
I. J. Computer Network and Information Security, 2016, 10, 12-22
Published Online October 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2016.10.02

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 12-22

Low Level Performance Evaluation of InfiniBand

with Benchmarking Tools

Eric Gamess
Central University of Venezuela, School of Computer Science, Caracas, Venezuela University of Puerto Rico,

Department of Computer Science, San Juan, Puerto Rico

E-mail: eric.gamess@ciens.ucv.ve

Humberto Ortiz-Zuazaga
University of Puerto Rico, Department of Computer Science, San Juan, Puerto Rico

E-mail: humberto@hpcf.upr.edu

Abstract—InfiniBand is widely accepted as a high

performance networking technology for datacenters and

HPC clusters. It uses the Remote Direct Memory Access

(RDMA) where communication tasks that are typically

assigned to CPUs are offloaded to the Channel Adapters

(CAs), resulting in a significant increase of the

throughput and reduction of the latency and CPU load. In

this paper, we make an introduction to InfiniBand and IP

over InfiniBand (IPoIB), where the latter is a protocol

proposed by the IETF to run traditional socket-oriented

applications on top of InfiniBand networks. We also

evaluate the performance of InfiniBand using different

transport protocols with several benchmarking tools in a

testbed. For RDMA communications, we consider three

transport services: (1) Reliable Connection, (2)

Unreliable Connection, and (3) Unreliable Datagram. For

UDP and TCP, we use IPoIB. Our results show

significant differences between RDMA and IPoIB

communications, encouraging the coding of new

applications with InfiniBand verbs. Also, it is noticeable

that IPoIB in datagram mode and in connected mode have

similar performance for small UDP and TCP payload.

However, the differences get important as the payload

size increases.

Index Terms—Computer Networks, Performance

Evaluation, RDMA, InfiniBand, IP over InfiniBand,

Benchmarking Tools.

I. INTRODUCTION

In a typical IP data transfer, an application produces

the data to be sent in user memory. Through a system call,

these data are copied into kernel memory where headers

will be added, before been passed to the NIC (Network

Interface Card) for transmission. On the reception side,

the data are passed from the NIC to system buffer, where

the headers will be used to determine the destination

process before been removed. Then, a system call is

required to transfer the data from kernel memory to user

memory where the application will be finally able to use

them. This process imposes extremely high CPU loads on

the system. RDMA (Remote Direct Memory Access)

communications differ from normal IP communications

because they bypass kernel intervention in the

communication process. That is with RDMA, the CA

(Channel Adapter) directly places the application’s buffer

into packets on sending, and the content of the packets

into the application’s buffer on reception, without any

intervention of the CPU. This allows a much better

communication system with zero copy. Moreover, the CA

also manages the splitting and assembly of messages into

packets in RDMA, while IP fragmentation and TCP

segmentation are in charge of the CPU in typical IP

communications. As a result, RDMA provides high

throughput and low latency while incurring a minimal

amount of CPU load.

In the last few years, three major RDMA fabric

technologies have emerged: InfiniBand [1][2][3], RoCE

[4][5] (RDMA over Converged Ethernet), and iWARP

[6][7] (internet Wide Area RDMA Protocol). InfiniBand

has received special attention from many manufacturers

and researchers, especially in the field of HPC (High

Performance Computing). In this paper, we make a low

level performance evaluation of InfiniBand as a

communication system with different services of the

transport layer, using benchmarks. We also assess IPoIB

as a solution to run legacy socket-oriented applications

over InfiniBand.

The rest of this paper is organized as follows: Related

work is discussed in Section II. A survey of InfiniBand is

made in Section III. The testbed for our experiments is

presented in Section IV, while some benchmarking tools

for point-to-point network evaluation are presented in

Section V. The results of our network performance

evaluation is presented and discussed in Section VI.

Finally in Section VII, we provide concluding remarks

and directions for future work in this area.

II. RELATED WORK

A lot of work has been done in the field of network

performance evaluation at the level of Ethernet. For

example, Gamess and Ortiz-Zuazaga [8] evaluated the

performance of point-to-point connections at the level of

UDP, TCP, and MPI [9][10] (Message Passing Interface)

 Low Level Performance Evaluation of InfiniBand with Benchmarking Tools 13

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 12-22

on a HPC cluster connected through a Gigabit Ethernet

network. In [11], the authors empirically assessed the

UDP and TCP throughput, delay, and jitter when using

VPNs (Virtual Private Networks), in a simple testbed

composed of a router (PC with two NICs) that connected

two end-nodes with FastEthernet links (100 Mbps).

Narayan and Lutui [12] did an evaluation of UDP and

TCP, for IPv4 and IPv6, when using jumbo frames in a

controlled environment where two end-nodes were

connected through a chain of two routers (PCs with two

NICs), with FastEthernet links (100 Mbps). A

comparison of the network performance between

Windows XP, Windows Vista, and Windows 7 was

conducted by Balen, Martinovic, and Hocenski [13],

under IPv6 and IPv4. Their testbed consisted of two

computers connected through a point-to-point link with

Gigabit Ethernet.

However, up until now, just a few works have been

done with InfiniBand. Cohen [14] evaluated InfiniBand

in a back-to-back connection between two end-nodes, i.e.

a fabric without InfiniBand switches. Latency, throughput,

and CPU load were reported by the author. In [15], Rashti

and Afsahi evaluated three network technologies (10-

Gigabit iWARP, 4X SDR InfiniBand, and Myrinet-10G)

at the user-level and MPI layer. The authors of [16]

evaluated 4X FDR InfiniBand and 40GigE RoCE on

HPC and cloud computing systems. They did some basic

network level characterizations of performance, but most

of the work is done with MPI point-to-point and

collective communication benchmarks. In [17], Sur,

Koop, Chai, and Panda did a network-level performance

evaluation of the Mellanox ConnectX architecture on

multi-core platforms. They evaluated low level operations

such as RDMA Write and RDMA Read, as well as high

level applications as a whole.

III. A SURVEY OF INFINIBAND

In this section, we make a survey of InfiniBand and see

important concepts that can significantly help for the

understanding of this research work.

