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Abstract—InfiniBand is widely accepted as a high 

performance networking technology for datacenters and 

HPC clusters. It uses the Remote Direct Memory Access 

(RDMA) where communication tasks that are typically 

assigned to CPUs are offloaded to the Channel Adapters 

(CAs), resulting in a significant increase of the 

throughput and reduction of the latency and CPU load. In 

this paper, we make an introduction to InfiniBand and IP 

over InfiniBand (IPoIB), where the latter is a protocol 

proposed by the IETF to run traditional socket-oriented 

applications on top of InfiniBand networks. We also 

evaluate the performance of InfiniBand using different 

transport protocols with several benchmarking tools in a 

testbed. For RDMA communications, we consider three 

transport services: (1) Reliable Connection, (2) 

Unreliable Connection, and (3) Unreliable Datagram. For 

UDP and TCP, we use IPoIB. Our results show 

significant differences between RDMA and IPoIB 

communications, encouraging the coding of new 

applications with InfiniBand verbs. Also, it is noticeable 

that IPoIB in datagram mode and in connected mode have 

similar performance for small UDP and TCP payload. 

However, the differences get important as the payload 

size increases. 

 

Index Terms—Computer Networks, Performance 

Evaluation, RDMA, InfiniBand, IP over InfiniBand, 

Benchmarking Tools. 

 

I.  INTRODUCTION 

In a typical IP data transfer, an application produces 

the data to be sent in user memory. Through a system call, 

these data are copied into kernel memory where headers 

will be added, before been passed to the NIC (Network 

Interface Card) for transmission. On the reception side, 

the data are passed from the NIC to system buffer, where 

the headers will be used to determine the destination 

process before been removed. Then, a system call is 

required to transfer the data from kernel memory to user 

memory where the application will be finally able to use 

them. This process imposes extremely high CPU loads on 

the system. RDMA (Remote Direct Memory Access) 

communications differ from normal IP communications 

because they bypass kernel intervention in the 

communication process. That is with RDMA, the CA 

(Channel Adapter) directly places the application’s buffer 

into packets on sending, and the content of the packets 

into the application’s buffer on reception, without any 

intervention of the CPU. This allows a much better 

communication system with zero copy. Moreover, the CA 

also manages the splitting and assembly of messages into 

packets in RDMA, while IP fragmentation and TCP 

segmentation are in charge of the CPU in typical IP 

communications. As a result, RDMA provides high 

throughput and low latency while incurring a minimal 

amount of CPU load. 

In the last few years, three major RDMA fabric 

technologies have emerged: InfiniBand [1][2][3], RoCE 

[4][5] (RDMA over Converged Ethernet), and iWARP 

[6][7] (internet Wide Area RDMA Protocol). InfiniBand 

has received special attention from many manufacturers 

and researchers, especially in the field of HPC (High 

Performance Computing). In this paper, we make a low 

level performance evaluation of InfiniBand as a 

communication system with different services of the 

transport layer, using benchmarks. We also assess IPoIB 

as a solution to run legacy socket-oriented applications 

over InfiniBand. 

The rest of this paper is organized as follows: Related 

work is discussed in Section II. A survey of InfiniBand is 

made in Section III. The testbed for our experiments is 

presented in Section IV, while some benchmarking tools 

for point-to-point network evaluation are presented in 

Section V. The results of our network performance 

evaluation is presented and discussed in Section VI. 

Finally in Section VII, we provide concluding remarks 

and directions for future work in this area. 

 

II.  RELATED WORK 

A lot of work has been done in the field of network 

performance evaluation at the level of Ethernet. For 

example, Gamess and Ortiz-Zuazaga [8] evaluated the 

performance of point-to-point connections at the level of 

UDP, TCP, and MPI [9][10] (Message Passing Interface) 
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on a HPC cluster connected through a Gigabit Ethernet 

network. In [11], the authors empirically assessed the 

UDP and TCP throughput, delay, and jitter when using 

VPNs (Virtual Private Networks), in a simple testbed 

composed of a router (PC with two NICs) that connected 

two end-nodes with FastEthernet links (100 Mbps). 

Narayan and Lutui [12] did an evaluation of UDP and 

TCP, for IPv4 and IPv6, when using jumbo frames in a 

controlled environment where two end-nodes were 

connected through a chain of two routers (PCs with two 

NICs), with FastEthernet links (100 Mbps). A 

comparison of the network performance between 

Windows XP, Windows Vista, and Windows 7 was 

conducted by Balen, Martinovic, and Hocenski [13], 

under IPv6 and IPv4. Their testbed consisted of two 

computers connected through a point-to-point link with 

Gigabit Ethernet. 

However, up until now, just a few works have been 

done with InfiniBand. Cohen [14] evaluated InfiniBand 

in a back-to-back connection between two end-nodes, i.e. 

a fabric without InfiniBand switches. Latency, throughput, 

and CPU load were reported by the author. In [15], Rashti 

and Afsahi evaluated three network technologies (10-

Gigabit iWARP, 4X SDR InfiniBand, and Myrinet-10G) 

at the user-level and MPI layer. The authors of [16] 

evaluated 4X FDR InfiniBand and 40GigE RoCE on 

HPC and cloud computing systems. They did some basic 

network level characterizations of performance, but most 

of the work is done with MPI point-to-point and 

collective communication benchmarks. In [17], Sur, 

Koop, Chai, and Panda did a network-level performance 

evaluation of the Mellanox ConnectX architecture on 

multi-core platforms. They evaluated low level operations 

such as RDMA Write and RDMA Read, as well as high 

level applications as a whole. 

