammar. The proposed LBA is two tracks 

automaton where the 1
st
 track is used to hold the input 

and 2
nd

 track is used to simulate the derivation of the 

given input applying the production rules of the grammar. 

But authors have not discussed in details how the 

derivation of the given string can be simulated on 2
nd

 

track. There are many concerns over the proposed model. 

For example, how intermediate sentential forms will be 

hold, how content on 2
nd

 track will be shifted, how LBA 

recognize the variables to be replaced, etc.  

I have proposed an algorithm to design a linear-

bounded automaton for a context-sensitive grammar 

without converting the grammar into a normal form. The 

rest of the paper is organized as follows. Section III 

contains the proposed algorithm. Section IV contains the 

illustration based on the proposed algorithm and section 

V contains the conclusion and future study. 

 

III.  THE PROPOSED ALGORITHM 

Let context-sensitive (Type 1) grammar G = (Vn, , P, 

S) has production rule of the form  

 such that  where , (Vn)
*
 and  

has at least one element from Vn 

Production rule S (null) is there in G if S does not 

appear on right hand side of any production rule in G [5, 

6, 7, 8, 9, 10].  

Four tracks linear-bounded automaton M is used to 

simulate the derivation of a string produced by the 

context-sensitive grammar (CSG) G. The length of the 

tape is in order of the length of the input string. The first, 

second, third, and fourth tracks are used for input string, 

derivation using production rules of G, replacement, and 

replaceable sentence (RS) respectively. 

Let us see the meaning and use of the terms derivation, 

replacement, and replaceable sentence (RS). Suppose P 

includes production rules {SabcaSAc, cAAc, 

bAbb} where S, AVn, and a, b, c. The string 

w=aabbcc is produced by grammar G: 

Table 1. Derivation, Replacement, and Replaceable Sentence 

Production Derivation Replacement Replaceable 

Sentence (RS) 

SaSAc aSAc aSAc S 

aabcAc aabcAc abc S 

aabAcc aabAcc Ac cA 

 aabbcc aabbcc bb bA 

 

It is clear from the above table that the suitable right 

hand side of a production rule is considered as 

replacement and the left hand side of the that production 

rule is considered as replaceable sentence (RS).  

Suppose LBA M=(Q, 1, , s, F) where 1=Vn{#} 

The LBA M is implemented based on the following 

algorithm. 

Algorithm 1 (Context-sensitive Grammar G, Linear 

Bounded Automaton M) 

 

(1) Input string is written on 1
st
 track. The initial 

symbol S is written on 2
nd

 track and 3
rd

 and 4
th

 

tracks are blank. 

(2) Repeat 

 

(i) Read the 2
nd

 track from the left end and find out 

replaceable sentence (RS) and write on the 4
th

 

track. 

(ii) Write right hand side of the RS on 3
rd

 track. 

(iii) Write content of 2
nd

 track which is after RS on 

the 3
rd

 track. If overflow occurs then EXIT with 

message “NOT ACCEPTED”. 

(iv)  Replace the RS on 2
nd

 track by the content of 3
rd

 

track.  

(v) Compare the contents of 1
st
 and 2

nd
 tracks. If 

contents are same then EXIT with message 

“ACCEPTED”. 

(vi) Make the 3
rd

 and 4
th

 tracks blank. 

 

It is clear from the above algorithm that M tries to 

simulate the right derivation for the input string on 2
nd

 

track. The 3
rd

 track is used to hold the replacement for a 

RS. The 4
th

 track is used to hold the current RS and find 

out the position of RS on the 2
nd

 track. Without is it the 

steps in 2(iii) and 2(iv) of the proposed algorithm will not 

function correctly. Each time step 2(v) is executed, the 

contents of 1
st
 and 2

nd
 tracks are compared and if matched 

then LBA M accepts the input string. If overflow occurs 

in step 2(iii) then LBA terminates the process and string 

is rejected.  

Theorem 1: If G=(Vn, , P, S) is a context-sensitive 

grammar (CSG) then there is a linear bounded automaton 

(LBA) M which accepts L(G). 