A. Basic Components of an InfiniBand Fabric

An InfiniBand subnet is made of the following entities:

(1) end-nodes, (2) links, (3) switches, (4) subnet

managers or SMs, and (5) subnet manager agents.

Additionally, traffic between subnets is allowed through

routers. Fig. 1 shows two InfiniBand subnets (one in

yellow and the other one in blue) connected by a router.

Switch

Switch

End
Node

End
Node

End
Node

End
Node

End
Node

End
Node

Switch

Switch

End
Node

End
Node

End
Node

End
Node

End
Node

Switch

End
Node

SM

SM

Router

Switch

Fig.1. The InfiniBand Architecture

End-nodes are attached to links through one or more

CAs (Channel Adaptors) and send messages to other end-

nodes. The CA is the InfiniBand version of the NIC

(Network Interface Card). A CA can have one or more

IBA ports. The IBTA (InfiniBand Trade Association)

defines the following MTUs: 256, 512, 1024, 2048, or

4096 bytes. Messages must be segmented into packets for

transmission according to the PMTU. Segmentation of

messages into packets on transmission and reassembly on

receipt are provided by channel adapters at the end-nodes.

The links of an InfiniBand fabric are bidirectional

point-to-point communication channels, and may be

either copper or optical fiber. To achieve greater

bandwidth, several links can be used in parallel or

grouped together. This link association is called the

―width‖ of the link, and common widths include: 1X, 4X,

8X, and 12X. A basic 1X copper link has four wires,

consisting in two differential signaling pairs (one for

sending and the other for receiving). A 4X coper link has

eight pairs of wires, four in each direction. This concept

can be easily generalized to 8X and 12X. The IBTA has

proposed several speed grades known as: SDR (Simple

Data Rate), DDR (Double Data Rate), QDR (Quadruple

Data Rate), FDR (Fourteen Data Rate), and EDR

(Enhanced Data Rate). SDR, DDR, and QDR use 8B/10B

encoding, i.e., 10 bits carry 8 bits of data. In other words,

the data rate in 80% of the signal rate. FDR and EDR use

the more efficient 64B/66B encoding. Table 1 shows the

signal rate and data rate achieved by InfiniBand,

depending on the width of the link. The non-shaded rows

represent the signal rate, while the shaded rows

correspond to the data rate.

Table 1. Signal and Data Rates Achieved by InfiniBand in Gbps

 SDR DDR QDR FDR EDR

1X
2.50 5.00 10.00 14.0625 25.78125

2.00 4.00 8.00 13.64 25.00

4X
10.00 20.00 40.00 56.25 103.125

8.00 16.00 32.00 54.54 100.00

8X
20.00 40.00 80.00 112.50 206.25

16.00 32.00 64.00 109.09 200.00

12X
30.00 60.00 120.00 168.75 309.375

24.00 48.00 96.00 163.63 300.00

Switches relay packets received from a port attached to

one link in the subnet through a port attached to another

link in the same subnet (see Fig. 1). That is, the packets

stay within the subnet. To do so, the switch selects an

entry in its forwarding table that corresponds to the DLID

(Destination Local IDentifier) of the packet. This entry

will indicate the switch port through which the packet is

to be output. The switches get their forwarding table from

the Subnet Manager (SM), during the initialization of the

subnet, or when a modification occurs in the subnet.

The Subnet Manager (SM) is the most critical piece of

software in an InfiniBand subnet, and can run on a switch

or a end-node. In Fig. 1, the SM of the yellow subnet is

running on an end-node, while the SM of the blue subnet

is hosted on a switch. SMs have several objectives that

include: (1) the discovery of the subnet topology, (2) the

14 Low Level Performance Evaluation of InfiniBand with Benchmarking Tools

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 12-22

assignation of LIDs (Local IDentifiers) to all devices in

the subnet and the creation of forwarding tables for them,

(3) the reception and processing of traps from Subnet

Manager Agents (SMAs), and (4) the monitoring of the

subnet for the discovering and management of changes

such as adding or removing end-nodes. After an initial

discovery and activation of the subnet, the subnet

manager periodically scans and updates the information

when needed. A subnet can have multiple instances of

SMs for high availability and redundancy reasons, but

only one is master, while all others remain on standby.

Standby SMs do not manage the subnet, rather they

periodically poll the master SM (via SubnGet) to

determine if it is still actively managing the subnet or has

failed. When the master SM fails, a standby SM takes

over without interrupting network service.

All devices in the subnet must run a dedicated SMA

(Subnet Management Agent) not shown in Fig. 1. During

the initial startup or the reconfiguration of InfiniBand

devices, the SM contacts the SMAs, via SMPs (Subnet

Manager Packets), to get and set configuration

parameters.

Routers are not currently in wide deployment, and are

intended to be used to divide a very large network into

smaller subnets connected together by routers. Routers

route packets received on a port attached to a link in one

subnet through a port attached to a link within another

subnet. When doing so, routers have to change the LRH

(Local Routing Header) of the packets. Routers have a

routing table, and route packets according to the DGID

(Destination Global IDentifier) in the GRH (Global

Routing Header).

B. Addresses in InfiniBand

In InfiniBand, three types of address are defined: LIDs,

GUIDs, and GIDs.

LIDs (Local IDentifiers) are local scope addresses

assigned by the SM to devices in the subnet at startup

time. LID addresses are 16-bit long and are present in the

LRH (Local Routing Header) of packets as DLID

(Destination LID) and SLID (Source LID). The DLIDs

are used by switches for forwarding in the subnet, i.e.,

they act as Layer-2 addresses in the OSI model. When a

subnet is reconfigured, new LIDs are assigned to the

various devices within the subnet. LID addresses must be

unique within a subnet and are divided in four groups as

follows:

 LID address 0000h is reserved and must never be

used.

 LID addresses 0001h-BFFFh are for unicasting. A

packet with a unicast DLID (Destination LID) is

always delivered to a single target port, the port with

that LID address in the subnet.

 LID address C000h-FFFEh are for multicasting. The

idea is to deliver a packet with a multicast DLID

(Destination LID) to all the ports that are member of

that multicast group.

 LID address FFFFh is also known as the PLID

(Permissive LID) and must be accepted by any

destination. At startup time, before the LID

assignment by the SM, it is used as the DLID in

LRH for communications.

