
I. J. Computer Network and Information Security, 2016, 1, 61-66
Published Online January 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2016.01.08

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 1, 61-66

Context-Sensitive Grammars and Linear-

Bounded Automata

Prem Nath
The Patent Office, CP-2, Sector-5, Salt Lake, Kolkata-700091, India

Email: pmnath26@gmail.com

Abstract—Linear-bounded automata (LBA) accept

context-sensitive languages (CSLs) and CSLs are

generated by context-sensitive grammars (CSGs). So, for

every CSG/CSL there is a LBA. A CSG is converted into

normal form like Kuroda normal form (KNF) and then

corresponding LBA is designed. There is no algorithm or

theorem for designing a linear-bounded automaton (LBA)

for a context-sensitive grammar without converting the

grammar into some kind of normal form like Kuroda

normal form (KNF). I have proposed an algorithm for

this purpose which does not require any modification or

normalization of a CSG.

Index Terms—Context-sensitive Grammars (CSGs),

Context-sensitive Languages (CSLs), Linear-Bounded

Automata (LBA), Replaceable Sentence (RS).

I. INTRODUCTION

Phrase-structured grammars were proposed by N.

Chomsky [1] and there are four types of grammars: Type

0 to Type 3. There are four types of languages

corresponding to four types of grammar. These languages

are known as recursive enumerable (Type 0), context-

sensitive (Type 1), context-free (Type 2) and regular

(Type 3). There are different automata proposed to

recognize these languages. For example, context-sensitive

languages are recognized by linear-bounded automata

(LBA) [2, 3, 4].

Tape

Finite Control

Read/Write Head (L, R, S)

$ 

Fig.1. Model of Linear Bounded Automaton

A linear bounded automaton (LBA) is multi-track

single tape Turing machine (TM) and its input tape length

is in proportion of the input. The model of linear bounded

automata (LBA) is shown in Fig. 1. It possesses a single

track tape made up of cells that can contain symbols from

an alphabet, a head that can read and write on the tape.

The head moves left or right on the tape utilizing finite

number of states. A finite contiguous portion of the tape

whose length is a linear function of the length of the

initial input can be accessed by the read/write head. This

limitation makes LBA a more accurate model of

computers that actually exists than a Turing machine in

some respects.

LBA are designed to use limited storage (limited tape).

So, as a safety feature, we shall employ end markers

($ on the left and  on the right) on tape and the head

never goes past these markers. This will ensure that the

storage bound is maintained and helps to keep LBA from

leaving their tape. In case of multi-track tape, the first

track is used for input always and other tracks are used

for processing the input. But it does not mean that first

track is read-only. Linear bounded automata can read and

write on either of the tracks of the tape.

Linear bounded automata can be described by 5-tuples

(Q, , , s, F), where

(1) Q is the finite and non-empty set of states,

(2)  is the alphabet containing the blank symbol (),

two end markers symbols „$‟ and „‟, but not containing

the symbols L (left), R (right), and S(static). Symbols

from this alphabet can be read or write (excluding end

markers) on the tape,

(3)  is the transition function which maps from

Q(ti) to (Q((ti) {L, R, S}), where ti is the track

on which symbol is to be read and write,

(4) sQ, it is the initial state or starting state,

(5) FQ, it is the finite and non-empty set of final

states

The configuration of a LBA, M=(Q, , , s, F) defined

as a member of

Q*(*-{}), where  stands for blank

In other words, a configuration for single track LBA

consist of present state, w1, a, and w2 where input string

w=w1aw2 and symbol a is the present input symbol under

the head, w1 is already read substring and w2 is the

substring after the head. For example, (s, aa, a, ), (q,

abab, b, aba) are two valid configurations. Suppose, if

transition (s, a)=(q, b, R) then we have following

relation

 (s, $, a, bw)

M (q, $a, b, w)

62 Context-Sensitive Grammars and Linear-Bounded Automata

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 1, 61-66

where $ and  are left and right end markers respectively

of the tape

If string w* is accepted by some LBA M if the head

of M reaches the rightmost cell on the tape and

processing ends in one of the final states. If the

processing not ends in some of final states (F), the string

is rejected. Such LBA are known as deterministic LBA

(DLBA) by the definition given by J. Myhill [2]. The set

of all strings accepted by M is known as language

accepted by M also represented by L(M). The transition

function of M is multivalued, in other words, for certain

input symbol there is one or more transition. Such LBA

are known as nondeterministic LBA (NLBA). We then

mean by a string accepted by NLBA M, for which there

is a processing of M which, given the string as an input

ends up off the right end of the tape in a final state. On

the other hand, a string w is said to be rejected by NLBA

M if one of the following conditions occurs:

(1) Processing never ends

(2) Ends up off the left end of the tape

(3) Finally ends up off the right end of the tape in

non-final state

The strings accepted by NLBA M are known as the

languages accepted by M and the strings rejected by M

are called the languages rejected by M. It is important to

know that because of the non-determinacy characteristic

of NLBA M, a certain string can be accepted or rejected

both by M. When we say LBA it means NLBA in the

rest of this chapter. So, readers are advised not to be

confused about this unless it is specified.

Generally, LBA are non-deterministic automata. LBA

are accepters for the class of context-sensitive languages.

The only restriction placed on grammars for such

languages is that no production maps a string to a shorter

string. Thus no derivation of a string in a context-

sensitive language can contain a sentential form longer

than the string itself. Since there is a one-to-one

correspondence between linear-bounded automata and

such grammars, no more tape than that occupied by the

original string is necessary for the string to be recognized

by the automata.

II. RELATED WORK

First time in 1960, John Myhill introduced the notion

of deterministic linear bounded automata (DLBA) [2]. In

1963, Peter S. Landweber proved that the languages

accepted by DLBA are context-sensitive languages [3]. In

1964, S. Y. Kuroda in his paper titled “Classes of

Languages of & Linear-Bounded Automata”, Information

and Control Journal, Vol. 7, pages 207-223 introduced

the more general model which is known as

nondeterministic linear bounded automata (NLBA) and

showed that the languages accepted by NLBA are

precisely the context-sensitive languages [4]. Later on so

many research papers are published on LBA describing

the decidability and undecidability problems. By

combining the findings for Landweber [3] and Kuroda [4],

we say that a language is context-sensitive if and only if it

is accepted by some linear-bounded automaton. But there

is a requirement associated with the Kuroda‟s theorem [4].

The grammar should be in a normal form which is known

as Kuroda normal form (KNF). Kuroda [4] showed that a

context-sensitive grammar can be converted into linear-

bounded grammar and there is a linear-bounded

automaton for it. There are many steps involved in

conversion of a context-sensitive grammar into linear-

bounded grammar namely

(1) Converting the given grammar into order 2,

(2) Converting order 2 grammar into length

preserving grammar, and

(3) Converting length preserving grammar into linear-

bounded grammar

The grammar G is said to be of order n if there appears

no string of length greater than n in any production rule

of the G. Kuroda proved that any context-sensitive

grammar can be reduced to equivalent order 2 context-

sensitive grammar [4].

A context-sensitive grammar is length-preserving if

for any production rule , it satisfies either of the

following two conditions:

(1)  is the initial symbol

(2)  does not contain the initial symbol and lengths

of  and  are equal

A context-sensitive grammar G is linear-bounded if it

satisfies following conditions:

(1) G is order 2

(2) Length preserving and

(3) Production rule SEF shows E=S, where S is the

initial symbol of G

Lemma 1 (Kuroda Normal Form): For any context-

sensitive grammar G of order 2, there exists a linear-

bounded grammar G1 equivalent to G.

Proof: Let given grammar G=(Vn, , P, S) and

equivalent linear-bounded grammar G1=(V1, , P1, S1).

We defined the set of variables V1=Vn{S1, Q} where Q

is new variable and S1 is initial symbol. The production

rules of G1 are defined by rules R1, R2 and R3 [4].

Rule R1: New production rules to derive initial

symbol of G

S1S1Q,

S1S where S is the initial symbol of G

Rule R2: New production rules for all symbols in

(Vn)

QQ,

QQ where (Vn)

Rule R3: For given production rules of G

 AB if AB is a rule in G,

 ABCD if ABCD is a rule in G,

 AQBC if ABC is a rule in G

 Context-Sensitive Grammars and Linear-Bounded Automata 63

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 1, 61-66

All the production rules of G1 are linear-bounded. If G1

derives string w*, it means

⇒ . It follows

⇒

from rule R1. Therefore, L(G1)L(G). If the string w is

derived by G then

⇒ it means SQ

n
w is in G1. So

by applying R1, we have

⇒ . It means L(G)L(G1).

Therefore, grammars G and G1 are equivalent.

