
I. J. Computer Network and Information Security, 2016, 12, 1-8 
Published Online December 2016 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijcnis.2016.12.01 

Copyright © 2016 MECS                                                  I.J. Computer Network and Information Security, 2016, 12, 1-8 

Modification of RC4 Algorithm by using Two 

State Tables and Initial State Factorial 
 

Sura M. Searan 

University of Anbar/ Department of Computer Science, Baghdad, 10012, Iraq. 

E-mail: Surasms917@gmail.com 

 

Ali M. Sagheer 
University of Anbar/ Department of Computer Science, Baghdad, 10012, Iraq. 

E-mail: ali.m.sagheer@gmail.com 

 

 

Abstract—RC4 algorithm is one of the most significant 

stream and symmetric cryptographic algorithms, it is 

simple and used in various commercial products, it has 

many weaknesses such as a bias in the key stream that 

some key bytes are biased toward some values. In this 

paper, a new algorithm is proposed by using initial state 

factorial to solve the correlation issue between public 

known outputs of the internal state by using an additional 

state table with the same length as that of the state to 

contain the factorial of initial state elements. The analysis 

of RC4 and developed RC4 algorithm is done based on 

their single bias and double byte bias and shows that 

many keystream output bytes of RC4 are produced key 

stream bytes that are biased to many linear combinations 

while developed RC4 key bytes have no single and 

double biases. The results show that the series that is 

generated by developed RC4 is more random than that 

generated by RC4 and the developed algorithm is faster 

than RC4 execution time and requires less time. 

Additionally, the developed algorithm is robust against 

many attacks such as distinguishing attack. 

 

Index Terms—RC4, KSA (Key Scheduling Algorithm), 

PRGA (Pseudo-Random Generation Algorithm), Single 

Bias, Double Bias. 

 

I. INTRODUCTION 

Encryption is a process that involves transforming 

plaintext into ciphertext in order to hide its meaning and 

to prevent unauthorized parties from retrieving plaintext 

[1]. The cryptographic algorithms are designed to provide 

lower size, high speed of implementation, less 

complexity, and a larger degree of security for resource-

constrained devices [2]. The strength of stream ciphers is 

the random key stream that guarantees secure 

computation of the cipher [3]. The cryptanalysis of 

stream cipher essentially focuses on identifying non-

random process [4]. When the key size is small, it must 

be very efficient and encryption time be very fast, many 

encryptions that are used in wireless devices are based on 

symmetric key encryption such as RC4 algorithm [5]. 

RC4 is an effective stream cipher algorithm that is most 

popular. It is used in Oracle, SQL, Secure Sockets Layer, 

and Wired Equivalent Privacy Protocol [6]. The attack on 

this algorithm was presented by Fluhrer, Mantin, and 

Shamir, it is an algorithm to use the symmetric key and it 

is an important one of the encryption algorithms [7]. This 

algorithm includes two main components to generate the 

key, the first is (KSA) Key Scheduling Algorithm and the 

other is (PRGA) Pseudo-Random Generation Algorithm 

[8]. RC4 starts with the permutation and uses the secret 

key with a variable length from 1 to 256 bits against a 

256-bit state table [9]. The key is limited to 40 bits 

because of missing of restrictions, but it is sometimes 

used as 128 key bits [10]. Symmetric encryption can be 

classified into stream and block ciphers [11]. RC4 is 

analyzed by different people and there are different 

weaknesses detected [12]. KSA is more problematic and 

it is prepared to be simple [13]. At the beginning, few 

bytes of the output of PRNG are biased or related to 

some key bytes [14]. There are different types of attack 

that are classified by the amounts of information 

available to the adversary for cryptanalysis based on 

available resources [15]. The aim of this work is to solve 

interconnection between public known outputs of the 

internal state of RC4. 

The rest of the paper is arranged as follows. Section 2 

gives the related works. Section 3 shows a brief depiction 

of RC4 algorithm. Several weaknesses of RC4 are 

determined in section 4. Section 5 illustrates the 

Modified RC4 by using Two State Tables and Initial 

State Factorial. Sections 6 and 7 show the 

implementation, results and discussion. In the results, 

section A shows a comparison between analyzing of RC4 

and developed RC4 with factorial based on single byte 

bias. And section B shows a comparison between 

analyzing of RC4 and developed RC4 with factorial 

based on double byte bias. Conclusion is shown in 

section 8. 