According to the IBTA specification, a CA can have as

few as one or as many as 255 ports. They are numbered

starting at 1. Each CA port that is connected to the subnet

must be assigned at least one LID address by the SM, or a

range of contiguous LID addresses if the LMC (LID

Mask Control) is used. To facilitate multipath routing, a

base LID and a LMC value shall be assigned by the SM

to each end-port. The LMC is a 3-bit field which

represents 2
LMC

 paths (a maximum of 128 paths). The

base LID must have the LMC least significant bits set to

0. That is, if LMC=0, the base LID may be any unicast

LID. If LMC=1, the base LID may be any unicast LID

multiple of 2. If LMC=2, the base LID may be any

unicast LID multiple of 4, and so on. Switches can have

as many as 255 ports, numbered starting at 1. Also,

switches must implement port 0, the management port

through which the SM can administer the switch. It is

typically a virtual port with no physical attachment to a

link. The SM must assign a unique LID address to port 0,

i.e., a range of LID addresses is not allowed (LMC=0).

Also, it is worth mentioning that the SM never assigns

LID addresses to physical ports of a switch.

GUIDs (Global Unique IDentifiers) are global scope

64-bit addresses defined in [18] as IEEE EUI-64 (64-bit

Extended Unique Identifier). It is the concatenation of a

24-bit OUI (Organizationally Unique Identifier) value

assigned by the IEEE Registration Authority, and a 40-bit

extension identifier assigned by the organization with that

OUI assignment. Manufacturers assign GUIDs to chassis,

CAs, CA ports, switches, and router ports. The SM can

assign additional local scope GUIDs to ports on a router.

GIDs (Global IDentifiers) are 128-bit addresses used to

identify end-node ports, router ports, and multicast

groups. They are constructed by concatenating a 64-bit

GID prefix with a EUI-64, as shown in Fig. 2. They are

similar to IPv6 addresses with some restrictions. GID

addresses are present in the GRH (Global Routing Header)

of packets as SGID (Source GID) and DGID (Destination

GID). The DGID is used by routers for routing purpose.

64 bits

EUI-64

64 bits

64-bit GID Prefix

Fig.2. GID Format

C. Notion of Queue Pairs

On every port of a CA, a number of bi-directional

message transport engines can be created, each of which

is referred to as a QP (Queue Pair). A QP is a pair of

queues: the SQ (Send Queue) and the RQ (Receive

Queue):

 On the SQ, message transfer requests are posted.

For the execution of each one, the QP SQ logic

transmits an outbound message to a remote QP RQ.

 Low Level Performance Evaluation of InfiniBand with Benchmarking Tools 15

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 12-22

 On the RQ, WRs (Work Requests) are posted so that

the QP RQ logic can handle the inbound messages

transmitted by the remote QP SQ logic.

D. Data Integrity in InfiniBand

At the link level, there are two CRCs, the variant CRC

(VCRC) and the invariant CRC (ICRC), that ensure data

integrity. The 16-bit VCRC includes all fields in the

packet and is recalculated at each hop. The 32-bit ICRC

covers only the fields that do not change from hop to hop.

The VCRC provides link-level data integrity for each hop

while the ICRC provides end-to-end data integrity.

E. The IBA Transport Services

IBA offers several transport services that include: RC

(Reliable Connection), UC (Unreliable Connection), RD

(Reliable Datagram), and UD (Unreliable Datagram).

In the RC transport service, a private connection must

be established between the two RC QPs in the two CAs.

The communication is private, i.e., the two RC QPs can

send messages to each other, but not to any other QP. As

a consequence, a RC packet has a “Destination Queue

Pair” field but no “Source Queue Pair” field. The

message size can be anything between 0 B and 2 GB, and

messages larger than the PMTU are segmented into

multi-packet transfers. The Ack/Nak mechanism permits

the requester logic (QP SQ) to verify that all the packets

are delivered to the responder (QP RQ). Each request

packet contains a sequential PSN (Packet Sequence

Number) that the responder logic (QP RQ) uses to verify

that all request packets are received in order, and are only

processed once. The operations that must be supported by

the RC service include: RDMA Read, RDMA Write, and

Send.

In the UC transport service, a private connection must

be established between the two UC QPs in the two CAs.

The communication is private, i.e., the two UC QPs can

send messages to each other, but not to any other QP. As

a consequence, a UC packet has a “Destination Queue

Pair” field but no “Source Queue Pair” field. The

message size can be anything between 0 B and 2 GB, and

messages larger than the PMTU are segmented into

multi-packet transfers. There is no Ack/Nak mechanism,

hence the requester logic (QP SQ) cannot verify that the

packets are delivered to the responder (QP RQ). Each

request packet contains a sequential PSN that the

responder logic (QP RQ) uses to verify that all request

packets are received in order, and are only processed

once. However, if the responder logic (QP RQ) detects

out-of-order request packets, it will ignore the remaining

request packets of the current message and await for the

beginning of a new request packet with a BTH:Opcode

(Base Transport Header) of the “First” or “Only” type.

RDMA Read is not supported. However, RDMA Write

and Send must be supported by the UC service.

In the UD transport service, there is no initial

connection setup with the remote QP prior to sending or

receiving messages. Hence, there is no private connection

and the ―Source Queue Pair‖ and ―Destination Queue

Pair‖ fields must be specified in all the requests posted to

the local QP SQ. Similarly to RC and UC, the

―Destination Queue Pair‖ is within the BTH header.

However, UD has an additional header called DETH

(Datagram Extended Transport Header) where the

―Source Queue Pair‖ will be placed, since it is not a

connection oriented transport service. The message size is

limited to the PMTU and must be accommodated in a

single packet, i.e., in UD transport service, there is no

notion of multi-packet transfers. There is no Ack/Nak

mechanism, hence the requester logic (QP SQ) cannot

verify that the packets are delivered to the responder (QP

RQ). Even though each packet contains a sequential PSN,

it is not meaningful because the entire message is

encapsulated in a single packet. RDMA Read and RDMA

Write are not supported. The UD transport service only

supports the Send message transfer operation.

