
I. J. Computer Network and Information Security, 2016, 2, 1-14
Published Online February 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2016.02.01

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 2, 1-14

Performance Evaluation of IPv4/IPv6 Transition

Mechanisms

Adira Quintero, Francisco Sans, and Eric Gamess
School of Computer Science, Central University of Venezuela, Caracas, 1040, Venezuela

E-mail: {adira.quintero, francisco.sans, eric.gamess}@ciens.ucv.ve

Abstract—The exhaustion of IPv4 addresses has forced

the deployment of the new version of the Internet

Protocol (IPv6). However, the migration to the new

protocol is done gradually and with the due care for many

reasons that include: cost, inclusion of support for IPv6 in

existing applications, training of technical staff, lack of

web content available over IPv6 from important providers,

and obsolete devices not anymore supported by

manufacturers. For those reasons, many transition

mechanisms have been proposed, each one to fill distinct

requirements, with different operational theory and

availability according to the network environment. A

performance evaluation of these mechanisms can help

network administrators and researchers in their selection

of the best transition technology for their environment. In

this paper, we present a performance comparison of some

transition mechanisms such as ISATAP, 6to4, and

NAT64 in real testbeds with Debian, Windows 7,

Windows 8, and Windows 10. For NAT64, two different

tools were tested: TAYGA and Jool. We measure the

OWD and the throughput for UDP and TCP for every

mechanism, for both Ethernet and Fast Ethernet

technologies. From this research, we can conclude that all

the modern operating systems for PCs already have good

support for IPv6, and a very similar network performance.

Also, we can infer from our work that in controlled

environments, native IPv4 has the best performance,

closely followed by native IPv6. The difference is

essentially due to the length of the IP header (20 bytes in

IPv4 and 40 bytes in IPv6). The tunneling solutions

chosen for this research (ISATAP and 6to4) have a

similar performance, which is the lowest of the studied

technologies, because of the additional IPv4 header in the

tunnel.

Index Terms—Performance Evaluation, Benchmarking

Tools, IPv6, IPv4, Transition Mechanisms, ISATAP, 6to4,

NAT64.

I. INTRODUCTION

With its unexpected growth, Internet has been facing

for several years the exhaustion of available IPv4

addresses. To tackle this problem, many solutions have

been proposed. One of the most popular solutions is the

implementation of Network Address Translation (NAT)

[1], where internal hosts with private IPv4 addresses are

―represented‖ by a NAT server in Internet. Nevertheless,

this is not a practical solution, since NAT clients do not

have true end-to-end connectivity.

Another solution to this problem is the use of Internet

Protocol version 6 (IPv6) [2]. This new version of IP has

128-bit addresses, while IPv4 is limited to 32-bit

addresses. Furthermore, IPv6 adds many improvements

in areas such as routing, multicasting, security, mobility,

and network auto configuration. Also, it is worth to

mention that the majority of the current operating systems

has IPv6 support.

It is not possible to carry out the transition from IPv4

to IPv6 in a short period of time. Hence, during the

transition, IPv4 and IPv6 will coexist. Many reasons

extend the time of this coexistence period, including cost,

inclusion of support for IPv6 in existing applications,

training of technical staff, lack of web content available

over IPv6 from important providers, and obsolete devices

not supported anymore by manufacturers where it is

impossible to upgrade to a new firmware with IPv6

support. As a consequence, IPv6 must be deployed

gradually. Therefore, in the early deployment of IPv6,

there are small isolated islands of IPv6 in an IPv4 ocean,

and some transition mechanisms were created to allow

the coexistence of the two versions of the protocol.