 

II. RELATED WORKS 

Mantin I. and Shamir A. (2001) showed an essential 

statistical weakness in the RC4 keystream by analyzing 

RC4 algorithm. This weakness makes it insignificant to 

discriminate between random strings and short outputs of 

RC4 by analyzing the second bytes. It is observed that 



2 Modification of RC4 Algorithm by using Two State Tables and Initial State Factorial  

Copyright © 2016 MECS                                                  I.J. Computer Network and Information Security, 2016, 12, 1-8 

the second output byte of RC4 has a very strong bias that 

takes the value 0 with twice the expected likelihood 

(1/128 instead of 1/256 for n = 8). The main result is the 

detection of a slight distinguisher between the RC4 and 

random ciphers, that needs only two output words under 

many hundred unrelated and unknown keys to make 

robust decision [1]. Sepehrdad P. et al. (2011) discovered 

new biases in RC4 and proposed a mechanism to focus 

on linear attachments in the RC4 and detected linear 

attachment in the PRGA of the RC4 algorithm, and 

presented the elements within one trial of PRGA. Then 

this way is popularized to RC4 as a black crate with 

confident keywords as an input and words of the 

keystream as an output. These mechanisms lead to the 

detection of 57 attachments in the RC4. Some of these 

can be immediately utilized in the present key retrieval 

attacks on the RC4, WEP, and WPA [3]. Al-Fardan N. J. 

et al. (2013) measured the security of RC4 in TLS and 

WPA and analyzed RC4 based on its single and double 

byte bias and attacked it based on its two types of bias by 

using plaintext recovery attack. Their results show that 

there are biases in the first 256 bytes of the RC4 

keystream that can be exploited by passive attacks to 

retrieve the plaintext by using 2 
44

 random keys. They 

focused on the multi-session setting, where the same 

plaintext is repeatedly encrypted with different keys and 

could recover full plain text from cipher text by using 

single byte bias attack and double byte bias attack [12]. 

Hammood M. M. et al. (2015) presented enhancing RC4 

security and speed. Many algorithms were proposed as 

development for RC4. The first is RRC4 (RC4-Random 

initial state) which is to make RC4 more secure by 

increasing its randomness. The second suggestion is RC4 

with two state tables to increase the randomness in the 

key sequence and the execution time of RC4-2State is 

faster than that of RC4. The last suggestion is RC4-

2State + which is to produce 4 keys in every cycle to 

improve the randomness in the key sequence. The output 

sequences of all suggested algorithms provide more 

randomness [13]. 

 

III. RC4 DESCRIPTION 

The RC4 algorithm was proposed by Ron Rivest 

in1987 and kept secret as a trade secret until it was 

leaked in 1994. It is very fast and simple in design [16]. 

The internal state is an array S of (2n words) [17]. RC4 

has a variable length of the key that ranges between (0 - 

255) bytes for initializing an array of 256 bytes in the 

initial state (State [0] to State [255]) [2].RC4 is carried 

out in two phases: The first is the key scheduling 

algorithm (KSA). It initializes the internal state [7]. 

RC4 starts the replacements and uses private key to get 

a random replacement with the KSA .Based on 

confidential key, the other phase is PRGA that produces 

key bytes that are XOR-ed with original bytes to get the 

cipher [5] .The state array is used to produce pseudo-

random bits .These are done in the KSA .The operation 

which is performed between key and plain text is 

equivalent in some regard to the Vernam cipher [6] .The 

key is limited to 40 bits but it is sometimes used as a 128 

bit key [8] .It has the receptivity to use 1 to 2048 key 

bits .In general, the RC4 key size is “5 to 16 bytes” (40 to 

128 bits) and the size of the typical state is 256 bytes [7]. 

It is highly utilized on the internet. It is used popularly as 

a default cipher for “Secure Socket/Transport Layer 

Security” (SSL/TLS) connections. It is very fast and 

simple in design and it is a set of stream systems 

represented by n that shows the word size in bits. The 

inner state is array (State) of (2n words) [8]. 