 

III.  A SURVEY OF INFINIBAND 

In this section, we make a survey of InfiniBand and see 

important concepts that can significantly help for the 

understanding of this research work. 

A.  Basic Components of an InfiniBand Fabric 

An InfiniBand subnet is made of the following entities: 

(1) end-nodes, (2) links, (3) switches, (4) subnet 

managers or SMs, and (5) subnet manager agents. 

Additionally, traffic between subnets is allowed through 

routers. Fig. 1 shows two InfiniBand subnets (one in 

yellow and the other one in blue) connected by a router. 
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Fig.1. The InfiniBand Architecture 

End-nodes are attached to links through one or more 

CAs (Channel Adaptors) and send messages to other end-

nodes. The CA is the InfiniBand version of the NIC 

(Network Interface Card). A CA can have one or more 

IBA ports. The IBTA (InfiniBand Trade Association) 

defines the following MTUs: 256, 512, 1024, 2048, or 

4096 bytes. Messages must be segmented into packets for 

transmission according to the PMTU. Segmentation of 

messages into packets on transmission and reassembly on 

receipt are provided by channel adapters at the end-nodes. 

The links of an InfiniBand fabric are bidirectional 

point-to-point communication channels, and may be 

either copper or optical fiber. To achieve greater 

bandwidth, several links can be used in parallel or 

grouped together. This link association is called the 

―width‖ of the link, and common widths include: 1X, 4X, 

8X, and 12X. A basic 1X copper link has four wires, 

consisting in two differential signaling pairs (one for 

sending and the other for receiving). A 4X coper link has 

eight pairs of wires, four in each direction. This concept 

can be easily generalized to 8X and 12X. The IBTA has 

proposed several speed grades known as: SDR (Simple 

Data Rate), DDR (Double Data Rate), QDR (Quadruple 

Data Rate), FDR (Fourteen Data Rate), and EDR 

(Enhanced Data Rate). SDR, DDR, and QDR use 8B/10B 

encoding, i.e., 10 bits carry 8 bits of data. In other words, 

the data rate in 80% of the signal rate. FDR and EDR use 

the more efficient 64B/66B encoding. Table 1 shows the 

signal rate and data rate achieved by InfiniBand, 

depending on the width of the link. The non-shaded rows 

represent the signal rate, while the shaded rows 

correspond to the data rate. 

Table 1. Signal and Data Rates Achieved by InfiniBand in Gbps 

 SDR DDR QDR FDR EDR 

1X 
2.50 5.00 10.00 14.0625 25.78125 

2.00 4.00 8.00 13.64 25.00 

4X 
10.00 20.00 40.00 56.25 103.125 

8.00 16.00 32.00 54.54 100.00 

8X 
20.00 40.00 80.00 112.50 206.25 

16.00 32.00 64.00 109.09 200.00 

12X 
30.00 60.00 120.00 168.75 309.375 

24.00 48.00 96.00 163.63 300.00 

 

Switches relay packets received from a port attached to 

one link in the subnet through a port attached to another 

link in the same subnet (see Fig. 1). That is, the packets 

stay within the subnet. To do so, the switch selects an 

entry in its forwarding table that corresponds to the DLID 

(Destination Local IDentifier) of the packet. This entry 

will indicate the switch port through which the packet is 

to be output. The switches get their forwarding table from 

the Subnet Manager (SM), during the initialization of the 

subnet, or when a modification occurs in the subnet. 

The Subnet Manager (SM) is the most critical piece of 

software in an InfiniBand subnet, and can run on a switch 

or a end-node. In Fig. 1, the SM of the yellow subnet is 

running on an end-node, while the SM of the blue subnet 

is hosted on a switch. SMs have several objectives that 

include: (1) the discovery of the subnet topology, (2) the 
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assignation of LIDs (Local IDentifiers) to all devices in 

the subnet and the creation of forwarding tables for them, 

(3) the reception and processing of traps from Subnet 

Manager Agents (SMAs), and (4) the monitoring of the 

subnet for the discovering and management of changes 

such as adding or removing end-nodes. After an initial 

discovery and activation of the subnet, the subnet 

manager periodically scans and updates the information 

when needed. A subnet can have multiple instances of 

SMs for high availability and redundancy reasons, but 

only one is master, while all others remain on standby. 

Standby SMs do not manage the subnet, rather they 

periodically poll the master SM (via SubnGet) to 

determine if it is still actively managing the subnet or has 

failed. When the master SM fails, a standby SM takes 

over without interrupting network service. 

All devices in the subnet must run a dedicated SMA 

(Subnet Management Agent) not shown in Fig. 1. During 

the initial startup or the reconfiguration of InfiniBand 

devices, the SM contacts the SMAs, via SMPs (Subnet 

Manager Packets), to get and set configuration 

parameters. 