There are three types of transition mechanisms: dual-

stack, translators, and tunneling techniques. In dual-stack,

devices have IPv4 and IPv6 simultaneously, allowing the

communication with both versions of the protocol. The

translation mechanisms translate IPv6 packets into IPv4

packets and vice versa, allowing the communication

between hosts with different IP versions. In the tunneling

techniques, the basic idea is to communicate IPv6 hosts

that are separated by an IPv4-only network. In this case,

IPv6 packets are encapsulated into IPv4 packets to

traverse IPv4 networks. Similarly, the tunneling

technologies also include the reverse case, that is, the

communication of IPv4 hosts that are separated by an

IPv6 network. However, this last case is seldom used

since IPv4 is still by far the dominant protocol.

Since there are several different transition mechanisms,

it is important to know which is more suitable and will

perform better in a specific situation. In this paper, we

propose testbeds and do a performance evaluation of

three transition mechanisms: ISATAP, 6to4, and NAT64.

Their performance is compared with the one of native

IPv4 and native IPv6 traffic. We use benchmarking tools

to measure One Way Delay (OWD) and throughput for

2 Performance Evaluation of IPv4/IPv6 Transition Mechanisms

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 2, 1-14

the different mechanisms and make an analytical

comparison of the results.

The rest of this paper is organized as follows. Section

II makes a survey of the related work. Section III briefly

describes the transition mechanisms that we chose for our

study. Information about our testbeds and traffic

generation tools is presented in Section IV. In Section V,

an analytical comparison of the obtained results is done.

Finally, Section VI discusses the conclusions and future

work.

II. RELATED WORK

Many studies have been conducted to measure the

progress of IPv6 deployment. For example, Colitti et al.

[3] developed a method for measuring IPv6 adoption.

Claffy [4] provided an excellent summary of the

deployment of IPv6 and also identified areas that require

further study.

In the field of performance evaluation, on one hand

there are several studies that evaluate the performance of

IPv4 and IPv6 in different operating systems. Zeadally

and Raicu [5] compared the performance of IPv6 in

Windows 2000 and Solaris 8. An upper bound model to

compute TCP and UDP throughput for IPv4 and IPv6, in

a full-duplex point-to-point connection, was presented by

Gamess and Surós [6]. They compared the performance

of various operating systems with this upper bound.

Narayan, Shang, and Fan [7][8] studied the performance

of IPv4 and IPv6 traffic on various distributions of

Windows and Linux for TCP and UDP. A similar study

was conducted by Kolahi et al. [9], where the TCP

throughput of Windows Vista and Windows XP was

compared using IPv4 and IPv6. A comparison of network

performance evaluation between Windows XP, Windows

Vista, and Windows 7 was conducted by Balen,

Martinovic, and Hocenski [10]. Svec and Munk [11]

considered the usage of TCP, UDP and SCTP traffic in

IPv4 and IPv6 networks. Furthermore, Gamess and

Velásquez [12] made an analysis of the forwarding

engine performance of PC-based routers using Solaris,

Windows, and Debian for both, IPv4 and IPv6. Narayan

et al. [13] did a similar work but with Fedora, Ubuntu,

and Windows Server as operating systems. Finally, the

performance of the IP protocols has also been compared

in wireless networks [14][15][16], and with the use of

QoS [17].

On the other hand, many authors have evaluated the

performance of various tunneling mechanisms. Huang,

Wu, and Lin [18] did a complete evaluation of the

performance of Teredo on a testbed. Both Teredo latency

and throughput were compared to ISATAP by Aazam et

al. [19]. Web-based applications were implemented by

Zander et al. [20] to test latency and delay introduced by

Teredo and to compare it with 6to4. Narayan and Tauch

[21][22] compared 6to4 with configured tunnels, using

Windows Server 2003, Windows Server 2008, Ubuntu

11.0, and Fedora 9.10. In a more recent studies, Hadiya,

Save, and Geetu [23] also evaluated the performance of

6to4 and configured tunnels in a network infrastructure,

while Amr and Abdelbaki [24] compared the routing

convergence of 6to4 and configured tunnels versus the

conventional IPv4 and IPv6 protocols. Yoon et al. [25]

did a comparison of 6to4, 6rd, and ISATAP throughput

and CPU utilization when using these communication

techniques on testbeds for Ubuntu. An analytical

performance evaluation for ISATAP, 6to4, 6rd, and

Teredo was performed by Sans and Gamess [26].