Algorithm 1. KSA 

INPUT: Key 

OUTPUT: State 

1.  For (i = 0 to 255) 

1.1  State[i] = i 

2.  Set j = 0 

3.  For (i = 0 to 255) 

3.1  j = (j + State[i] + Key [i 

mod key-length]) mod 256 

3.2  Swap(State[i], State[j]) 

4. Output: State 

 

The second step is pseudo-random generation 

algorithm. It generates the output keystream 

Algorithm 2. PRGA 

INPUT: State, Plaintext i  

OUTPUT: Key sequence (K sequence)  

1. Initialization: 

1.1  i = 0 

1.2  j = 0 

2.  For (i = 0 to Plaintext length) 

2.1  i = (i + 1) mod N 

2.2  j = (j + State[i]) mod N 

2.3  Swap(State[i], State[j]) 

2.4  K sequence = State 

[State[i] + State[j]] mod N 

3. Output: K sequence 

 

The output sequence of key K is XOR-ed with the 

Plaintext 

 

Ci = Ki ⊕Plaintext i [4]. 

 

IV. THE WEAKNESS OF RC4 

There are several weaknesses found in RC4 algorithm. 

Some of these weaknesses are easy and can be resolved, 

but other weakness is dangerous because attackers can 

exploit it. Another weakness in initialization state is a 

statistical bias which occurs in distributing words of the 

first output [7]. The key stream which begins the 

algorithm swaps the entry of the s-box exactly one time 

(identical to the pointer i that points to an entry) for low 

values of i, it is probable that Sj = j during the 

initialization [18]. Roos found weaknesses in RC4 that 

has serious correlation between generated value and the 

first few values of the state table. The first byte of the 

generated key is highly correlated with a few key bytes. 



 Modification of RC4 Algorithm by using Two State Tables and Initial State Factorial 3 

Copyright © 2016 MECS                                                  I.J. Computer Network and Information Security, 2016, 12, 1-8 

So, the keys allow precursor of first bytes from the output 

of the PRGA [19]. The goal of the attack is to retrieve the 

original key, the internal state, or the output keystream to 

have an access to the original messages.  

From the previous studies based on KSA and PRGA, 

there are some weaknesses of RC4 such as the biased 

bytes, distinguishers, key collisions, and key recovery 

from the state [20]. PRGA is reversible in nature. Then it 

is very simple to retrieve the secret key from the state 

[21]. Mantin and Shamir detected the major weakness in 

the second round the probability of zero output bytes. 

Fluher found a large weakness, if anyone knows the 

portion of the private key then its potential is to attack the 

RC4. Paul and Maitra found the secret key by using 

initial state table [22]. There are various methods of 

applying a brute force attack to the RC4 that is composed 

of two types: KSA attacks and PRGA attacks [23]. The 

vulnerabilities include A broadcast attack by using 

various unique keys for the encryption on similar 

plaintext offers the redundancy of the cipher text. The 

vulnerabilities include that PRGA is utilized as a seed for 

the RC4 which can be weak by analyzing a large 

collection of cipher text and as a result got duplicated 

encryption of the same plaintext with the same key [24]. 

For making RC4 secure and capable of standing against 

the attack, lot of researches was done over RC4 to 

enhance the security of RC4. 

 

V. THE MODIFIED RC4 BY USING TWO STATE TABLES 

AND INITIAL STATE FACTORIAL 

RC4 has various weaknesses in the KSA and PRGA 

that cause vulnerablity to this algorithm. This section 

determines the new insertion to the RC4 algorithm to 

improve it and to solve the weak key problem by using 

two state tables, one of them contains the factorial of 

other state contents with the same length to reduce the 

weakness that is exploited by the attacks. This algorithm 

consists of initialization step (KSA) and another step 

(PRGA) as shown in Algorithms (3) and (4). All addition 

operations are implemented in mod state length (N). The 

first step (KSA) takes a secret key k with a variable 

length between 1 and 256 n-bit words. In the first step of 

the KSA, one of the state tables is filled by the factorial 

of the contents of the other state table that is generated by 

the sender and filled with numbers from 0 to N-1. The 

input is the secret key used as a state table seed. After the 

KSA, the state becomes input to the next step (PRGA). In 

the PRGA step, additional operations are used as 

permutation to the state table. This phase generates the 

keystream that is XOR-ed with the plaintext to get the 

ciphertext. 

 

 

 

 

 

Algorithm 3. KSA of developed RC4 with Factorial 

INPUT: Key[i]. 

OUTPUT: State [i]. 

1.  For (i = 0 to 255) 

 State[i] = i. 

2.  State_Fact[i] = Factorial(i) mod 256 

3.  j = 0 

4.  For (i = 0 to 255) 

4.1 j = (State_Fact[i] + State[i] + Key [i mod 

key-length]) mod 256 

4.2 Swap (State[i], State[j]) 

5.  Output: State [i]. 

 

The second is PRGA which generates the output 

keystream: 

Algorithm 4. PRGA of developed RC4 with Factorial 

INPUT: State [i], Plain i. 