F. Internet Protocol over InfiniBand

InfiniBand provides “verbs” to do low level IOs, but

till date, very few applications have been developed with

them. Hence, a mechanism is required to run TCP/IP on

top of InfiniBand. The role of IPoIB [19][20][21] (IP

over InfiniBand) is to provide an IP network emulation

layer on top of InfiniBand networks, allowing the

numerous existing socket-based applications to run over

InfiniBand networks unmodified. As a drawback, the

performance of those applications will be considerably

lower than if they were directly written to use RDMA

communications natively, since they do not benefit from

typical features of InfiniBand (kernel bypass, reliability,

zero copy, splitting and assembly of messages to packets

in the CAs, etc). Linux has a module, called “ib_ipoib”,

which implements IPoIB. This module creates a virtual

NIC (ib0, ib1, ib2, etc) for each InfiniBand port on the

system, which makes an HCA (Host Channel Adapter)

act like an ordinary NIC.

IPoIB has two modes of operation: datagram mode [20]

and connected mode [21]. In datagram mode the UD

transport service is used, while the connected mode is

based on the RC transport service. By default, IPoIB on

Linux is configured in datagram mode. However, it is

easy to switch between modes using the simple

commands of Fig. 3. Line 01 shall be used to switch to

connected mode, while Line 02 can be entered to switch

to datagram mode.

01: echo connected > /sys/class/net/ib0/mode

02: echo datagram > /sys/class/net/ib0/mode

Fig.3. Switching Between Datagram and Connected Modes in IPoIB

G. OpenFabrics Enterprise Distribution

The OpenFabrics Alliance aims to develop open-

source software that supports the three major RDMA

fabric technologies: InfiniBand, RoCE (RDMA over

Converged Ethernet), and iWARP (internet Wide Area

RDMA Protocol). The OFED stack includes software

drivers, core kernel-code, middleware, and low level

benchmarking tools. It offers a range of standard

16 Low Level Performance Evaluation of InfiniBand with Benchmarking Tools

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 12-22

protocols (e.g. IPoIB and MPI), and supports many file

systems (e.g. Lustre and NFS over RDMA). Its first

version was released in 2005.

IV. TESTBED FOR OUR EXPERIMENTS

For our experiments, the testbed was based on a four-

node cluster with CentOS v6.6. As shown in Fig. 4, the

cluster was made of four end-nodes, one InfiniBand

switch (SW1), and one Gigabit Ethernet switch (SW2).

The InfiniBand switch was a Mellanox Technologies

SX6012, with 12 QSFP ports that support full-duplex

signal rate of 56 Gbps (FDR). It is a managed switch that

can be administered through the CLI (Command Line

Interface) and SNMP (Simple Network Management

Protocol), and also offers IPMI support. It was running

Mellanox MLNX-OS version 3.4.2008 as operating

system. The Gigabit Ethernet switch was a Netgear

GS724T, with 24 10/100/1000 BASE-T Gigabit Ethernet

ports.

Gigabit Ethernet Switch

end-node

Netgear GS724T

end-node end-node end-node

eth0

InfiniBand Switch
Mellanox Technologies SX6012

eth0 eth0 eth0ib0 ib0 ib0 ib0

SW1 SW2

Fig.4. Testbed for our Experiments

Through SW1, we connected the end-nodes together,

using InfiniBand 4X FDR links for high performance

(green links in Fig. 4). Through SW2, we connected the

end-nodes for administration and monitoring purposes

using Gigabit Ethernet links (blue links in Fig. 4). The

end-nodes had the following characteristics:

 Processors: 2 16-core Intel Xeon E5-2630 v3 at 2.4

GHz

 RAM: 64 GiB – 4 x 16 GiB DIMM (DDR4 2133

MHz)

 HCA: Mellanox Technologies single-port MT27500

ConnectX-3

 NIC: Dual-port Intel I350 Gigabit Ethernet

 Hard Disk: Seagate ST1000NM0033 (1 TB, 7200

RPM, 128 MB cache, SATA 6.0 Gb/s) for a local

installation of the operating system (CentOS v6.6).

 Remote Management: IPMI.

V. BENCHMARKING TOOLS USED IN OUR EXPERIMENTS

InfiniBand is relatively new, hence just few

applications have been written using the native verbs. For

performance evaluation, OFED offers several micro

benchmarks based on the client/server model and known

as ―perftest‖ (ib_read_bw, ib_read_lat, ib_write_bw,

ib_write_lat, ib_send_bw, and ib_send_lat). ib_read_bw

and ib_read_lat are oriented to the evaluation of RDMA

Read transactions over InfiniBand, and report the

bandwidth and latency, respectively. ib_write_bw and

ib_write_lat are similar to the previous tools, but for

RDMA Write transactions. ip_send_bw calculates the

bandwidth of Send transactions between a pair of end-

nodes. The client floods the server with Send messages

and they both calculate the throughput of the operation.

The test supports several transport services (RC, UC, and

UD), bidirectional flows on which they both send and

receive at the same time, change of the MTU, the number

of iterations, the message size, and much more.

ip_send_lat measures the latency of sending a packet with

a specified quantity of payload bytes between a pair of

end-nodes. They perform a ping-pong benchmark on

which a node resends a packet only when it receives it.

Each of the end-nodes samples the CPU each time they

receive a packet in order to calculate the latency.

Qperf is another benchmarking tool based on the

client/server model distributed as part of OFED. Qperf

measures bandwidth and latency between two end-nodes.

It can work over TCP/IP (socket-oriented) as well as the

RDMA transports (verbs-oriented). On TCP/IP, tests

include bandwidth and latency for UDP, TCP, and SCTP.

On RDMA transports, available tests include bandwidth

and latency for RDMA Read and RDMA Write.

Moreover, tests are also available for bandwidth

(unidirectional and bidirectional) and latency of Send

transactions, using RC, UC, or UD as the transport

services.