At the level of translation techniques, many studies are

specific to NAT64/DNS64. For example, Llanto and Yu

[27] measured the performance of TAYGA and TOTD (a

DNS proxy nameserver). Monte et al. [28], and Yu and

Carpenter [29] evaluated the performance of an Ecdysis

NAT64 and DNS64 implementation. Hozdic and

Mrdovic [30] combined an Ecdysis NAT64 with a BIND

DNS64 server for their evaluation. Performance of BIND

DNS64 has also been evaluated with TAYGA by Lencse

and Takacs [31]. BIND and TOTD DNS64 servers’

performance has been compared by Lencse and Repas

[32] in Linux, OpenBSD, and FreeBSD. These authors

also studied the stability of two NAT64 implementations:

TAYGA and PF, using ICMP [33]. Finally, Repas,

Farnadi, and Lencse [34] did a performance evaluation of

free NAT64 implementations at the level of UDP and

TCP.

Simulation tools have also been used for performance

evaluation of IPv4 and IPv6. For example, the authors of

[35] worked with OPNET IT Guru to investigate areas of

performance weakness in VoIP.

In our work, we consider native IPv4, native IPv6, and

three transition mechanisms (ISATAP, 6to4, and NAT64),

on conventional PCs with four different operating

systems (Debian, Windows 7, Windows 8, and Windows

10) that are used as a router, and as communication end-

points. For NAT64, we propose a comparison between

TAYGA and Jool implementations (a comparison that

has not been done to the best of our knowledge).

III. TRANSITION MECHANISMS

Tunneling mechanisms allow remote IPv6 nodes to

communicate with each other through an IPv4-only

network. These methods provide an IPv6 virtual-link on

an actual IPv4 network to enable IPv6 communication.

The basic idea of tunnels is to encapsulate IPv6 packets

into IPv4 packets, by adding an IPv4 header with

protocol number 41. In this way, IPv6 packets can

traverse IPv4-only networks to reach the IPv6 destination.

In one end-point of the virtual link, a device encapsulates

(adds an IPv4 header to the IPv6 packet), while

decapsulation (removing the IPv4 header from the IPv6

packet) is done in the second end-point.

In the other hand, translation mechanisms translate

IPv6 packets into IPv4 packets and vice versa. When an

IPv4 to IPv6 translator receives an IPv4 packet that goes

to the IPv6 world, the IPv4 header is eliminated and used

to construct an IPv6 header as its substitute. A similar

process occurs when an IPv6 packet is received by an

IPv6 to IPv4 translator.

For this study, we chose ISATAP and 6to4 for

 Performance Evaluation of IPv4/IPv6 Transition Mechanisms 3

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 2, 1-14

tunneling mechanisms, and NAT64 for translation

mechanisms. We selected these technologies due to their

popularity, their different range of applications, and

because many implementations are available from both

the Internet community and manufacturers. It is worth

remembering that Network Address Translation-Protocol

Translation (NAT-PT) was a popular translation

technique, which has been deprecated by [36], hence it is

not covered in this research.

A. ISATAP

Intra-Site Automatic Tunnel Addressing Protocol

(ISATAP) [37] is a tunneling mechanism that allows

dual-stack hosts within an IPv4 underlying network to

communicate with remote IPv6 devices.

The ISATAP address is configured with a modified

EUI-64 format, by concatenating the 24-bit IEEE OUI

(00-00-5E for private IPv4 address and 02-00-5E for

public IPv4 address), the 8-bit hexadecimal value 0xFE,

and the 32-bit IPv4 address of the node. In this way, the

node configures an initial link-local address, which

allows it to communicate with other ISATAP nodes that

are in the same virtual local link.