OUTPUT: Key sequence (Key seq.)  

1.  Set i = 0, j = 0 

2.  Output Generation loop 

2.1 i = (i + 1) mod 256 

2.2      j = (State [(j + state[i] ) mod 256 ]) mod 256 

2.3 Swap (State[i], (State-Fact [j] mod 256)) 

2.4 Z = (State[(i + j) mod 256] + State[(j + 

State[state[i]]) mod 256]) mod 256 

2.5 Key sequence = State [Z]  

3.  Output: Key sequence. 

 

Cipher i = Key seq. ⊕ Plain i. 

 

VI. IMPLEMENTATION 

This algorithm is executed by using C# language. The 

inputs to this algorithm are an initial state that is filled 

with the values from 0 to 255 and secret key with a 

length between 1 and 256, and another state table with 

256 bytes to contain the factorial of initial state elements. 

The implementation of the proposed algorithm required 

less time than that required for implementation of RC4 

when implemented on the same size of secret keys and 

showed that the proposed algorithm is faster than RC4 as 

shown below. The table 1 and figure 1 below show the 

time of key generation for RC4 and the proposed 

algorithm 

Table 1. Key Generation Time for RC4 and Developed RC4 with Initial 

State Factorial. 

Key size RC4 Time (m. s.) 
RC4 with Factorial 

Time (m.s.) 

1 kilobytes 4185 4091 

2 kilobytes 4237 4191 

3 kilobytes 4711 4213 

5 kilobytes 6899 6372 

 



4 Modification of RC4 Algorithm by using Two State Tables and Initial State Factorial  

Copyright © 2016 MECS                                                  I.J. Computer Network and Information Security, 2016, 12, 1-8 

 

Fig.1. Implementation Time of RC4 and Developed RC4. 

 

VII. RESULTS AND DISCUSSION 

The generated key stream is examined by NIST 

(National Institute of Standards and Technology) Test 

Suite that is a statistical combination for random number 

generator test that includes 16 statistical tests for 

measuring the output series randomness of pseudo-

random number or true random number generators .The 

tests of this PRNG were done by using NIST STS-

1.6 .The likelihood of a good random number generator 

is represented by P-value .Some tests accepted large 

sequence sizes and failed in the small sequence size, and 

other test accepted both large and small sizes .In our 

program, a large size (2,000,000 bits) is generated from 

each secret key .these sequences are tested, and p-values 

average which resulted from these tests are calculated as 

shown in table 2, in the test, P-value is compared to 0.01, 

the p-values are passed when they are greater than 0.01, 

and the produced series is random, and uniformly 

distributed .If the tests give p-value equal to 1, then the 

series is taken to have complete randomness. a p-value of 

zero means that the sequence is fully nonrandom. The 

SUCCESS means that the sequence is acceptable and it 

has good randomness, where FAILURE indicates that it 

is not acceptable and not-random. In general, these 

sixteen tests are composed of two collections. The first is 

called non-parameterized test and include Frequency Test, 

Cumulative Sums Test (forward and reverse), Discrete 

Fourier Transform (Spectral) Test, Lempel-Ziv 

compression Test, test for Longest Run of Ones in a 

Block, Rank Test, Runs Test, Random Excursions Test, 

and Random Excursions Variant Test. The second 

collection is called a parameterized test, it includes Serial 

Test, Linear Complexity Test, Overlapping Template of 

All One's Test, Non-overlapping Template Matching Test, 

Approximate Entropy Test, Block Frequency Test, and 

Universal Statistical Test. 

Table 2. Result of Running NIST on the Generated Key by RC4 and the Proposed RC4. 

RC4 with Factorial RC4 

Statistical Test Name 
Test 
No. 