Routers are not currently in wide deployment, and are 

intended to be used to divide a very large network into 

smaller subnets connected together by routers. Routers 

route packets received on a port attached to a link in one 

subnet through a port attached to a link within another 

subnet. When doing so, routers have to change the LRH 

(Local Routing Header) of the packets. Routers have a 

routing table, and route packets according to the DGID 

(Destination Global IDentifier) in the GRH (Global 

Routing Header). 

B.  Addresses in InfiniBand 

In InfiniBand, three types of address are defined: LIDs, 

GUIDs, and GIDs. 

LIDs (Local IDentifiers) are local scope addresses 

assigned by the SM to devices in the subnet at startup 

time. LID addresses are 16-bit long and are present in the 

LRH (Local Routing Header) of packets as DLID 

(Destination LID) and SLID (Source LID). The DLIDs 

are used by switches for forwarding in the subnet, i.e., 

they act as Layer-2 addresses in the OSI model. When a 

subnet is reconfigured, new LIDs are assigned to the 

various devices within the subnet. LID addresses must be 

unique within a subnet and are divided in four groups as 

follows: 

 

 LID address 0000h is reserved and must never be 

used. 

 LID addresses 0001h-BFFFh are for unicasting. A 

packet with a unicast DLID (Destination LID) is 

always delivered to a single target port, the port with 

that LID address in the subnet. 

 LID address C000h-FFFEh are for multicasting. The 

idea is to deliver a packet with a multicast DLID 

(Destination LID) to all the ports that are member of 

that multicast group. 

 LID address FFFFh is also known as the PLID 

(Permissive LID) and must be accepted by any 

destination. At startup time, before the LID 

assignment by the SM, it is used as the DLID in 

LRH for communications. 

 

According to the IBTA specification, a CA can have as 

few as one or as many as 255 ports. They are numbered 

starting at 1. Each CA port that is connected to the subnet 

must be assigned at least one LID address by the SM, or a 

range of contiguous LID addresses if the LMC (LID 

Mask Control) is used. To facilitate multipath routing, a 

base LID and a LMC value shall be assigned by the SM 

to each end-port. The LMC is a 3-bit field which 

represents 2
LMC

 paths (a maximum of 128 paths). The 

base LID must have the LMC least significant bits set to 

0. That is, if LMC=0, the base LID may be any unicast 

LID. If LMC=1, the base LID may be any unicast LID 

multiple of 2. If LMC=2, the base LID may be any 

unicast LID multiple of 4, and so on. Switches can have 

as many as 255 ports, numbered starting at 1. Also, 

switches must implement port 0, the management port 

through which the SM can administer the switch. It is 

typically a virtual port with no physical attachment to a 

link. The SM must assign a unique LID address to port 0, 

i.e., a range of LID addresses is not allowed (LMC=0). 

Also, it is worth mentioning that the SM never assigns 

LID addresses to physical ports of a switch. 

GUIDs (Global Unique IDentifiers) are global scope 

64-bit addresses defined in [18] as IEEE EUI-64 (64-bit 

Extended Unique Identifier). It is the concatenation of a 

24-bit OUI (Organizationally Unique Identifier) value 

assigned by the IEEE Registration Authority, and a 40-bit 

extension identifier assigned by the organization with that 

OUI assignment. Manufacturers assign GUIDs to chassis, 

CAs, CA ports, switches, and router ports. The SM can 

assign additional local scope GUIDs to ports on a router. 

GIDs (Global IDentifiers) are 128-bit addresses used to 

identify end-node ports, router ports, and multicast 

groups. They are constructed by concatenating a 64-bit 

GID prefix with a EUI-64, as shown in Fig. 2. They are 

similar to IPv6 addresses with some restrictions. GID 

addresses are present in the GRH (Global Routing Header) 

of packets as SGID (Source GID) and DGID (Destination 

GID). The DGID is used by routers for routing purpose. 
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Fig.2. GID Format 

C.  Notion of Queue Pairs 

On every port of a CA, a number of bi-directional 

message transport engines can be created, each of which 

is referred to as a QP (Queue Pair). A QP is a pair of 

queues: the SQ (Send Queue) and the RQ (Receive 

Queue): 

 

 On the SQ, message transfer requests are posted. 

For the execution of each one, the QP SQ logic 

transmits an outbound message to a remote QP RQ.
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 On the RQ, WRs (Work Requests) are posted so that 

the QP RQ logic can handle the inbound messages 

transmitted by the remote QP SQ logic. 

 

D.  Data Integrity in InfiniBand 

At the link level, there are two CRCs, the variant CRC 

(VCRC) and the invariant CRC (ICRC), that ensure data 

integrity. The 16-bit VCRC includes all fields in the 

packet and is recalculated at each hop. The 32-bit ICRC 

covers only the fields that do not change from hop to hop. 

The VCRC provides link-level data integrity for each hop 

while the ICRC provides end-to-end data integrity. 

E.  The IBA Transport Services 

IBA offers several transport services that include: RC 

(Reliable Connection), UC (Unreliable Connection), RD 

(Reliable Datagram), and UD (Unreliable Datagram). 

In the RC transport service, a private connection must 

be established between the two RC QPs in the two CAs. 