ISATAP mechanism assumes that multicast is not

available in the IPv4 network, so it provides a way to

discover potential routers. ISATAP hosts keep a list of

routers, configured manually or obtained by a DNS query

to isatap or isatap.company.com (where the local domain

is company.com). With the IPv4 address of the router,

hosts can perform a router solicitation to acquire a global

IPv6 address, with the same modified EUI-64 format

described above. This allows an ISATAP host to

communicate with the IPv6 Internet.

ISATAP is implemented in most platforms (Windows

XP/Vista/7/8/10, Linux, etc) and it is easy to configure.

B. 6to4

6to4 [38] is a tunneling mechanism that allows routers

with a global IPv4 address to create an IPv6 site. It uses

the 2002::/16 prefix, designated by the Internet Assigned

Numbers Authority (IANA) to create the address block.

A 6to4 site can have up to 2
80

 IPv6 addresses of the type

2002:<IPv4Address>:/48, which are made by combining

the prefix designated by the IANA with the 32 bits of the

IPv4 address of the 6to4 router. It is possible to route any

packet to these addresses by encapsulating and sending

the packet to the IPv4 address of the 6to4 router

embedded in the IPv6 address, allowing the

communication between any 6to4 domains.

The communication between a 6to4 domain and the

IPv6 Internet requires a 6to4 relay. This device advertises

the 2002:/16 prefix to the IPv6 Internet, letting native

IPv6 hosts to send packets to a 6to4 host. When a 6to4

router has to forward an IPv6 packet to a native IPv6 host,

it encapsulates and sends the packet to one of the 6to4

relays, which then routes the packet in the IPv6 Internet

in a normal way, after decapsulation. To avoid manual

configuration of the IPv4 addresses of the relays, IANA

has designated the IPv4 anycast address 192.88.99.1 [39].

With this anycast address, routing is improved, and third-

party relays can be used for robustness, redundancy, and

high availability.

C. NAT64

NAT64 [40] is a translation mechanism that allows

IPv6-only clients to access IPv4-only servers, through

translation of IP headers. Two different devices are

needed in NAT64: a DNS64 server and a NAT64 router.

Also, this technology requires two IP pools. The first pool

is an /96 IPv6 prefix [41] (usually 64:ff9b::/96) used to

embed the IPv4 address of the servers to be reached by

IPv6-clients. It is also known as the designated IPv6

prefix. The other pool is a pool of IPv4 addresses (at least

one IPv4 address) that will be temporarily employed to

represent the IPv6-clients in the IPv4 Internet. It is also

known as the dynamic IPv4 pool. When an IPv6 client

want to establish a connection with a server, it consults its

DNS server (in this case a DNS64 server). If the solicited

server has an IPv6 address, the DNS64 server answers

with the corresponding IPv6 address (AAAA record), and

the IPv6 packet is submitted to regular IPv6 routing.

Otherwise, the DNS64 server generates an IPv6 address

that represents the IPv4-only server by concatenating the

/96 well-known prefix with its IPv4 address (usually

64:ff9b:<IPv4Address>). Hence, the IPv6 client does not

need support for NAT64/DNS64. The resulting IPv6

packet will travel in the IPv6 world (using the IPv6

address of the IPv6 client as source address, and the IPv6

address given by the DNS64 server as destination address)

until the NAT64 router. The later translates the IPv6

header into an IPv4 header, by using one of the IPv4

address in its second pool as the source IPv4 address, and

the IPv4 address embedded in the IPv6 destination

address, as the destination IPv4 address. The NAT64

router also adds an entry in the session table, for the

inverse translation (IPv4 to IPv6), for returning packets.

This entry is established with the first packet of the flow,

and maintained while there is communication activities

between the IPv6 client and the IPv4 server.

IV. BENCHMARKING TOOLS AND TESTBEDS

A. Test Method

In this section, we present the benchmarking tools

selected for our study. We also propose the testbed for the

different technologies: native IPv4, native IPv6, ISATAP,

6to4, and NAT64.