There is a proposal by Hoffcroft and Ullman [5] to

design a linear-bounded automaton for a given context-

sensitive grammar. The proposed LBA is two tracks

automaton where the 1
st
 track is used to hold the input

and 2
nd

 track is used to simulate the derivation of the

given input applying the production rules of the grammar.

But authors have not discussed in details how the

derivation of the given string can be simulated on 2
nd

track. There are many concerns over the proposed model.

For example, how intermediate sentential forms will be

hold, how content on 2
nd

 track will be shifted, how LBA

recognize the variables to be replaced, etc.

I have proposed an algorithm to design a linear-

bounded automaton for a context-sensitive grammar

without converting the grammar into a normal form. The

rest of the paper is organized as follows. Section III

contains the proposed algorithm. Section IV contains the

illustration based on the proposed algorithm and section

V contains the conclusion and future study.

III. THE PROPOSED ALGORITHM

Let context-sensitive (Type 1) grammar G = (Vn, , P,

S) has production rule of the form

 such that  where , (Vn)
*
 and 

has at least one element from Vn

Production rule S (null) is there in G if S does not

appear on right hand side of any production rule in G [5,

6, 7, 8, 9, 10].

Four tracks linear-bounded automaton M is used to

simulate the derivation of a string produced by the

context-sensitive grammar (CSG) G. The length of the

tape is in order of the length of the input string. The first,

second, third, and fourth tracks are used for input string,

derivation using production rules of G, replacement, and

replaceable sentence (RS) respectively.

Let us see the meaning and use of the terms derivation,

replacement, and replaceable sentence (RS). Suppose P

includes production rules {SabcaSAc, cAAc,

bAbb} where S, AVn, and a, b, c. The string

w=aabbcc is produced by grammar G:

Table 1. Derivation, Replacement, and Replaceable Sentence

Production Derivation Replacement Replaceable

Sentence (RS)

SaSAc aSAc aSAc S

aabcAc aabcAc abc S

aabAcc aabAcc Ac cA

 aabbcc aabbcc bb bA

It is clear from the above table that the suitable right

hand side of a production rule is considered as

replacement and the left hand side of the that production

rule is considered as replaceable sentence (RS).

Suppose LBA M=(Q, 1, , s, F) where 1=Vn{#}

The LBA M is implemented based on the following

algorithm.

Algorithm 1 (Context-sensitive Grammar G, Linear

Bounded Automaton M)

(1) Input string is written on 1
st
 track. The initial

symbol S is written on 2
nd

 track and 3
rd

 and 4
th

tracks are blank.

(2) Repeat

(i) Read the 2
nd

 track from the left end and find out

replaceable sentence (RS) and write on the 4
th

track.

(ii) Write right hand side of the RS on 3
rd

 track.

(iii) Write content of 2
nd

 track which is after RS on

the 3
rd

 track. If overflow occurs then EXIT with

message “NOT ACCEPTED”.

(iv) Replace the RS on 2
nd

 track by the content of 3
rd

track.

(v) Compare the contents of 1
st
 and 2

nd
 tracks. If

contents are same then EXIT with message

“ACCEPTED”.

(vi) Make the 3
rd

 and 4
th

 tracks blank.

It is clear from the above algorithm that M tries to

simulate the right derivation for the input string on 2
nd

track. The 3
rd

 track is used to hold the replacement for a

RS. The 4
th

 track is used to hold the current RS and find

out the position of RS on the 2
nd

 track. Without is it the

steps in 2(iii) and 2(iv) of the proposed algorithm will not

function correctly. Each time step 2(v) is executed, the

contents of 1
st
 and 2

nd
 tracks are compared and if matched

then LBA M accepts the input string. If overflow occurs

in step 2(iii) then LBA terminates the process and string

is rejected.

Theorem 1: If G=(Vn, , P, S) is a context-sensitive

grammar (CSG) then there is a linear bounded automaton

(LBA) M which accepts L(G).

Proof: Suppose the G=(Vn, , P, S) where Vn is non-

empty finite set of variables,  is non-empty finite set of

terminals, P is finite non-empty set of production rule and

S is the starting symbol. LBA M implements the

algorithm 1 as discussed above. Suppose there are n

production rules of G and these are named as p1, p2,

p3, …, pn such that

pi: ii, PLi=i, PRi=i where i, i (Vn)* and i

has at least one element from Vn.