The communication is private, i.e., the two RC QPs can 

send messages to each other, but not to any other QP. As 

a consequence, a RC packet has a “Destination Queue 

Pair” field but no “Source Queue Pair” field. The 

message size can be anything between 0 B and 2 GB, and 

messages larger than the PMTU are segmented into 

multi-packet transfers. The Ack/Nak mechanism permits 

the requester logic (QP SQ) to verify that all the packets 

are delivered to the responder (QP RQ). Each request 

packet contains a sequential PSN (Packet Sequence 

Number) that the responder logic (QP RQ) uses to verify 

that all request packets are received in order, and are only 

processed once. The operations that must be supported by 

the RC service include: RDMA Read, RDMA Write, and 

Send. 

In the UC transport service, a private connection must 

be established between the two UC QPs in the two CAs. 

The communication is private, i.e., the two UC QPs can 

send messages to each other, but not to any other QP. As 

a consequence, a UC packet has a “Destination Queue 

Pair” field but no “Source Queue Pair” field. The 

message size can be anything between 0 B and 2 GB, and 

messages larger than the PMTU are segmented into 

multi-packet transfers. There is no Ack/Nak mechanism, 

hence the requester logic (QP SQ) cannot verify that the 

packets are delivered to the responder (QP RQ). Each 

request packet contains a sequential PSN that the 

responder logic (QP RQ) uses to verify that all request 

packets are received in order, and are only processed 

once. However, if the responder logic (QP RQ) detects 

out-of-order request packets, it will ignore the remaining 

request packets of the current message and await for the 

beginning of a new request packet with a BTH:Opcode 

(Base Transport Header) of the “First” or “Only” type. 

RDMA Read is not supported. However, RDMA Write 

and Send must be supported by the UC service. 

In the UD transport service, there is no initial 

connection setup with the remote QP prior to sending or 

receiving messages. Hence, there is no private connection 

and the ―Source Queue Pair‖ and ―Destination Queue 

Pair‖ fields must be specified in all the requests posted to 

the local QP SQ. Similarly to RC and UC, the 

―Destination Queue Pair‖ is within the BTH header. 

However, UD has an additional header called DETH 

(Datagram Extended Transport Header) where the 

―Source Queue Pair‖ will be placed, since it is not a 

connection oriented transport service. The message size is 

limited to the PMTU and must be accommodated in a 

single packet, i.e., in UD transport service, there is no 

notion of multi-packet transfers. There is no Ack/Nak 

mechanism, hence the requester logic (QP SQ) cannot 

verify that the packets are delivered to the responder (QP 

RQ). Even though each packet contains a sequential PSN, 

it is not meaningful because the entire message is 

encapsulated in a single packet. RDMA Read and RDMA 

Write are not supported. The UD transport service only 

supports the Send message transfer operation. 

F.  Internet Protocol over InfiniBand 

InfiniBand provides “verbs” to do low level IOs, but 

till date, very few applications have been developed with 

them. Hence, a mechanism is required to run TCP/IP on 

top of InfiniBand. The role of IPoIB [19][20][21] (IP 

over InfiniBand) is to provide an IP network emulation 

layer on top of InfiniBand networks, allowing the 

numerous existing socket-based applications to run over 

InfiniBand networks unmodified. As a drawback, the 

performance of those applications will be considerably 

lower than if they were directly written to use RDMA 

communications natively, since they do not benefit from 

typical features of InfiniBand (kernel bypass, reliability, 

zero copy, splitting and assembly of messages to packets 

in the CAs, etc). Linux has a module, called “ib_ipoib”, 

which implements IPoIB. This module creates a virtual 

NIC (ib0, ib1, ib2, etc) for each InfiniBand port on the 

system, which makes an HCA (Host Channel Adapter) 

act like an ordinary NIC. 

IPoIB has two modes of operation: datagram mode [20] 

and connected mode [21]. In datagram mode the UD 

transport service is used, while the connected mode is 

based on the RC transport service. By default, IPoIB on 

Linux is configured in datagram mode. However, it is 

easy to switch between modes using the simple 

commands of Fig. 3. Line 01 shall be used to switch to 

connected mode, while Line 02 can be entered to switch 

to datagram mode. 

 
01:  echo  connected  >  /sys/class/net/ib0/mode 

02:  echo  datagram   >  /sys/class/net/ib0/mode 

Fig.3. Switching Between Datagram and Connected Modes in IPoIB 

G.  OpenFabrics Enterprise Distribution 

The OpenFabrics Alliance aims to develop open-

source software that supports the three major RDMA 

fabric technologies: InfiniBand, RoCE (RDMA over 

Converged Ethernet), and iWARP (internet Wide Area 

RDMA Protocol). The OFED stack includes software 

drivers, core kernel-code, middleware, and low level 

benchmarking tools. It offers a range of standard 
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protocols (e.g. IPoIB and MPI), and supports many file 

systems (e.g. Lustre and NFS over RDMA). Its first 

version was released in 2005. 

 

IV.  TESTBED FOR OUR EXPERIMENTS 

For our experiments, the testbed was based on a four-

node cluster with CentOS v6.6. As shown in Fig. 4, the 

cluster was made of four end-nodes, one InfiniBand 

switch (SW1), and one Gigabit Ethernet switch (SW2). 