Many socket-based benchmarking tools have been

proposed for network performance evaluation at the level

of UDP and TCP. Some of the popular open source

projects include Netperf and Hpcbench [22][23]. Netperf

is a benchmarking tool that can be used to measure

various aspects of networking performance. Its primary

focus is on bulk data transfer (TCP_STREAM,

UDP_STREAM, etc) and request/response performance

(TCP_RR and UDP_RR) using either TCP or UDP. It is

designed around the basic client/server model. In the

TCP_STREAM test, a constant bitrate of data is

transferred from the client (netperf) to the server

(netserver), and the actual throughput is reported as the

result. It is worth mentioning that the reported throughput

is equal to the maximum throughput, since Netperf

saturates the communication link. The UDP_STREAM

test is similar to the TCP_STREAM test, except that UDP

is used as the transport protocol rather than TCP. In the

TCP_RR test, a fixed quantity of data is exchanged

between the client (netperf) and the server (netserver) a

number of times, and the benchmark reports the

transaction rate which is the number of complete round-

trip transactions per second. The UDP_RR is very much

the same as the TCP_RR test, except that UDP is used

rather than TCP.

Hpcbench [22][23] is a network benchmarking tool

focused on HPC environments. It is comprised of three

independent sets of benchmarks measuring UDP, TCP,

and MPI communications. Similar to many other tools,

the UDP and TCP tests are based on the client/server

 Low Level Performance Evaluation of InfiniBand with Benchmarking Tools 17

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 12-22

paradigm. Basically, Hpcbench allows users to evaluate

the maximum throughput and the RTT, in any of the three

communication standards, for a message with a length

that users must specify. For throughput measurements,

Hpcbench floods the network with messages of the

accorded size, and reports the observed throughput,

which also corresponds to the maximum throughput for

this message size. For the RTT measurements, the two

processes of Hpcbench bounce a message of the specified

size, and report the average RTT by dividing the total

time for the experiment, by the number of transactions.

For throughput tests, unidirectional and bidirectional

flows are allowed, however the RTT evaluation is limited

to unidirectional flows.

VI. RESULTS AND ANALYTICAL COMPARISION

A. Evaluation of the Latency of Send Transactions

In this section, we run the ib_send_lat benchmark

between two end-nodes using different transport layers

(RC, UC, and UD), while varying the payload sizes and

signal rates (SDR, DDR, QDR, and FDR). We choose an

MTU of 4,096 bytes. Table 2 shows the results for the RC

transport service. For small payload sizes, the latency is

almost the same for the four signal rates and around 0.85

us. As the payload size is incremented, we can see that

the smallest latency is achieved by FDR, while SDR has

the biggest one. The differences are significant with big

payload sizes, since the transmission time is getting more

important that the propagation time in these cases.

Table 2. Latency in Microseconds for the RC Transport Service

Size

(Bytes)
SDR DDR QDR FDR

4 0.92 0.86 0.82 0.82

8 0.93 0.86 0.83 0.83

16 0.95 0.87 0.83 0.83

32 0.97 0.89 0.88 0.87

64 1.04 0.95 0.93 0.89

128 1.16 1.05 1.03 0.97

256 1.84 1.69 1.64 1.58

512 2.20 1.92 1.78 1.74

1,024 2.89 2.34 2.04 2.03

2,048 4.22 3.16 2.61 2.50

4,096 6.34 4.22 3.15 2.84

8,192 10.53 6.31 4.19 3.48

16,384 18.85 10.49 6.29 4.78

32,768 35.48 18.81 10.69 7.73

65,536 68.72 35.43 19.05 12.88

131,072 135.21 68.68 35.67 23.22

262,144 268.17 135.16 68.91 43.87

524,288 534.09 268.12 135.39 85.16

1,048,576 1,065.95 534.08 268.36 167.75

2,097,152 2,129.71 1,065.97 534.30 333.08

4,194,304 4,257.21 2,129.73 1,066.27 664.02

8,388,608 8,512.54 4,257.59 2,130.49 1,428.55

The results for the latency in the case of the UC

transport service are shown in Table 3. There are very

similar to the results of Table 2.

In the case of the UD transport service, the results are

presented in Table 4. It is worth remembering that the

payload size of an UD message is limited to the PMTU,

in our case 4,096 bytes. Hence, in this experiment, we

vary the payload sizes up to 4,096 bytes. It is also

noticeable that the latency for UD is a little over the

latency for RC and UC. This is due to the additional

header of UD packets, i.e. DETH is 8-byte long, and it is

an additional header presents in all the UD packets.

Table 3. Latency in Microseconds for the UC Transport Service

Size

(Bytes)
SDR DDR QDR FDR

4 0.91 0.86 0.82 0.82

8 0.92 0.86 0.84 0.83

16 0.93 0.88 0.87 0.83

32 0.96 0.88 0.87 0.86

64 1.03 0.94 0.91 0.89

128 1.15 1.04 1.02 0.96

256 1.84 1.66 1.61 1.50

512 2.23 1.92 1.78 1.75

1,024 2.92 2.33 2.09 2.04

2,048 4.24 3.15 2.61 2.50

4,096 6.36 4.21 3.16 2.84

8,192 10.56 6.31 4.20 3.49

16,384 18.87 10.50 6.28 4.77

32,768 35.49 18.82 10.47 7.54

65,536 68.75 35.44 18.79 12.83

131,072 135.25 68.69 35.41 23.17

262,144 268.21 135.16 68.66 43.83

524,288 534.13 268.13 135.15 85.16

1,048,576 1,065.96 534.08 268.87 167.78

2,097,152 2,129.67 1,065.94 534.85 333.15

4,194,304 4,257.02 2,129.60 1,066.69 664.35

8,388,608 8,512.00 4,257.34 2,130.79 1,429.77

Table 4. Latency in Microseconds for the UD Transport Service

Size

(Bytes)
SDR DDR QDR FDR

4 0.96 0.89 0.85 0.84

8 0.97 0.89 0.85 0.84

16 0.98 0.90 0.86 0.85

32 1.00 0.92 0.87 0.85

64 1.06 0.96 0.94 0.92

128 1.19 1.05 1.03 0.99

256 1.88 1.67 1.64 1.59

512 2.23 1.89 1.77 1.75

1,024 2.90 2.31 2.04 2.00

2,048 4.23 3.13 2.61 2.47

4,096 6.92 4.78 3.74 3.39

B. Evaluation of the Throughput of Send Transactions

In this section, we run the ib_send_bw benchmark

between two end-nodes using different RDMA transport

layers (RC, UC, and UD), while varying the payload

sizes. We choose a signal rate of FDR and an MTU of

4,096 bytes. Fig. 5 shows the results for unidirectional

communications. Since UD is limited to a payload size

equals to the PMTU, it has values up to a payload size of

4,096 bytes. The best performance is achieved by UC,

while RC has the poorest one due to the overhead caused

by the Ack/Nak mechanism.