The starting symbol S is placed on 2
nd

 and 4
th
 tracks of

M and suppose the right hand side PRi of S is placed on

3
rd

 track provided that SPRi is in G. M selects

replacement from PRi on 2
nd

 track and suppose the said

replacement is PLj such that

S1PLj1  PRi where 1, 1(Vn)*

64 Context-Sensitive Grammars and Linear-Bounded Automata

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 1, 61-66

The replaceable sentence PLj is replaced on 2
nd

 track,

that is, 1PRj1 where PLjPRj is in G. This process is

executed again and again till overflow occurs on 2
nd

 track

or input on 1
st
 track is matched with content of 2

nd
 track.

Suppose the input string is derived the given grammar

G in m-steps (m1) such that

S1PLi12PLj23PLk3…

mPLqm  w, where i, i (Vn)* and 1im.

The contents on 2
nd

 track after execution of step (2) of

the proposed algorithm 1 are 1PLi1, 2PLj2,

3PLk3…, mPLqm. So, the step followed by LBA M is

the same as adapted by the grammar G while producing

the input string w. Since LBA M is non-deterministic

automaton, so M can produce either the output

“Acceptance” or “Rejection” for the same input. But it is

believed that M follows the right replacement as adapted

by the given grammar G. Therefore, the statement of the

theorem is proved.

The length of the derivation for a string w does not go

beyond the length of the string w. So, the length of tape is

in order of the length of the input string. If the length of

derivation on 2
nd

 track goes beyond the length of the

input string, it means either string w is not derived by G

or LBA M does not follow the right replaceable sentence.

The space and time complexity of the LBA M are O(n)

and O(nm) respectively where n and m are length of

input string and number of production rules in G

respectively.

Lemma 1: If L is a context-sensitive language then

there exists a linear bounded automaton M which accepts

it.

Proof: Since for a context-sensitive language there is a

context-sensitive grammar which generates it and it has

been proved in algorithm 1 that languages generated by a

context-sensitive grammar is recognized by a linear

bounded automaton. Therefore the statement of the

theorem is proved.

Lemma 2: If L1 and L2 are two context-sensitive

languages then union of L1 and L2 is also a context-

sensitive language (CSL).

Proof: We can prove it by using linear-bounded

automata for L1 and L2. Let L1 and L2 are accepted by

LBA M1 and M2 respectively as shown in Fig. 2(a) and

Fig. 2(b). LBA M1 and M2 are designed based on the

proposed algorithm. We construct a third LBA M3 which

follows either M1 or M2 as shown in Fig. 2(c) [5, 10].

LBA M3 accepts a string if either M1 accepts or M2

accepts and rejects if either M1 rejects or M2 rejects. We

can build LBA M3 as a two tracks automaton. First and

second tracks are used to simulate the behavior of M1 and

M2 respectively. Obviously the language accepted by the

M3 is CSL. Therefore, union of two contest-sensitive

languages is also contest-sensitive.

Fig.2(a). LBA M1

Fig.2(b). LBA M2

Input
M1

M2

Accept

Accept

Reject

Reject

Accept

Reject

Fig.2(c). LBA M3

Lemma 3: If G1 and G2 are two context-sensitive

grammars (CSGs) then union of G1 and G2 is also a

context-sensitive grammar.

Proof: (See the Lemma 1 and Lemma 2)

IV. ILLUSTRATION

Let us consider the context-sensitive grammar G=({S,

A}, {a, b, c}, {SabcaSAc, cAAc, bAbb}, S).

The LBA M=(Q, {a, b, c, S, A, #}, , s, F) be the

automaton which accepts L(G). The production of the

input string w=aabbcc by the grammar G is below:

Table 2. Context-sensitive Grammar

Suppose the input string w=aabbcc is successfully

accepted by LBA M. LBA M is implemented on above

proposed algorithm. The tape contents in each step are

given below:

Table 3. Contents after steps 1 and 2(i)

 1 2(i)

1st Track $aabbcc $aabbcc

2nd Track $S $S

3rd Track

4th Track $S

Initially, the start symbol S is placed on 2
nd

 track and

input is on the 1
st
 track. In step 2(i), the replaceable (RS)

content on 2
nd

 track is copied on 4
th

 track. It means, start

symbol S is copied on 4
th

 track.

Table 4. Contents after steps 2(i) and 2(ii)

 2(ii) 2(iii)

1st Track $aabbcc $aabbcc

2nd Track $S $S

3rd Track $aSAc $aSAc

4th Track $S $S

The right hand side of RS (2
nd

 track) is placed on the

3
rd

 track in step 2(ii). It means aSAc is copied on 3
rd

 track.