To calculate the OWD, we chose a benchmark

developed previously by this research group [42]. As

stated in [42], OWD or Round Trip Time (RTT) reported

in many evaluation tools are not reliable since they are

based on synchronized computers, which is difficult to

achieve at the level of microseconds. The key is to take

all the timestamps in the same computer. Our benchmark

is based on the client/server model. Basically, a packet

(IPv4 or IPv6) of a fixed length is exchanged between the

client and the server a number of times (defined by the

users). The benchmark takes a timestamp before and after

the interchange. The difference of the timestamps is

4 Performance Evaluation of IPv4/IPv6 Transition Mechanisms

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 2, 1-14

divided by the number of time the packet was sent and

received to obtain an average of the RTT over the path,

and then again by 2 to get the average OWD.

For the throughput, we selected Iperf [43], also based

on the client/server model. This benchmark sends traffic

from the client to the server, which then calculates the

number of bits per seconds received. A high bandwidth

has to be specify to ensure that the tool saturates the

network in order to obtain the maximum throughput.

Even though Iperf can measure both TCP and UDP

throughput, the tool only allows to specify the bandwidth

in UDP. Therefore, we only perform throughput tests for

UDP in our experiments.

The performance evaluation is done by sending IPv6

packets (or IPv4 packets, depending of the technology

used) between two PCs with the benchmarking tools

mentioned above. The main skeleton of the testbeds

consists of two PCs (PC1 and PC2) connected with

another PC (R1) with two NICs (Network Interface Cards)

functioning as a router. This basic configuration is shown

in Fig. 1. We used PCs with the same characteristics: HP

xw4600 with an Intel Core 2 Duo E6750 CPU at 2.67

GHz and 8 GB of RAM. For the NICs, we installed Intel

PCI Ethernet adapters (Intel PRO/100 S).

Fig.1. Skeleton of Testbed.

We created four partitions in the hard disk of the PCs

(PC1, PC2, and R1) and installed the following operating

systems: Debian 7.0.8 (Wheezy), Windows 7, Windows 8,

and Windows 10, all in their 64-bit version. We chose

those operating systems because of their popularity and

robustness. For any experiment, we run the same

operating system in the three PCs, with the goal of

evaluating the performance of a transition technology for

this particular operation system.

Every test was performed for Ethernet and Fast

Ethernet technologies. All the experiments were repeated

10 to 20 times to get consistent measurements. The

average obtained for each test is presented as the result.

The packets were sent using UDP and/or TCP as the

transport protocols. We varied the values for the UDP

and TCP payload as specified in the following list: 50,

100, 250, 500, 750, 1000, 1250, 1500, 1750, 2000, 3000,

4000, 5000, 6000, 7000, 8000, 9000, and 10000 bytes.

B. Testbeds

1) Native IPv4: In the native IPv4 testbed, both router

and PCs were configured only with IPv4 as shown

in Fig. 2. The IPv4 addresses and the routes of all

devices were statically configured.

Fig.2. Native IPv4 Testbed.

Enabling IPv4 forwarding in Debian is done by setting

the sysctl kernel parameter net.ipv4.conf.all.forwarding to

1. In the case of Windows, variable IPEnableRouter must

be set to 1 in the following system registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlS

et\Services\Tcpip\Parameters

This router’s configuration was used in every testbed

in which an IP4 router was needed.

2) Native IPv6: Similarly to the native IPv4 testbed,

the addresses and routes of both router and PCs

were configured statically, as depicted in Fig. 3.

Fig.3. Native IPv6 Testbed.

Enabling IPv6 forwarding in Debian is straightforward.

It is just a matter of setting the sysctl kernel parameter

net.ipv6.conf.all.forwarding to 1. In the case of Windows,

the command indicated in Fig. 4 must be typed into the

console to activate the forwarding of packets. Since the

router has two NICs, it is necessary to execute the

command twice, once for every interface. This router’s

configuration was used in every testbed that needed an

IPv6 router.