Fig. 6 depicts the results for bidirectional

communications. They are very similar to the results

obtained for the unidirectional case (Fig. 5). However, we

can observe a degradation of the service in the case of

18 Low Level Performance Evaluation of InfiniBand with Benchmarking Tools

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 12-22

bidirectional communications for messages with a

payload size greater than or equal to 8,388,608 bytes.

Also it is worth pointing out that the results reported by

Fig. 6 is the throughput in one direction, i.e. the total

throughput is twice the one reported.

In Fig. 7 (unidirectional) and Fig. 8 (bidirectional), we

study the effect of the signal rate over the throughput of

the RC transport service, when varying the payload size

of the messages. To do so, we run the ib_send_bw

benchmark between two end-nodes of our testbed. For

any value of the payload size, we have four bars that

correspond to SDR, DDR, QDR, and FDR, respectively.

For each signal rate of the unidirectional case (Fig. 7), the

throughput increases and reaches a limit close to the

corresponding data rate. The bidirectional case (Fig. 8) is

similar to the unidirectional one, however the

performance shows a degradation for messages with a

payload size greater than or equal to 8,388,608 bytes, in

the case of FDR.

We study the effect of the signal rate over the

throughput of the UC transport service in Fig. 9

(unidirectional) and Fig. 10 (bidirectional), when varying

the payload size of the messages. To do so, we run the

ib_send_bw benchmark between two end-nodes of our

testbed. For any value of the payload size, we have four

bars that correspond to SDR, DDR, QDR, and FDR,

respectively. For each signal rate of the unidirectional

case (Fig. 9), the throughput increases and reaches a limit

close to the corresponding data rate. The bidirectional

case (Fig. 10) is similar to the unidirectional one,

however the performance shows a degradation for

messages with a payload size greater than or equal to

8,388,608 bytes, in the case of FDR.

0.00

10.00

20.00

30.00

40.00

50.00

Th
ro

ug
hp

ut
 in

 G
bp

s

Payload of Messages in Bytes

RC UC UD

Fig.5. Throughput for Unidirectional Communication for Send Transactions with RC, UC, and UD

0.00

10.00

20.00

30.00

40.00

50.00

Th
ro

ug
hp

ut
 in

 G
bp

s

Payload of Messages in Bytes

RC UC UD

Fig.6. Throughput for Bidirectional Communication for Send Transactions with RC, UC, and UD

 Low Level Performance Evaluation of InfiniBand with Benchmarking Tools 19

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 12-22

0.00

10.00

20.00

30.00

40.00

50.00
Th

ro
u

gh
p

u
t

 in
 G

b
p

s

Payload of Messages in Bytes

SDR DDR QDR FDR

Fig.7. Throughput for Unidirectional Communication for Send Transactions with RC

0.00

10.00

20.00

30.00

40.00

50.00

Th
ro

ug
hp

ut
 i

n
 G

bp
s

Payload of Messages in Bytes

SDR DDR QDR FDR

Fig.8. Throughput for Bidirectional Communication for Send Transactions with RC

0.00

10.00

20.00

30.00

40.00

50.00

Th
ro

u
gh

p
u

t
 in

 G
b

p
s

Payload of Messages in Bytes

SDR DDR QDR FDR

Fig.9. Throughput for Unidirectional Communication for Send Transactions with UC

20 Low Level Performance Evaluation of InfiniBand with Benchmarking Tools

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 12-22

0.00

10.00

20.00

30.00

40.00

50.00

Th
ro

u
gh

p
u

t
 in

 G
b

p
s

Payload of Messages in Bytes

SDR DDR QDR FDR

Fig.10. Throughput for Bidirectional Communication for Send Transactions with UC

C. Evaluation of IPoIB in Datagram Mode

Since there are many network applications that have

been developed with sockets, it is important to evaluate

the performance of UDP and TCP when using IPoIB on

InfiniBand. Table 5 shows the results of the UDP

throughput with IPoIB in datagram mode, when using 4X

FDR links, with IPv4. We repeated the tests with

different benchmarking tools (Netperf, Hpcbench, and

Qperf) to investigate the consistency of the results. We

did not test with a bigger payload size since it is limited

by the size of an IPv4 packet. As we can see, the results

for the three benchmarking tools are quite consistent.

Also it is worth to mention that the throughput observed

for a payload size of 32,768 bytes for UDP is around 10

Gbps, with is by far below the one obtained by Send

transactions (50.18 Gbps for RC and 50.61 Gbps for UC).

Table 5. Throughput in Mbps for UDP with IPoIB in Datagram Mode

Size

(Bytes)
Netperf Hpcbench Qperf

4 17.06 NA 16.60

8 34.09 NA 33.62

16 66.70 NA 65.17

32 135.99 131.44 131.45

64 270.03 265.28 265.18

128 550.17 526.72 514.73

256 1,081.73 1,067.11 1,054.22

512 2,177.04 2,107.92 2,053.11

1,024 3,192.45 3,109.18 3,107.29

2,048 3,902.52 3,894.22 3,851.52

4,096 4,613.65 4,592.14 4,583.88

8,192 6,257.15 6,238.63 6,352.86

16,384 7,880.56 7,839.85 7,925.45

32,768 9,247.56 10,446.27 9,721.09

Table 6 shows the results of the UDP and TCP latency

with IPoIB in datagram mode, when using 4X FDR links,

with IPv4. We repeated the tests with different

benchmarking tools (Hpcbench and Qperf) to investigate

the consistency of the results. We did not test with a

bigger payload size since it is limited by the size of an

IPv4 packet. As we can see, the results for the two

benchmarking tools are quite consistent. We did not use

Netperf since it does not report latency. Also it is worth

to notice that the latency observed for a payload size of

32,768 bytes with UDP and TCP is around 35.0 us, with

is by far above the one obtained by Send transactions

(7.73 us for RC and 7.54 us for UC).