Proof:  Suppose the G=(Vn, , P, S) where Vn is non-

empty finite set of variables,  is non-empty finite set of 

terminals, P is finite non-empty set of production rule and 

S is the starting symbol. LBA M implements the 

algorithm 1 as discussed above. Suppose there are n 

production rules of G and these are named as p1, p2, 

p3, …, pn such that  

 

pi: ii, PLi=i, PRi=i where i, i (Vn)* and i 

has at least one element from Vn. 

 

The starting symbol S is placed on 2
nd

 and 4
th
 tracks of 

M and suppose the right hand side PRi of S is placed on 

3
rd

 track provided that SPRi is in G. M selects 

replacement from PRi on 2
nd

 track and suppose the said 

replacement is PLj such that 

 

S1PLj1  PRi where 1, 1(Vn)* 
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The replaceable sentence PLj is replaced on 2
nd

 track, 

that is, 1PRj1 where PLjPRj is in G. This process is 

executed again and again till overflow occurs on 2
nd

 track 

or input on 1
st
 track is matched with content of 2

nd
 track.  

Suppose the input string is derived the given grammar 

G in m-steps (m1) such that  

 

S1PLi12PLj23PLk3… 

mPLqm  w, where i, i (Vn)* and 1im. 

 

The contents on 2
nd

 track after execution of step (2) of 

the proposed algorithm 1 are 1PLi1, 2PLj2, 

3PLk3…, mPLqm. So, the step followed by LBA M is 

the same as adapted by the grammar G while producing 

the input string w. Since LBA M is non-deterministic 

automaton, so M can produce either the output 

“Acceptance” or “Rejection” for the same input. But it is 

believed that M follows the right replacement as adapted 

by the given grammar G. Therefore, the statement of the 

theorem is proved.  

The length of the derivation for a string w does not go 

beyond the length of the string w. So, the length of tape is 

in order of the length of the input string. If the length of 

derivation on 2
nd

 track goes beyond the length of the 

input string, it means either string w is not derived by G 

or LBA M does not follow the right replaceable sentence.  

The space and time complexity of the LBA M are O(n) 

and O(nm) respectively where n  and m are length of 

input string and number of production rules in G 

respectively. 

Lemma 1: If L is a context-sensitive language then 

there exists a linear bounded automaton M which accepts 

it. 

Proof: Since for a context-sensitive language there is a 

context-sensitive grammar which generates it and it has 

been proved in algorithm 1 that languages generated by a 

context-sensitive grammar is recognized by a linear 

bounded automaton. Therefore the statement of the 

theorem is proved. 

Lemma 2: If L1 and L2 are two context-sensitive 

languages then union of L1 and L2 is also a context-

sensitive language (CSL). 

Proof: We can prove it by using linear-bounded 

automata for L1 and L2. Let L1 and L2 are accepted by 

LBA M1 and M2 respectively as shown in Fig. 2(a) and 

Fig. 2(b). LBA M1 and M2 are designed based on the 

proposed algorithm. We construct a third LBA M3 which 

follows either M1 or M2 as shown in Fig. 2(c) [5, 10]. 

LBA M3 accepts a string if either M1 accepts or M2 

accepts and rejects if either M1 rejects or M2 rejects. We 

can build LBA M3 as a two tracks automaton. First and 

second tracks are used to simulate the behavior of M1 and 

M2 respectively.  Obviously the language accepted by the 

M3 is CSL. Therefore, union of two contest-sensitive 

languages is also contest-sensitive. 

 

 

Fig.2(a). LBA M1 

 

Fig.2(b). LBA M2 

 

Input 
M1 

M2 

Accept 

Accept 

Reject 

Reject 

Accept 

Reject 

 
 

Fig.2(c). LBA M3 

Lemma 3: If G1 and G2 are two context-sensitive 

grammars (CSGs) then union of G1 and G2 is also a 

context-sensitive grammar. 

Proof: (See the Lemma 1 and Lemma 2) 

 

IV.  ILLUSTRATION 

Let us consider the context-sensitive grammar G=({S, 

A}, {a, b, c}, {SabcaSAc, cAAc, bAbb}, S).  