Input
M1

Accept

Reject

Input
M2

Accept

Reject

Production Production Rule Used

SaSAc SaSAc

aabcAc Sabc

aabAcc cAAc

aabbcc bAbb

 Context-Sensitive Grammars and Linear-Bounded Automata 65

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 1, 61-66

In step 2(iii), the content of 2
nd

 track after RS is copied on

the 3
rd

 track. There is nothing to be copied and hence

there is no question of overflow.

Table 5. Contents after steps 2(iv) and 2(v)

 2(iv) 2(v)

1st Track $aabbcc $aabbcc

2nd Track $aSAc $aSAc

3rd Track $aSAc $aSAc

4th Track $S $S

In step 2(iv), RS on 2
nd

 track is replaced by content of

3
rd

 track. Now, the contents of 1
st
 and 2

nd
 track are

compared for possible production of the input string. We

observe that contents of 1
st
 and 2

nd
 tracks are not equal

and length of input is greater than the length of content on

2
nd

 track. So, LBA M can further search for possible

replacement. This is the completion of first round of

production.

Table 6. Contents after steps 2(vi) and 2(i)

 2(vi) 2(i)

1st Track $aabbcc $aabbcc

2nd Track $aSAc $aSAc

3rd Track

4th Track $S

If the desired string is not produced, the 3
rd

 and 4
th

tracks are made blank. But contents of 2
nd

 and 3
rd

 tracks

are unchanged. In next round, possible replaceable

sentence (RS) is selected from 2
nd

 track and written on 4
th

track which is S.

Table 7. Contents after steps 2(ii) and 2(iii)

 2(ii) 2(iii)

1st Track $aabbcc $aabbcc

2nd Track $aSAc $aSAc

3rd Track $abc $abcAc

4th Track $S $S

In step 2(ii), the suitable right hand side of the RS is

placed on the 3
rd

 track which is abc. The content of 2
nd

track after RS (Ac) is copied on the 3
rd

 track in step 2(iii).

Since there is no overflow, so LBA M can proceed

further.

Table 8. Contents after steps 2(iv) and 2(v)

 2(iv) 2(v)

1st Track $aabbcc $aabbcc

2nd Track $aabcAc $aabcAc

3rd Track $abcAc $abcAc

4th Track $S $S

In step 2(iv), the RS on the 2
nd

 track is replaced by

content of 3
rd

 track (abcAc). Now, the contents of 1
st
 and

2
nd

 track are compared for possible production of the

desired string in step 2(v). The contents of 1
st
 and 2

nd

tracks are not equal, so LBA M can proceed further.

Table 9.Contents after steps 2(vi) and 2(i)

 2(vi) 2(i)

1st Track $aabbcc $aabbcc

2nd Track $aabcAc $aabcAc

3rd Track

4th Track $cA

LBA M makes the 3
rd

 and 4
th

 tracks blank in step 2(vi).

Now in step 2(i), M finds RS (cA) on 2
nd

 track and writes

is on 4
th

 track.

Table 10. Contents after steps 2(ii) and 2(iii)

 2(ii) 2(iii)

1st Track $aabbcc $aabbcc

2nd Track $aabcAc $aabcAc

3rd Track $Ac $Acc

4th Track $cA $cA

In step 2(ii), LBA M finds the right hand side of RS

and writes on 3
rd

 track. LBA M copies the content after

RS of 2
nd

 on the 3
rd

 track in step 2(iii). There is no

overflow, so M can proceed further.

Table 11. Contents after steps 2(iv) and 2(v)

 2(iv) 2(v)

1st Track $aabbcc $aabbcc

2nd Track $aabAcc $aabAcc

3rd Track $Acc $Acc

4th Track $cA $cA

Now, M replaces the RS and content after RS on 2
nd

track by the content of 3
rd

 track in step 2(iv). In step 2(v),

M compares the contents of 1
st
 and 2

nd
 tracks and finds

that contents are not equal. So, M can proceed further.

Table 12. Contents after steps 2(vi) and 2(i)

 2(vi) 2(i)

1st Track $aabbcc $aabbcc

2nd Track $aabAcc $aabAcc

3rd Track

4th Track $bA

LBA M makes the 3
rd

 and 4
th

 tracks blank in step 2(vi).

LBA M searches for suitable RS on 2
nd

 track and writes

on 4
th

 track in step 2(i). At this stage, RS is bA.