Conclusion P-VALUE Conclusion P-VALUE 

SUCCESS 0.195979 SUCCESS 0.805578 Approximate Entropy 1 

SUCCESS 0.990906 SUCCESS 0.742455 Block Frequency 2 

SUCCESS 0.829138 SUCCESS 0.739164 Cumulative Sums (Forward) 3 

SUCCESS 0.716066 SUCCESS 0.854066 Cumulative Sum (Reverse) 4 

SUCCESS 0.556777 SUCCESS 0.279715 FFT 5 

SUCCESS 0.582269 SUCCESS 0.898580 Frequency 6 

SUCCESS 0.730735 SUCCESS 0.889521 Lempel-Ziv compression 7 

SUCCESS 0.828157 SUCCESS 0.407918 Linear Complexity 8 

SUCCESS 0.985925 SUCCESS 0.767817 Longest Runs 9 

SUCCESS 0.527034 SUCCESS 0.5407084 Non periodic Templates 10 

SUCCESS 0.614743 SUCCESS 0.497550 Overlapping Template 11 

SUCCESS 395.05.0 SUCCESS 395805.0 Random Excursions 12 

SUCCESS 39028350 SUCCESS 395855.5 Random Excursion Variant 13 

SUCCESS 0.144541 SUCCESS 0.610871 Rank 14 

SUCCESS 0.574394 SUCCESS 0.115965 Runs 15 

SUCCESS 0.583851 SUCCESS 0.646168 Serial 16 

SUCCESS 39503500 SUCCESS 39003020 Universal Statistical 17 

 



 Modification of RC4 Algorithm by using Two State Tables and Initial State Factorial 5 

Copyright © 2016 MECS                                                  I.J. Computer Network and Information Security, 2016, 12, 1-8 

 
Fig.2. NIST Statistical Test for RC4 and Developed RC4. 

A. Comparison Between Analyses of RC4 and 

Developed RC4 with Factorial Based on Single Byte Bias. 

RC4 has many weaknesses in the generated key stream, 

the key stream bytes are biased. In 2002 Mantin and 

Shamir [1] found that in the second round, the key is 

biased toward zero with high probability. AL-Fardan et 

al. also Hamood M.M. et al. analyzed RC4 based on its 

bias and proved that the first 256 bytes are biased. In this 

work, RC4 and the new algorithm were also analyzed and 

proved that developed RC4 has no bias while RC4 key 

stream is biased and shows the same bias that is proved 

in the literature, this work reduces the search space and 

uses state with length 32 and 2
30

 random secret keys each 

one with length 16 and proved bias in standard time (less 

than one hour) as shown below. Expected biases start 

appearing for runtime 2
21

 key generation. No bias is 

statistically identified for the proposed algorithm. Single-

bias is calculated by using the following algorithm: 

Algorithm 5. Measuring Distributions of RC4 Keystream Bytes Based 
on Its Single Bias 

INPUT: K [k1, k2, …., k16]. 

OUTPUT: Key position (Kp), key value (Kv), and the 

number of frequencies (Kf) for each position of key stream 

bytes. 

1.        For (x = 1 to 234) Do 

           1.1         i = 0, j = 0 

           1.2         Call Algorithm 1: KSA. 

           1.3         Call Algorithm 2: PRGA. 

           1.4         Deducting new key with a length of 16 bytes 

from each generated key are to be new secret key. 

2.        For (col = 0 to key Length) 

           2.1        For (row = 0 to 234) 

                            Set key [row] [col] as string 

           2.2        For (i = 1 to values. Count) 

2.2.1        If (values [i] = value) 

2.2.2        Increment count by 1 

2.2.3        Key position = col 

2.2.4        Key value = value 

2.2.5        Number of frequencies = 

(count / (234 * 16)) 

3.        Output: Kp, Kv, and Kf for each position of key 

stream bytes. 

 

This algorithm is implemented in C# language. Several 

biases were identified in the previous researches .RC4 is 

successfully reproduced and proved these bias in the first 

32 bytes of keystream while developed RC4 has no bias 

in the first 32 positions of keystream byte. The algorithm 

of measuring key distribution bytes is implemented with 

2
34

 secret key as shown in figures 3,4,5 and 6. 

 

 
Fig.3. Key Distribution in the 1st Position with 221 for RC4 and 

Developed RC4. 

 

Fig.4. Key Distribution in the 2nd Position with 221 for RC4 and 
Developed RC4. 

 

Fig.5. Key Distribution in the 16th Position with 221 for RC4 and 
Developed RC4.