The InfiniBand switch was a Mellanox Technologies 

SX6012, with 12 QSFP ports that support full-duplex 

signal rate of 56 Gbps (FDR). It is a managed switch that 

can be administered through the CLI (Command Line 

Interface) and SNMP (Simple Network Management 

Protocol), and also offers IPMI support. It was running 

Mellanox MLNX-OS version 3.4.2008 as operating 

system. The Gigabit Ethernet switch was a Netgear 

GS724T, with 24 10/100/1000 BASE-T Gigabit Ethernet 

ports. 

 

Gigabit Ethernet Switch

end-node

Netgear GS724T

end-node end-node end-node

eth0

InfiniBand Switch
Mellanox Technologies SX6012

eth0 eth0 eth0ib0 ib0 ib0 ib0

SW1 SW2

 

Fig.4. Testbed for our Experiments 

Through SW1, we connected the end-nodes together, 

using InfiniBand 4X FDR links for high performance 

(green links in Fig. 4). Through SW2, we connected the 

end-nodes for administration and monitoring purposes 

using Gigabit Ethernet links (blue links in Fig. 4). The 

end-nodes had the following characteristics: 

 

 Processors: 2 16-core Intel Xeon E5-2630 v3 at 2.4 

GHz 

 RAM: 64 GiB – 4 x 16 GiB DIMM (DDR4 2133 

MHz) 

 HCA: Mellanox Technologies single-port MT27500 

ConnectX-3 

 NIC: Dual-port Intel I350 Gigabit Ethernet 

 Hard Disk: Seagate ST1000NM0033 (1 TB, 7200 

RPM, 128 MB cache, SATA 6.0 Gb/s) for a local 

installation of the operating system (CentOS v6.6). 

 Remote Management: IPMI. 

 

V.  BENCHMARKING TOOLS USED IN OUR EXPERIMENTS 

InfiniBand is relatively new, hence just few 

applications have been written using the native verbs. For 

performance evaluation, OFED offers several micro 

benchmarks based on the client/server model and known 

as ―perftest‖ (ib_read_bw, ib_read_lat, ib_write_bw, 

ib_write_lat, ib_send_bw, and ib_send_lat). ib_read_bw 

and ib_read_lat are oriented to the evaluation of RDMA 

Read transactions over InfiniBand, and report the 

bandwidth and latency, respectively. ib_write_bw and 

ib_write_lat are similar to the previous tools, but for 

RDMA Write transactions. ip_send_bw calculates the 

bandwidth of Send transactions between a pair of end-

nodes. The client floods the server with Send messages 

and they both calculate the throughput of the operation. 

The test supports several transport services (RC, UC, and 

UD), bidirectional flows on which they both send and 

receive at the same time, change of the MTU, the number 

of iterations, the message size, and much more. 

ip_send_lat measures the latency of sending a packet with 

a specified quantity of payload bytes between a pair of 

end-nodes. They perform a ping-pong benchmark on 

which a node resends a packet only when it receives it. 

Each of the end-nodes samples the CPU each time they 

receive a packet in order to calculate the latency. 

Qperf is another benchmarking tool based on the 

client/server model distributed as part of OFED. Qperf 

measures bandwidth and latency between two end-nodes. 

It can work over TCP/IP (socket-oriented) as well as the 

RDMA transports (verbs-oriented). On TCP/IP, tests 

include bandwidth and latency for UDP, TCP, and SCTP. 

On RDMA transports, available tests include bandwidth 

and latency for RDMA Read and RDMA Write. 

Moreover, tests are also available for bandwidth 

(unidirectional and bidirectional) and latency of Send 

transactions, using RC, UC, or UD as the transport 

services. 

Many socket-based benchmarking tools have been 

proposed for network performance evaluation at the level 

of UDP and TCP. Some of the popular open source 

projects include Netperf and Hpcbench [22][23]. Netperf 

is a benchmarking tool that can be used to measure 

various aspects of networking performance. Its primary 

focus is on bulk data transfer (TCP_STREAM, 

UDP_STREAM, etc) and request/response performance 

(TCP_RR and UDP_RR) using either TCP or UDP. It is 

designed around the basic client/server model. In the 

TCP_STREAM test, a constant bitrate of data is 

transferred from the client (netperf) to the server 

(netserver), and the actual throughput is reported as the 

result. It is worth mentioning that the reported throughput 

is equal to the maximum throughput, since Netperf 

saturates the communication link. The UDP_STREAM 

test is similar to the TCP_STREAM test, except that UDP 

is used as the transport protocol rather than TCP. In the 

TCP_RR test, a fixed quantity of data is exchanged 

between the client (netperf) and the server (netserver) a 

number of times, and the benchmark reports the 

transaction rate which is the number of complete round-

trip transactions per second. The UDP_RR is very much 

the same as the TCP_RR test, except that UDP is used 

rather than TCP. 

Hpcbench [22][23] is a network benchmarking tool 

focused on HPC environments. It is comprised of three 

independent sets of benchmarks measuring UDP, TCP, 

and MPI communications. Similar to many other tools, 

the UDP and TCP tests are based on the client/server 
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paradigm. Basically, Hpcbench allows users to evaluate 

the maximum throughput and the RTT, in any of the three 

communication standards, for a message with a length 

that users must specify. For throughput measurements, 

Hpcbench floods the network with messages of the 

accorded size, and reports the observed throughput, 

which also corresponds to the maximum throughput for 

this message size. For the RTT measurements, the two 

processes of Hpcbench bounce a message of the specified 

size, and report the average RTT by dividing the total 

time for the experiment, by the number of transactions. 