Table 6. Latency in Microseconds for UDP and TCP with IPoIB in

Datagram Mode

Size

(Bytes)

UDP TCP

Hpcbench Qperf Hpcbench Qperf

4 7.37 7.37 8.42 8.40

8 7.41 7.42 8.51 8.49

16 7.44 7.47 8.72 8.71

32 7.46 7.53 8.83 8.82

64 7.48 7.55 9.00 8.97

128 7.50 7.59 9.32 9.15

256 7.61 7.62 9.71 9.60

512 7.74 7.73 10.20 10.12

1,024 7.81 7.82 10.35 10.52

2,048 11.26 11.12 11.55 11.63

4,096 14.86 14.32 14.52 14.92

8,192 18.44 18.28 18.93 18.58

16,384 23.34 22.51 23.51 23.41

32,768 35.71 33.17 35.02 34.51

D. Evaluation of IPoIB in Connected Mode

Table 7 shows the results of the UDP throughput with

IPoIB in connected mode, when using 4X FDR links,

with IPv4. We repeated the tests with different

benchmarking tools (Netperf, Hpcbench, and Qperf) to

 Low Level Performance Evaluation of InfiniBand with Benchmarking Tools 21

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 12-22

investigate the consistency of the results. We did not test

with a bigger payload size since it is limited by the size of

an IPv4 packet. As we can see, the results for the three

benchmarking tools are quite consistent. We can see that

the throughput is higher with IPoIB in datagram mode

(Table 5) than with IPoIB in connected mode (Table 7).

Also it is worth to mention that the throughput observed

for a payload size of 32,768 bytes for UDP is around 7.7

Gbps, with is by far below the one obtained by Send

transactions (50.18 Gbps for RC and 50.61 Gbps for UC).

Table 7. Throughput in Mbps for UDP with IPoIB in Connected Mode

Size

(Bytes)
Netperf Hpcbench Qperf

4 11.76 NA 11.09

8 21.22 NA 20.40

16 44.47 NA 43.62

32 87.76 89.25 88.81

64 175.95 186.53 172.40

128 355.47 359.34 337.43

256 430.78 437.05 429.57

512 728.87 715.14 723.40

1,024 1,147.29 1,153.02 1,149.81

2,048 1,383.77 1,440.21 1,392.26

4,096 1,509.61 1,512.89 1,479.82

8,192 3,341.35 3,393.58 3,422.57

16,384 7,649.47 7,614.32 7,438.21

32,768 7,782.21 7,785.15 7,653.52

Table 8. Latency in Microseconds for UDP and TCP with IPoIB in

Connected Mode

Size

(Bytes)

UDP TCP

Hpcbench Qperf Hpcbench Qperf

4 7.39 7.38 8.43 8.42

8 7.43 7.41 8.52 8.50

16 7.48 7.48 8.72 8.72

32 7.52 7.56 8.85 8.84

64 7.55 7.59 9.05 8.99

128 7.61 7.62 9.40 9.19

256 7.64 7.64 9.82 9.74

512 7.76 7.75 10.38 10.42

1,024 7.87 7.88 10.59 10.68

2,048 11.28 11.30 11.92 11.72

4,096 15.97 15.01 16.45 15.31

8,192 18.52 18.35 22.63 21.58

16,384 31.57 31.41 34.58 31.65

32,768 45.83 45.17 55.25 53.13

Table 8 shows the results of the UDP and TCP latency

with IPoIB in connected mode, when using 4X FDR links,

with IPv4. We repeated the tests with different

benchmarking tools (Hpcbench and Qperf) to investigate

the consistency of the results. We did not test with a

bigger payload size since it is limited by the size of an

IPv4 packet. As we can see, the results for the two

benchmarking tools are quite consistent. We did not use

Netperf since it does not report latency. We can see that

the latency is lower with IPoIB in datagram mode (Table

6) than with IPoIB in connected mode (Table 8). Also it

is worth to notice that the latency observed for a payload

size of 32,768 bytes with UDP and TCP is around 45.0 us

and 55.0 us, respectively, with is by far above the one

obtained by Send transactions (7.73 us for RC and 7.54

us for UC).

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we did an introduction to the InfiniBand

architecture, an emerging network technology that has

been widely accepted in datacenters and HPC clusters.

We made a performance evaluation of InfiniBand with

low level benchmarking tools in a controlled environment,

for different transport services (RC, UC, and UD), when

varying the payload length and the signal rate (SDR,

DDR, QDR, and FDR). The results obtained in our tests

showed very high throughput and low latency and

encourage the usage of this technology. However,

InfiniBand is based on ―verbs‖ and applications must be

developed with RDMA support in order to take

advantage of this fast network. In the meanwhile, the

IETF has proposed a solution, called IPoIB, in order to

run socket-based applications over InfiniBand. It is a

tradeoff between running socket-based applications over

InfiniBand without any changes and loosing part of the

high performance of InfiniBand. Hence, we also assessed

the performance of IPoIB in datagram and connected

modes. Our experiments showed significant differences

between native verbs and IPoIB. Also, it is worth

pointing out that the datagram mode of IPoIB

outperforms the connected mode.

As future work, we plan to make a performance

evaluation of IPv4 and IPv6 [24][25] when using IPoIB.

Another direction that we plan to explore is the

development of mathematical models to represent the

maximum throughput and the minimum latency that can

be achieved by different transport services of InfiniBand.

ACKNOWLEDGMENT

We want to thank the NSF (National Science

Foundation) which partially supported this research under

grant number 1010094 through the EPSCoR Track 2

program. We also express our gratitude for all the

valuable assistance and comments that we received

throughout this project from José Bonilla and Ramón

Sierra of the High Performance Computer Facility of the

University of Puerto Rico, and José Muñoz and Osvaldo

Casiano of the Resource Center for Science and

Engineering of the University of Puerto Rico.

REFERENCES

[1] InfiniBand Trade Association, InfiniBand Architecture

Specification Volume 1, Release 1.3, March 2015.

[2] InfiniBand Trade Association, InfiniBand Architecture

Specification Volume 2, Release 1.3, March 2015.