0 5 10 15 20 25 30
0.0302

0.0304

0.0306

0.0308

0.031

0.0312

0.0314

0.0316

0.0318

Positions 0 ,1,2,....31

F
re

q
u
e
n
ts

Measuring distributions of keystream bytes Z1 for 234 for RC4 and the proposed algorithms 

 

 
RC4

RC4 with factorial

0 5 10 15 20 25 30
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

Values 0 ,1,2,....31

F
re

q
u
e
n
ts

Measuring distributions of keystream bytes Z2 for 234 for RC4 and the proposed algorithms 

 

 
RC4

RC4 with factorial

0 5 10 15 20 25 30
0.0304

0.0306

0.0308

0.031

0.0312

0.0314

0.0316

0.0318

0.032

0.0322

Values 0 ,1,2,....31

F
re

q
u
e
n
ts

Measuring distributions of keystream bytes Z16 for 234 for RC4 and the proposed algorithms 

 

 
RC4

RC4 with factorial



6 Modification of RC4 Algorithm by using Two State Tables and Initial State Factorial  

Copyright © 2016 MECS                                                  I.J. Computer Network and Information Security, 2016, 12, 1-8 

 

Fig.6. Key Distribution in the 32nd Position with 221 for RC4 and 

Developed RC4. 

B. Comparison Between Analyses of RC4 and 

Developed RC4 with Factorial Based on Double Byte 

Bias. 

After explaining single-byte biases that are of great 

benefit to the cryptographic society, the attack simply can 

be avoided by ignoring the initial bytes. Thus, RC4 with 

additional configuration can still resist single-byte bias 

attack. However, the researchers have studied and 

investigated biases beyond initial bytes and different 

multi-byte biases have been discovered in the key stream 

of RC4. Fluhrer and McGrew [25] were the first 

researchers that discovered the biases in a consecutive 

pair of bytes (Ki, Ki+1) and detected long-term biases of 

RC4. Hamood et al. [26] estimated the probability of the 

cipher for generating each pair of byte values through 

each 256-byte cycles and got a complete view of the 

distributions of every pair of byte values at the positions 

(i, i + 1). They replicated biases of Fluhrer and McGrew 

and their work was endorsed by AlFardan et al. [12] 

They found two new positive biases not mentioned in [25] 

by Fluhrer and McGrew. 

This work reproduced the Fluhrer and McGrew biases 

and Hammood bias with 1024 keys of 16 bytes to 

generate 2
32

 keystream bytes after discarding the first 

1024 bytes. Each key from the 1024 keys generates 2
32

; 

therefore, the whole amount of generated keys is 2
42

. The 

proposed algorithms does not generate any statistical bias 

and its output in the range only ±2
4
 from the predicted 

occurrences. Algorithm 6 below is designed to determine 

the measure of double byte bias. The main idea of this 

algorithm is to measure the appearance of the consecutive 

pair (Zi, Zi+1) in each position of the output of RC4. The 

measure of double byte bias is illustrated in the algorithm 

below: 

 

 

 

 

 

 

 

 

Algorithm 6. Measuring Distributions of RC4 Keystream Bytes Based 
on Its Double Bias 

INPUT: K [k1, k2, …., k16]. 

OUTPUT: 3-Dimentions array. 

1.        i = j = i1 = k = 0  

2.        For (x = 1 to 210) 

           2.1        Call Algorithm 1. KSA 

           2.2        For (x = 1 to 232) 

2.2.1    i = (i + 1) mod 256 

2.2.2    j = (j + State[i]) mod 256 

2.2.3    Swap (State[i], State[j])  

2.2.4    Generated Key = State[(State[i] + 

State[j]) mod 256]  

   2.2.5 A[k][Generated Key][i1] = 

A[k][Generated Key][i1] +1 

2.2.6    Deducting new key with 16 bytes 

from each generated key to be new secret key. 

2.2.7    k = Generated Key 

2.2.8    i1 = (i1 + 1) mod 256 

3.        Output: A[k][Generated Key][i1]. 

 

The figure below shows the distribution of (Zr, Zr+1) 

for all the first 32 bytes where Zr = i and Zr+1 = i for 

RC4.  

 

 
Fig.7. Double-Byte Biases (Zr, Zr+1) for RC4 where Zr=i and Zr+1=i. 

The figure below shows the double-byte biases (Zr, 

Zr+1) for modified RC4 with factorial where Zr=i and 

Zr+1=i for the first 32 bytes. 

 

 
Fig.8. Double-Byte Biases (Zr, Zr+1) for Modified RC4 with Factorial 

where Zr=i and Zr+1=i.