For throughput tests, unidirectional and bidirectional 

flows are allowed, however the RTT evaluation is limited 

to unidirectional flows. 

 

VI.  RESULTS AND ANALYTICAL COMPARISION 

A.  Evaluation of the Latency of Send Transactions 

In this section, we run the ib_send_lat benchmark 

between two end-nodes using different transport layers 

(RC, UC, and UD), while varying the payload sizes and 

signal rates (SDR, DDR, QDR, and FDR). We choose an 

MTU of 4,096 bytes. Table 2 shows the results for the RC 

transport service. For small payload sizes, the latency is 

almost the same for the four signal rates and around 0.85 

us. As the payload size is incremented, we can see that 

the smallest latency is achieved by FDR, while SDR has 

the biggest one. The differences are significant with big 

payload sizes, since the transmission time is getting more 

important that the propagation time in these cases. 

Table 2. Latency in Microseconds for the RC Transport Service 

Size 

(Bytes) 
SDR DDR QDR FDR 

4 0.92 0.86 0.82 0.82 

8 0.93 0.86 0.83 0.83 

16 0.95 0.87 0.83 0.83 

32 0.97 0.89 0.88 0.87 

64 1.04 0.95 0.93 0.89 

128 1.16 1.05 1.03 0.97 

256 1.84 1.69 1.64 1.58 

512 2.20 1.92 1.78 1.74 

1,024 2.89 2.34 2.04 2.03 

2,048 4.22 3.16 2.61 2.50 

4,096 6.34 4.22 3.15 2.84 

8,192 10.53 6.31 4.19 3.48 

16,384 18.85 10.49 6.29 4.78 

32,768 35.48 18.81 10.69 7.73 

65,536 68.72 35.43 19.05 12.88 

131,072 135.21 68.68 35.67 23.22 

262,144 268.17 135.16 68.91 43.87 

524,288 534.09 268.12 135.39 85.16 

1,048,576 1,065.95 534.08 268.36 167.75 

2,097,152 2,129.71 1,065.97 534.30 333.08 

4,194,304 4,257.21 2,129.73 1,066.27 664.02 

8,388,608 8,512.54 4,257.59 2,130.49 1,428.55 

 

The results for the latency in the case of the UC 

transport service are shown in Table 3. There are very 

similar to the results of Table 2. 

In the case of the UD transport service, the results are 

presented in Table 4. It is worth remembering that the 

payload size of an UD message is limited to the PMTU, 

in our case 4,096 bytes. Hence, in this experiment, we 

vary the payload sizes up to 4,096 bytes. It is also 

noticeable that the latency for UD is a little over the 

latency for RC and UC. This is due to the additional 

header of UD packets, i.e. DETH is 8-byte long, and it is 

an additional header presents in all the UD packets. 

Table 3. Latency in Microseconds for the UC Transport Service 

Size 

(Bytes) 
SDR DDR QDR FDR 

4 0.91 0.86 0.82 0.82 

8 0.92 0.86 0.84 0.83 

16 0.93 0.88 0.87 0.83 

32 0.96 0.88 0.87 0.86 

64 1.03 0.94 0.91 0.89 

128 1.15 1.04 1.02 0.96 

256 1.84 1.66 1.61 1.50 

512 2.23 1.92 1.78 1.75 

1,024 2.92 2.33 2.09 2.04 

2,048 4.24 3.15 2.61 2.50 

4,096 6.36 4.21 3.16 2.84 

8,192 10.56 6.31 4.20 3.49 

16,384 18.87 10.50 6.28 4.77 

32,768 35.49 18.82 10.47 7.54 

65,536 68.75 35.44 18.79 12.83 

131,072 135.25 68.69 35.41 23.17 

262,144 268.21 135.16 68.66 43.83 

524,288 534.13 268.13 135.15 85.16 

1,048,576 1,065.96 534.08 268.87 167.78 

2,097,152 2,129.67 1,065.94 534.85 333.15 

4,194,304 4,257.02 2,129.60 1,066.69 664.35 

8,388,608 8,512.00 4,257.34 2,130.79 1,429.77 

Table 4. Latency in Microseconds for the UD Transport Service 

Size 

(Bytes) 
SDR DDR QDR FDR 

4 0.96 0.89 0.85 0.84 

8 0.97 0.89 0.85 0.84 

16 0.98 0.90 0.86 0.85 

32 1.00 0.92 0.87 0.85 

64 1.06 0.96 0.94 0.92 

128 1.19 1.05 1.03 0.99 

256 1.88 1.67 1.64 1.59 

512 2.23 1.89 1.77 1.75 

1,024 2.90 2.31 2.04 2.00 

2,048 4.23 3.13 2.61 2.47 

4,096 6.92 4.78 3.74 3.39 

 

B.  Evaluation of the Throughput of Send Transactions 

In this section, we run the ib_send_bw benchmark 

between two end-nodes using different RDMA transport 

layers (RC, UC, and UD), while varying the payload 

sizes. We choose a signal rate of FDR and an MTU of 

4,096 bytes. Fig. 5 shows the results for unidirectional 

communications. Since UD is limited to a payload size 

equals to the PMTU, it has values up to a payload size of 

4,096 bytes. The best performance is achieved by UC, 

while RC has the poorest one due to the overhead caused 

by the Ack/Nak mechanism. 