The LBA M=(Q, {a, b, c, S, A, #}, , s, F) be the 

automaton which accepts L(G). The production of the 

input string w=aabbcc by the grammar G is below: 

Table 2. Context-sensitive Grammar 

 
 

Suppose the input string w=aabbcc is successfully 

accepted by LBA M. LBA M is implemented on above 

proposed algorithm. The tape contents in each step are 

given below: 

Table 3. Contents after steps 1 and 2(i) 

 1 2(i) 

1st Track $aabbcc $aabbcc 

2nd Track $S $S 

3rd Track   

4th Track  $S 

 

Initially, the start symbol S is placed on 2
nd

 track and 

input is on the 1
st
 track. In step 2(i), the replaceable (RS) 

content on 2
nd

 track is copied on 4
th

 track. It means, start 

symbol S is copied on 4
th

 track. 

Table 4. Contents after steps 2(i)  and 2(ii) 

 2(ii) 2(iii) 

1st Track $aabbcc $aabbcc 

2nd Track $S $S 

3rd Track $aSAc $aSAc 

4th Track $S $S 

 

The right hand side of RS (2
nd

 track) is placed on the 

3
rd

 track in step 2(ii). It means aSAc is copied on 3
rd

 track. 

Input 
M1 

Accept 

Reject 

Input 
M2 

Accept 

Reject 

Production Production Rule Used 

SaSAc SaSAc 

aabcAc Sabc 

aabAcc cAAc 

aabbcc bAbb 
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In step 2(iii), the content of 2
nd

 track after RS is copied on 

the 3
rd

 track. There is nothing to be copied and hence 

there is no question of overflow. 

Table 5. Contents after steps  2(iv)  and 2(v) 

 2(iv) 2(v) 

1st Track $aabbcc $aabbcc 

2nd Track $aSAc $aSAc 

3rd Track $aSAc $aSAc 

4th Track $S $S 

 

In step 2(iv), RS on 2
nd

 track is replaced by content of 

3
rd

 track. Now, the contents of 1
st
 and 2

nd
 track are 

compared for possible production of the input string.  We 

observe that contents of 1
st
 and 2

nd
 tracks are not equal 

and length of input is greater than the length of content on 

2
nd

 track. So, LBA M can further search for possible 

replacement. This is the completion of first round of 

production. 

Table 6. Contents after steps 2(vi) and 2(i) 

 2(vi) 2(i) 

1st Track $aabbcc $aabbcc 

2nd Track $aSAc $aSAc 

3rd Track   

4th Track  $S 

 

If the desired string is not produced, the 3
rd

 and 4
th

 

tracks are made blank. But contents of 2
nd

 and 3
rd

 tracks 

are unchanged.  In next round, possible replaceable 

sentence (RS) is selected from 2
nd

 track and written on 4
th

 

track which is S.  

Table 7. Contents after steps 2(ii)  and 2(iii) 

 2(ii) 2(iii) 

1st Track $aabbcc $aabbcc 

2nd Track $aSAc $aSAc 

3rd Track $abc $abcAc 

4th Track $S $S 

 

In step 2(ii), the suitable right hand side of the RS is 

placed on the 3
rd

 track which is abc. The content of 2
nd

 

track after RS (Ac) is copied on the 3
rd

 track in step 2(iii). 

Since there is no overflow, so LBA M can proceed 

further. 

Table 8. Contents after steps 2(iv) and 2(v) 

 2(iv) 2(v) 

1st Track $aabbcc $aabbcc 

2nd Track $aabcAc $aabcAc 

3rd Track $abcAc $abcAc 

4th Track $S $S 

 

In step 2(iv), the RS on the 2
nd

 track is replaced by 

content of 3
rd

 track (abcAc).  Now, the contents of 1
st
 and 

2
nd

 track are compared for possible production of the 

desired string in step 2(v). The contents of 1
st
 and 2

nd
 

tracks are not equal, so LBA M can proceed further. 