0 5 10 15 20 25 30

0.0296

0.0298

0.03

0.0302

0.0304

0.0306

0.0308

0.031

0.0312

0.0314

Values 0 ,1,2,....31

F
re

q
u
e
n
ts

Measuring distributions of keystream bytes Z32 for 234 for RC4 and the proposed algorithms 

 

 

RC4

RC4 with factorial

0 5
10 15 20 25 30

0
200

400
600

800
1000

0.0285

0.0295

0.0305

0.0315

0.0325

0.0335

0.0345

Positions 0 ,1,2,....31

Double-byte biases (Zr, Zr+1) where Zr=i and Zr+1=i for RC4 

Second byte values 0,1,2,.....,1023

B
ia

s

0
5

10
15

20
25

30

0

200

400

600

800

1000

-1

-0.5

0

0.5

1

B
ia

s

Double-byte biases (Zr, Zr+1) where Zr=0 and Zr+1=0 for RC4 with Factorial

Positions 0 ,1,2,....31Second byte valyes 0,1,2,.....,1023



 Modification of RC4 Algorithm by using Two State Tables and Initial State Factorial 7 

Copyright © 2016 MECS                                                  I.J. Computer Network and Information Security, 2016, 12, 1-8 

VIII. CONCLUSION 

RC4 stream cipher is a significant encryption 

algorithm and it is one of the widely used cryptosystems 

on the Internet that is used to keep information privacy. 

RC4 implementation is simple and fast compared with 

other encryption algorithms, but its key bytes are biased, 

this weakness makes RC4 vulnerable to attack. The 

proposed algorithm uses factorial of the state table 

contents and addition operations in KSA and PRGA to 

increase the randomness of the generated key while the 

key generation time of suggested algorithm is faster than 

key generation time of RC4. The key stream of the 

proposed algorithm has no single or double bias in the 

first 32 position as we reduce the search space and 

measured distribution bytes in standard time while RC4 

key stream is biased in different positions. The generated 

key stream of the proposed RC4 has passed the NIST 

suite of statistical tests. Thus, it can be executed in the 

software or hardware. 

REFERENCES 

[1] I. Mantin and A. Shamir, “A Practical Attack on 

Broadcast RC4”. Springer, Lecture Notes in Computer 

Science. 2002, (2355), pp 152-164. 

[2] M. M. Hammood, K. Yoshigoe, and A. M. Sagheer, 

“RC4-2S: RC4 Stream Cipher with Two State Tables”. 

Springer, Lecture Notes in Electrical Engineering, 2013, 1, 

pp 13-20. 

[3] P. Sepehrdad, S. Vaudenay, and M. Vuagnoux, M. 

“Discovery and Exploitation of New Biases in RC4”, 

Springer, In Selected Areas in Cryptography, 2011, pp. 

74-91. 

[4] M. E. McKague, “Design and analysis of RC4-like stream 

ciphers”, MS.C. Thesis, University of Waterloo, Canada/ 

Ontario, 2005. 

[5] P. Prasithsangaree, and P. Krishnamurthy, “Analysis of 

energy consumption of RC4 and AES algorithms in 

wireless LANs”, In Global Telecommunications 

Conference, 2003. GLOBECOM'03. IEEE, 2003, 3, pp 

1445-1449. 

[6] A. M. S. Rahma, A. M. Sagheer, and A. A. Salih, 

“Development of RC4 Stream Ciphers Using Boolean 

Functions”, Journal of Baghdad College of Economic 

Sciences University, 2012, 29. 

[7] L. Stosic, and M. Bogdanovic, “RC4 stream cipher and 

possible attacks on WEP”, Editorial Preface, 2012, 3(3). 

[8] S. Maitra, and G. Paul, “New Form of Permutation Bias 

and Secret Key Leakage in Keystream Bytes of RC4”, In 

Fast Software Encryption, Springer, 2008, pp. 253-269. 

[9] S. Maitra, and G. Paul, “Analysis of RC4 and Proposal of 

Additional Layers for Better Security Margin”, Springer, 

Lecture Notes in Computer Science. 2008, pp 27-39. 

[10] C. Garman, K. G. Paterson, and T. Van der Merwe, 

“Attacks Only Get Better: Password Recovery Attacks 

Against RC4 in TLS”, In Presented as Part of the 24th 

USENIX Security Symposium (USENIX Security 15), 

2015. 

[11] S. Paul, and B. Preneel, “Analysis of Non-Fortuitous 

Predictive States of the RC4 Keystream Generator”, 

Springer, Lecture Notes in Computer Science. 2003, pp 

52-67. 

[12] N. J. Al-Fardan, D. J. Bernstein, K. G. Paterson, B. 

Poettering, and J. C. Schuldt, “On the Security of RC4 in 

TLS and WPA”, In Presented as part of the 22nd 

USENIX Security Symposium. USENIX, 2013, 13, pp 

305-320. 