Fig. 6 depicts the results for bidirectional 

communications. They are very similar to the results 

obtained for the unidirectional case (Fig. 5). However, we 

can observe a degradation of the service in the case of 
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bidirectional communications for messages with a 

payload size greater than or equal to 8,388,608 bytes. 

Also it is worth pointing out that the results reported by 

Fig. 6 is the throughput in one direction, i.e. the total 

throughput is twice the one reported. 

In Fig. 7 (unidirectional) and Fig. 8 (bidirectional), we 

study the effect of the signal rate over the throughput of 

the RC transport service, when varying the payload size 

of the messages. To do so, we run the ib_send_bw 

benchmark between two end-nodes of our testbed. For 

any value of the payload size, we have four bars that 

correspond to SDR, DDR, QDR, and FDR, respectively. 

For each signal rate of the unidirectional case (Fig. 7), the 

throughput increases and reaches a limit close to the 

corresponding data rate. The bidirectional case (Fig. 8) is 

similar to the unidirectional one, however the 

performance shows a degradation for messages with a 

payload size greater than or equal to 8,388,608 bytes, in 

the case of FDR. 

We study the effect of the signal rate over the 

throughput of the UC transport service in Fig. 9 

(unidirectional) and Fig. 10 (bidirectional), when varying 

the payload size of the messages. To do so, we run the 

ib_send_bw benchmark between two end-nodes of our 

testbed. For any value of the payload size, we have four 

bars that correspond to SDR, DDR, QDR, and FDR, 

respectively. For each signal rate of the unidirectional 

case (Fig. 9), the throughput increases and reaches a limit 

close to the corresponding data rate. The bidirectional 

case (Fig. 10) is similar to the unidirectional one, 

however the performance shows a degradation for 

messages with a payload size greater than or equal to 

8,388,608 bytes, in the case of FDR. 
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Fig.5. Throughput for Unidirectional Communication for Send Transactions with RC, UC, and UD 
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Fig.6. Throughput for Bidirectional Communication for Send Transactions with RC, UC, and UD
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Fig.7. Throughput for Unidirectional Communication for Send Transactions with RC 
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Fig.8. Throughput for Bidirectional Communication for Send Transactions with RC 
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Fig.9. Throughput for Unidirectional Communication for Send Transactions with UC
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Fig.10. Throughput for Bidirectional Communication for Send Transactions with UC 

C.  Evaluation of IPoIB in Datagram Mode 

Since there are many network applications that have 

been developed with sockets, it is important to evaluate 

the performance of UDP and TCP when using IPoIB on 

InfiniBand. Table 5 shows the results of the UDP 

throughput with IPoIB in datagram mode, when using 4X 

FDR links, with IPv4. We repeated the tests with 

different benchmarking tools (Netperf, Hpcbench, and 

Qperf) to investigate the consistency of the results. We 

did not test with a bigger payload size since it is limited 

by the size of an IPv4 packet. As we can see, the results 

for the three benchmarking tools are quite consistent. 

Also it is worth to mention that the throughput observed 

for a payload size of 32,768 bytes for UDP is around 10 

Gbps, with is by far below the one obtained by Send 

transactions (50.18 Gbps for RC and 50.61 Gbps for UC). 

Table 5. Throughput in Mbps for UDP with IPoIB in Datagram Mode 

Size 

(Bytes) 
Netperf Hpcbench Qperf 

4 17.06 NA 16.60 

8 34.09 NA 33.62 

16 66.70 NA 65.17 

32 135.99 131.44 131.45 

64 270.03 265.28 265.18 

128 550.17 526.72 514.73 

256 1,081.73 1,067.11 1,054.22 

512 2,177.04 2,107.92 2,053.11 

1,024 3,192.45 3,109.18 3,107.29 

2,048 3,902.52 3,894.22 3,851.52 

4,096 4,613.65 4,592.14 4,583.88 

8,192 6,257.15 6,238.63 6,352.86 

16,384 7,880.56 7,839.85 7,925.45 

32,768 9,247.56 10,446.27 9,721.09 

 

Table 6 shows the results of the UDP and TCP latency 

with IPoIB in datagram mode, when using 4X FDR links, 

with IPv4. We repeated the tests with different 

benchmarking tools (Hpcbench and Qperf) to investigate 

the consistency of the results. We did not test with a 

bigger payload size since it is limited by the size of an 

IPv4 packet. As we can see, the results for the two 

benchmarking tools are quite consistent. We did not use 

Netperf since it does not report latency. Also it is worth 

to notice that the latency observed for a payload size of 

32,768 bytes with UDP and TCP is around 35.0 us, with 

is by far above the one obtained by Send transactions 

(7.73 us for RC and 7.54 us for UC). 