 

 

 

Table 9.Contents after steps 2(vi)  and 2(i) 

 2(vi) 2(i) 

1st Track $aabbcc $aabbcc 

2nd Track $aabcAc $aabcAc 

3rd Track   

4th Track  $cA 

 

LBA M makes the 3
rd

 and 4
th

 tracks blank in step 2(vi). 

Now in step 2(i), M finds RS (cA) on 2
nd

 track and writes 

is on 4
th

 track.  

Table 10. Contents after steps  2(ii)  and 2(iii) 

 2(ii) 2(iii) 

1st Track $aabbcc $aabbcc 

2nd Track $aabcAc $aabcAc 

3rd Track $Ac $Acc 

4th Track $cA $cA 

 

In step 2(ii), LBA M finds the right hand side of RS 

and writes on 3
rd

 track. LBA M copies the content after 

RS of 2
nd

 on the 3
rd

 track in step 2(iii). There is no 

overflow, so M can proceed further. 

Table 11. Contents after steps  2(iv)  and 2(v) 

 2(iv) 2(v) 

1st Track $aabbcc $aabbcc 

2nd Track $aabAcc $aabAcc 

3rd Track $Acc $Acc 

4th Track $cA $cA 

 

Now, M replaces the RS and content after RS on 2
nd

 

track by the content of 3
rd

 track in step 2(iv).  In step 2(v), 

M compares the contents of 1
st
 and 2

nd
 tracks and finds 

that contents are not equal. So, M can proceed further. 

Table 12. Contents after steps  2(vi)  and 2(i) 

 2(vi) 2(i) 

1st Track $aabbcc $aabbcc 

2nd Track $aabAcc $aabAcc 

3rd Track   

4th Track  $bA 

 

LBA M makes the 3
rd

 and 4
th

 tracks blank in step 2(vi). 

LBA M searches for suitable RS on 2
nd

 track and writes 

on 4
th

 track in step 2(i). At this stage, RS is bA. 

Table 13. Contents after steps  2(ii)  and 2(iii) 

 2(ii) 2(iii) 

1st Track $aabbcc $aabbcc 

2nd Track $aabAcc $aabAcc 

3rd Track $bb $bbcc 

4th Track $bA $bA 

 

LBA M finds the right hand side of the RS (bAbb) 

and places it on 3
rd

 track in step 2(ii). LBA M copies the 

content after RS of 2
nd

 on the 3
rd

 track in step 2(iii). There 

is no overflow, so M can proceed further. 
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Table 14. Contents after steps  2(iv)  and 2(v) 

 2(iv) 2(v) 

1st Track $aabbcc $aabbcc 

2nd Track $aabbcc $aabbcc 

3rd Track $bbcc $bbcc 

4th Track $bA $bA 

 

Now, M replaces the RS and content after RS on 2
nd

 

track by the content of 3
rd

 track in step 2(iv).  In step 2(v), 

M compares the contents of 1
st
 and 2

nd
 tracks and finds 

that contents are equal. So, M accepts the input and stops.  

Therefore, we say the LBA M simulates the derivation 

the input string.  

 

V.  CONCLUSION AND FUTURE STUDY 

I have proposed an algorithm to design a linear-

bounded automaton (LBA) for a context-free grammar 

(CSG) without converting the grammar into a normal 

form. It avoids many steps in designing of linear bounded 

automata as compare to the proposal made by S. Y. 

Kuroda in 1964. The proposed algorithm exploits the 

nondeterminacy characteristic of the linear-bounded 

automata and selects an appropriate replacement while 

simulating the derivation of the input string. If 

appropriate replacement is not selected by a linear-

bounded automaton, the input might be rejected even it is 

acceptable. So, an input string can be accepted or rejected 

both depending on the choice of replacement sentence 

(RS) considered by the linear-bounded automaton. For 

example, referring to the illustration discussed in Section 

IV, the string w=aabbcc will be rejected by the LBA M if 

LBA M selects the production rule Sabc at very first 

step. So, how to minimize wrong selection of production 

rules and RS by a LBA can be considered as further study. 
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