[13] M. M. Hammood, K. Yoshigoe, and A. M. Sagheer, 

“Enhancing Security and Speed of RC4”, International 

Journal of Computing and Network Technology, 2015, 

3(2).  

[14] L. L. Khine, “A New Variant of RC4 Stream Cipher”, 

Mandalay, Myanmar: World Academy of Science, 

Engineering and Technology, 2009. 

[15] M. U. Bokhari, S. Alam, F. S. Masoodi, “Cryptanalysis 

Techniques for Stream Cipher: a survey”, International 

Journal of Computer Applications, 2012, 60(9), pp 29-33.  

[16] K. K. H. Wong, G. Carter, and E. Dawson, “An analysis 

of the RC4 Family of Stream Ciphers Against Algebraic 

Attacks”, In Proceedings of the Eighth Australasian 

Conference on Information Security, 2010, 105, pp 67-74. 

[17] M. A. Orumiehchiha, J. Pieprzyk, E. Shakour, and R. 

Steinfeld, “Cryptanalysis of RC4 (n, m) Stream Cipher”, 

In Proceedings of the 6th International Conference on 

Security of Information and Networks, 2013, pp 165-172. 

[18] S. Mister, and S. Tavares, “Cryptanalysis of RC4-like 

Ciphers”, In Selected Areas in Cryptography, 1999, pp 

632-632. Springer. 

[19] M. M. Hammood, K. Yoshigoe, and A. M. Sagheer, “RC4 

Stream Cipher with a Random Initial State”, Springer, 

Lecture Notes in Electrical Engineering, 2013, 1, pp 407-

416. 

[20] P. Jindal, and B. Singh, “A Survey on RC4 Stream 

Cipher”, International Journal Computer Network and 

Information Security, 2015, 7, pp 37-45. 

[21] M. Robshaw, and O. Billet, “New Stream Cipher Designs: 

The eSTREAM Finalists”, Springer, Lecture Notes in 

Computer Science, 2008. 

[22] P. Pardeep, and P. K. Pateriya, “PC 1-RC4 and PC 2-RC4 

Algorithms: Pragmatic Enrichment Algorithms to 

Enhance RC4 Stream Cipher Algorithm”, International 

Journal of Computer Science and Network, 2012, 1(3). 

[23] M. Omari, and H. S. Soliman, “Exponential Brute-Force 

Complexity of a Permutation Based Stream Cipher”, 

International Journal Computer Network and Information 

Security, 2013, 1, pp 1-13. 

[24] V. K. Keerthi, and R. P. Arun, “Taxonomy of SSL/TLS 

Attacks”, International Journal Computer Network and 

Information Security, 2016, 2, pp 15-24. 

[25] S. R. Fluhrer, and D. A. McGrew, “Statistical Analysis of 

the Alleged RC4 Keystream Generator”, Springer, 

Lecture notes in computer science, 2001, (1978), pp 19-

30. 

[26] M. M. Hammood, and K. Yoshigoe, “Previously 

Overlooked Bias Signatures for RC4”, International 

Symposium on Digital, Forensic Security, 2016, 101-106. 

doi:10.1109. 

 

 

 

Authors’ Profiles 

 
Sura M. Searan has received her B.Sc. in 

Computer Science (2013) from the University 

of Anbar, Iraq. She is a master student (2014, 

till now) in the Computer Science Department, 

College of Computer Sciences and 

Information Technology at Al-Anbar 

University. She is interested in the following fields; Cryptology, 

Information Security, Coding Systems. 



8 Modification of RC4 Algorithm by using Two State Tables and Initial State Factorial  

Copyright © 2016 MECS                                                  I.J. Computer Network and Information Security, 2016, 12, 1-8 

Ali M. Sagheer is a Professor in the 

Computer College at Al-Anbar University. He 

received his B.Sc. in Information System 

(2001), M.Sc. in Data Security (2004), and his 

Ph.D. in Computer Science (2007) from the 

University of Technology, Baghdad, Iraq. He 

is interested in the following fields; Cryptology, Information 

Security, Number Theory, Multimedia Compression, Image 

Processing, Coding Systems, and Artificial Intelligence. He has 

published many papers in different scientific journals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

How to cite this paper: Sura M. Searan, Ali M. Sagheer,"Modification of RC4 Algorithm by using Two State Tables 

and Initial State Factorial", International Journal of Computer Network and Information Security(IJCNIS), Vol.8, No.12, 

pp.1-8, 2016.DOI: 10.5815/ijcnis.2016.12.01 