Table 6. Latency in Microseconds for UDP and TCP with IPoIB in 

Datagram Mode 

Size 

(Bytes) 

UDP TCP 

Hpcbench Qperf Hpcbench Qperf 

4 7.37 7.37 8.42 8.40 

8 7.41 7.42 8.51 8.49 

16 7.44 7.47 8.72 8.71 

32 7.46 7.53 8.83 8.82 

64 7.48 7.55 9.00 8.97 

128 7.50 7.59 9.32 9.15 

256 7.61 7.62 9.71 9.60 

512 7.74 7.73 10.20 10.12 

1,024 7.81 7.82 10.35 10.52 

2,048 11.26 11.12 11.55 11.63 

4,096 14.86 14.32 14.52 14.92 

8,192 18.44 18.28 18.93 18.58 

16,384 23.34 22.51 23.51 23.41 

32,768 35.71 33.17 35.02 34.51 

 

D.  Evaluation of IPoIB in Connected Mode 

Table 7 shows the results of the UDP throughput with 

IPoIB in connected mode, when using 4X FDR links, 

with IPv4. We repeated the tests with different 

benchmarking tools (Netperf, Hpcbench, and Qperf) to 
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investigate the consistency of the results. We did not test 

with a bigger payload size since it is limited by the size of 

an IPv4 packet. As we can see, the results for the three 

benchmarking tools are quite consistent. We can see that 

the throughput is higher with IPoIB in datagram mode 

(Table 5) than with IPoIB in connected mode (Table 7). 

Also it is worth to mention that the throughput observed 

for a payload size of 32,768 bytes for UDP is around 7.7 

Gbps, with is by far below the one obtained by Send 

transactions (50.18 Gbps for RC and 50.61 Gbps for UC). 

Table 7. Throughput in Mbps for UDP with IPoIB in Connected Mode 

Size 

(Bytes) 
Netperf Hpcbench Qperf 

4 11.76 NA 11.09 

8 21.22 NA 20.40 

16 44.47 NA 43.62 

32 87.76 89.25 88.81 

64 175.95 186.53 172.40 

128 355.47 359.34 337.43 

256 430.78 437.05 429.57 

512 728.87 715.14 723.40 

1,024 1,147.29 1,153.02 1,149.81 

2,048 1,383.77 1,440.21 1,392.26 

4,096 1,509.61 1,512.89 1,479.82 

8,192 3,341.35 3,393.58 3,422.57 

16,384 7,649.47 7,614.32 7,438.21 

32,768 7,782.21 7,785.15 7,653.52 

Table 8. Latency in Microseconds for UDP and TCP with IPoIB in 

Connected Mode 

Size 

(Bytes) 

UDP TCP 

Hpcbench Qperf Hpcbench Qperf 

4 7.39 7.38 8.43 8.42 

8 7.43 7.41 8.52 8.50 

16 7.48 7.48 8.72 8.72 

32 7.52 7.56 8.85 8.84 

64 7.55 7.59 9.05 8.99 

128 7.61 7.62 9.40 9.19 

256 7.64 7.64 9.82 9.74 

512 7.76 7.75 10.38 10.42 

1,024 7.87 7.88 10.59 10.68 

2,048 11.28 11.30 11.92 11.72 

4,096 15.97 15.01 16.45 15.31 

8,192 18.52 18.35 22.63 21.58 

16,384 31.57 31.41 34.58 31.65 

32,768 45.83 45.17 55.25 53.13 

 

Table 8 shows the results of the UDP and TCP latency 

with IPoIB in connected mode, when using 4X FDR links, 

with IPv4. We repeated the tests with different 

benchmarking tools (Hpcbench and Qperf) to investigate 

the consistency of the results. We did not test with a 

bigger payload size since it is limited by the size of an 

IPv4 packet. As we can see, the results for the two 

benchmarking tools are quite consistent. We did not use 

Netperf since it does not report latency. We can see that 

the latency is lower with IPoIB in datagram mode (Table 

6) than with IPoIB in connected mode (Table 8). Also it 

is worth to notice that the latency observed for a payload 

size of 32,768 bytes with UDP and TCP is around 45.0 us 

and 55.0 us, respectively, with is by far above the one 

obtained by Send transactions (7.73 us for RC and 7.54 

us for UC). 

 

VII.  CONCLUSIONS AND FUTURE WORK 

In this paper, we did an introduction to the InfiniBand 

architecture, an emerging network technology that has 

been widely accepted in datacenters and HPC clusters. 

We made a performance evaluation of InfiniBand with 

low level benchmarking tools in a controlled environment, 

for different transport services (RC, UC, and UD), when 

varying the payload length and the signal rate (SDR, 

DDR, QDR, and FDR). The results obtained in our tests 

showed very high throughput and low latency and 

encourage the usage of this technology. However, 

InfiniBand is based on ―verbs‖ and applications must be 

developed with RDMA support in order to take 

advantage of this fast network. In the meanwhile, the 

IETF has proposed a solution, called IPoIB, in order to 

run socket-based applications over InfiniBand. It is a 

tradeoff between running socket-based applications over 

InfiniBand without any changes and loosing part of the 

high performance of InfiniBand. Hence, we also assessed 

the performance of IPoIB in datagram and connected 

modes. Our experiments showed significant differences 

between native verbs and IPoIB. Also, it is worth 

pointing out that the datagram mode of IPoIB 

outperforms the connected mode. 

As future work, we plan to make a performance 

evaluation of IPv4 and IPv6 [24][25] when using IPoIB. 

Another direction that we plan to explore is the 

development of mathematical models to represent the 

maximum throughput and the minimum latency that can 

be achieved by different transport services of InfiniBand. 
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