[3] MindShare and T. Shanley, InfiniBand Network

22 Low Level Performance Evaluation of InfiniBand with Benchmarking Tools

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 12-22

Architecture, 1st edition, Addison Wesley, November

2002.

[4] InfiniBand Trade Association, Supplement to InfiniBand

Architecture Specification Volume 1, Release 1.2.1,

RDMA over Converged Ethernet (RoCE), Annex A16,

April 2010.

[5] InfiniBand Trade Association, Supplement to InfiniBand

Architecture Specification Volume 1, Release 1.2.1,

RoCEv2, Annex A17, September 2014.

[6] Mellanox, RoCE vs. iWARP Competitive Analysis,

White Paper, August 2015.

[7] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia,

A Remote Direct Memory Access Protocol Specification,

RFC 5040, October 2007.

[8] E. Gamess and Humberto Ortiz-Zuazaga, Evaluation of

Point-to-Point Network Performance of HPC Clusters at

the Level of UDP, TCP, and MPI, IV Simposio Científico

y Tecnológico en Computación, Caracas, Venezuela, May

2016.

[9] Message Passing Interface Forum, MPI: A Message-

Passing Interface Standard, Version 3.1, High

Performance Computing Center Stuttgart, June 2015.

[10] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable

Parallel Programming with the Message-Passing Interface,

3rd edition, MIT Press, November 2014.

[11] S. Narayan and M. Fitzgerald, Empirical Network

Performance Evaluation of Security Protocols on

Operating Systems, International Journal of Wireless and

Microwave Technologies, Vol. 2, No. 5, pp. 19-27,

October 2012.

[12] S. Narayan and P. Lutui, TCP/IP Jumbo Frames Network

Performance Evaluation on a Test-bed Infrastructure,

International Journal of Wireless and Microwave

Technologies, Vol. 2, No. 6, pp. 29-36, December 2012.

[13] J. Balen, G. Martinovic, and Z. Hocenski, Network

Performance Evaluation of Latest Windows Operating

Systems, in proceedings of the 20th International

Conference on Software, Telecommunications and

Computer Networks (SoftCOM), Vol. 7, Split, Croatia,

September 2012.

[14] A. Cohen, A Performance Analysis of 4X InfiniBand Data

Transfer Operations, 2003 International Parallel and

Distributed Processing Symposium (IPDPS 2003), Nice,

France, April 2003.

[15] M. Rashti and A. Afsahi, 10-Gigabit iWARP Ethernet:

Comparative Performance Analysis with InfiniBand and

Myrinet-10G, 2007 IEEE International Parallel and

Distributed Processing Symposium (IPDPS 2007), Long

Beach, CA, USA, March 2007.

[16] J. Vienne, J. Chen, Md. Wasi-ur-Rahman, N. Islam, H.

Subramoni, and D. Panda, Performance Analysis and

Evaluation of InfiniBand FDR and 40GigE RoCE on HPC

and Cloud Computing Systems, Symposium on High-

Performance Interconnects, Santa Clara, CA, USA,

August 2012.

[17] S. Sur, M. Koop, L. Chai, and D. Panda, Performance

Analysis and Evaluation of Mellanox ConnectX

InfiniBand Architecture with Multi-Core Platforms, 15th

Annual IEEE Symposium on High-Performance

Interconnects (HOTI 2007), Stanford, CA, USA, August

2007.

[18] Guidelines for 64-bit Global Identifier (EUI-64)

Registration Authority, http://www.standards.ieee.org/

regauth/oui/tutorials/EUI64.html.

[19] V. Kashyap, IP over InfiniBand (IPoIB) Architecture,

RFC 4392, April 2006.

[20] J. Chu and V. Kashyap, Transmission of IP over

InfiniBand (IPoIB), RFC 4391, April 2006.

[21] V. Kashyap, IP over InfiniBand: Connected Mode, RFC

4755, December 2006.

[22] B. Huang, M. Bauer, and M. Katchabaw, Network

Performance in High Performance Linux Clusters, in

proceedings of the 2005 International Conference on

Parallel and Distributed Processing Techniques and

Applications (PDPTA 2005), Las Vegas, Nevada, USA,

June 2005.

[23] B. Huang, M. Bauer, and M. Katchabaw, Hpcbench – A

Linux-Based Network Benchmark for High Performance

Networks, in proceedings of the 19th International

Symposium on High Performance Computing Systems

and Applications (HPCS 2005), Guelph, Ontario, Canada,

May 2005.

[24] J. Davies, Understanding IPv6, 3rd ed., Microsoft Press,

June 2012.

[25] J. Pyles, J. Carrell, and E. Tittel, Guide to TCP/IP: IPv6

and IPv4, 5th edition, Cengage Learning, June 2016.

Authors’ Profiles

Eric Gamess received a MS in Industrial

Computation from the National Institute of

Applied Sciences of Toulouse (INSA de

Toulouse), France, in 1989, and a PhD in

Computer Science from the Central

University of Venezuela, Venezuela, in 2000.

He is currently working as a professor at

Central University of Venezuela, Venezuela.

Previously, he worked as a professor at University of Puerto

Rico, Puerto Rico, and ―Universidad del Valle‖, Colombia. His

research interests include Vehicular Adhoc Networks, Network

Performance Evaluation, IPv6, and Network Protocol

Specifications. He is a member of the Venezuelan Society of

Computing and has been in the organization committee and

program committee of several national and international

conferences.

Humberto Ortiz-Zuazaga received a BS in

Computer Science from the University of

Cincinnati, USA in 1992, and a PhD in

Computing Sciences and Engineering from

the University of Puerto Rico at Mayaguez in

2008. He is an associate professor in the

Department of Computer Science, University

of Puerto Rico at Rio Piedras, and Director of

the University of Puerto Rico High Performance Computing

Facility. His research is primarily focused in bioinformatics of

gene expression and cyberinfrastructure.

How to cite this paper: Eric Gamess, Humberto Ortiz-Zuazaga,"Low Level Performance Evaluation of InfiniBand

with Benchmarking Tools", International Journal of Computer Network and Information Security(IJCNIS), Vol.8,

No.10, pp.12-22, 2016.DOI: 10.5815/ijcnis.2016.10.02