Table 13. Contents after steps 2(ii) and 2(iii)

 2(ii) 2(iii)

1st Track $aabbcc $aabbcc

2nd Track $aabAcc $aabAcc

3rd Track $bb $bbcc

4th Track $bA $bA

LBA M finds the right hand side of the RS (bAbb)

and places it on 3
rd

 track in step 2(ii). LBA M copies the

content after RS of 2
nd

 on the 3
rd

 track in step 2(iii). There

is no overflow, so M can proceed further.

66 Context-Sensitive Grammars and Linear-Bounded Automata

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 1, 61-66

Table 14. Contents after steps 2(iv) and 2(v)

 2(iv) 2(v)

1st Track $aabbcc $aabbcc

2nd Track $aabbcc $aabbcc

3rd Track $bbcc $bbcc

4th Track $bA $bA

Now, M replaces the RS and content after RS on 2
nd

track by the content of 3
rd

 track in step 2(iv). In step 2(v),

M compares the contents of 1
st
 and 2

nd
 tracks and finds

that contents are equal. So, M accepts the input and stops.

Therefore, we say the LBA M simulates the derivation

the input string.

V. CONCLUSION AND FUTURE STUDY

I have proposed an algorithm to design a linear-

bounded automaton (LBA) for a context-free grammar

(CSG) without converting the grammar into a normal

form. It avoids many steps in designing of linear bounded

automata as compare to the proposal made by S. Y.

Kuroda in 1964. The proposed algorithm exploits the

nondeterminacy characteristic of the linear-bounded

automata and selects an appropriate replacement while

simulating the derivation of the input string. If

appropriate replacement is not selected by a linear-

bounded automaton, the input might be rejected even it is

acceptable. So, an input string can be accepted or rejected

both depending on the choice of replacement sentence

(RS) considered by the linear-bounded automaton. For

example, referring to the illustration discussed in Section

IV, the string w=aabbcc will be rejected by the LBA M if

LBA M selects the production rule Sabc at very first

step. So, how to minimize wrong selection of production

rules and RS by a LBA can be considered as further study.

REFERENCES

[1] N. Chomsky, “On Certain Formal Properties of

Grammars”, Information and Control (1959), Vol. 2, pp.

137-167.

[2] J. Myhill, “Linear Bounded Automata”, Wright Air

Development Division, Tech. Note No. 60-165 (1960),

Cincinnati, Ohio.

[3] Peter S. Landweber, “Three Theorem on Phrase Structure

Grammar of Type 1”, Information and Control, (1963),

Vol. 6, Pp 131-136.

[4] S. Y. Kuroda, “Classes of Languages and Linear-Bounded

Automata”, Information and Control (1964), Vol. 7, Pp.

207-223.

[5] John E. Hoffcroft, Jeffrey D. Ullman, “Introduction to

Automata Theory, Languages, and Computation” 2001

Edition, Narosha Publishing House, New Delhi.

[6] A. Salomaa, “Computations and Automata” 1985 Edition,

Encyclopedia of Mathematics and its Applications,

Cambridge University Press.

[7] Harry R. Lewis and Christos H. Papadimitriou “Elements

of the Theory of Computation”, 2001 Edition, Printice-

Hall Publication of India.

[8] John C. Martin “Introduction to Language and the Theory

of Computation”, Second Edition, Tata McGraw-Hill

Publication, India.

[9] Peter Linz, “An Introduction to Formal Languages and

Automata”, Third Edition, Narosha Publication House,

New Delhi (India).

[10] R. B. Patel and Prem Nath, “Automata Theory and Formal

Languages”, Second Edition, Umesh Publication, Delhi

(India).

[11] A. Salomaa, I. N. Sneddon, “Theory of Automata” 2013

Edition, Pergamon Press, ISBN 0080133762.

Author’s Profile

Prem Nath received his B.E. (Computer

Science and Engineering) degree from H.N.B.

Garhwal University, Uttrakhand, India in 2000.

He received his Ph.D. degree in Computer

Science and Engineering from Indian School

of Mines (ISM), Dhanbad, Jharkhand, India in

2013.

Presently, he is working as an Examiner of Patents and

Designs at the Patent Office, Kolkata, India. His work is to

examine the patents applications in the field of Computer

Science and Engineering. He has examined more than 1500 new

patent applications so far. His main areas of interests are

mobility management in wireless networks and Automata

Theory.

How to cite this paper: Prem Nath,"Context-Sensitive Grammars and Linear-Bounded Automata", International

Journal of Computer Network and Information Security(IJCNIS), Vol.8, No.1,pp.61-66, 2016.DOI:

10.5815/ijcnis.2016.01.08