Fig.4. Enabling Forwarding in R1 for Native IPv6 (Windows).

3) ISATAP: Fig. 5 shows the ISATAP testbed. For the

configuration of the ISATAP tunnel, PC1 (an

ISATAP host) must have the IPv4 address of the

ISATAP router. In our experiments, R1 acts as the

ISATAP router.

Fig.5. ISATAP Testbed.

PC1
R1

PC2

eth0

IPv4 Network

eth0 eth1eth0PC1

R1

PC2
192.168.0.0/24

.2 .1 .1 .2

192.168.1.0/24

eth0

IPv6 Network

eth0 eth1eth0PC1

R1

PC2
2001:db8:a::/64

::2 ::1 ::1 ::2

2001:db8:b::/64

eth0

IPv4 Network

eth0 eth1eth0PC1

R1

PC2

192.168.0.0/24

.2 .1 ::1 ::2

2001:db8:b::/64

IPv6 Network
Prefix

2001:db8:fea::/96

2001:db8:fea::5efe:192.168.0.2
ISATAP host

fe80::5efe:192.168.0.2 fe80::5efe:192.168.0.1
ISATAP router

 Console commands

 01: netsh interface ipv6 set interface <NIC> forwarding=enabled

 Performance Evaluation of IPv4/IPv6 Transition Mechanisms 5

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 2, 1-14

To configure ISATAP in Debian, the daemon isatapd

was installed in PC1. PC1 was set as illustrated in Fig. 6.

The ISATAP daemon is run in line 06, and an IPv6

address is statically assigned in line 07. The ISATAP

router was configured as shown in Fig. 7. The tunnel is

setup in lines 01-03, indicating that the local end-point of

the tunnel is associated to IP address 192.168.0.1. Note

that line 07 will not have been required in PC1 (see Fig.

6), if an advertisement daemon (such as radvd) were

installed and configured in R1. In this case, PC1 will

have learnt its global unicast address from the

advertisement daemon.

Fig.6. Configuration of PC1 for ISATAP (Debian).

Fig.7. Configuration of R1 for ISATAP (Debian).

In the case of Windows, PC1 must be configured by

typing the commands indicated in Fig. 8. In line 01, the

ISATAP tunnel is enabled, whereas line 02 indicates the

IPv4 address of the ISATAP router.

Fig.8. Configuration of PC1 for ISATAP (Windows).

The Windows router, R1, is configured with the

commands depicted in Fig. 9. Lines 01-02 enable

ISATAP and indicate the IPv4 address of the router.

Since this IPv4 address belongs to R1, it now knows that

it is an ISATAP router. Then, packet forwarding is enable

for IPv6 in lines 03-04, allowing the router to forward

packets. Lines 05-06 indicate that R1 must advertise

prefix 2001:db8: fea:/64 through Router Advertisement to

ISATAP clients.

Fig.9. Configuration of R1 for ISATAP (Windows).

4) 6to4: This testbed was configured as shown in

Fig.10. In this case, R1 is an IPv4-only router, and

PC1 and PC2 are configured as 6to4 hosts/routers.

That is, PC1 and PC2 have both stacks. For the IPv6

packets generated by PC1 and PC2, an IPv4 header

is added by the generating host before sending them

through the IPv4 network toward its destination.

Fig.10. 6to4 Testbed.

For Debian, the configuration of PC1 as a 6to4

host/router is shown in Fig. 11. In this case, lines 01-03

create and setup the pseudo-interface (called 6to4). The

configuration of PC2 is similar to PC1, with the

exception of the local IPv4 address (192.168.1.2).

Fig.11. Configuration of PC1 for 6to4 (Debian).

In Windows, 6to4 is configured as presented in Fig. 12.

PC1 and PC2 only require the command of line 01 to

indicate that 6to4 must be enabled.

Fig.12. Configuration of PC1 and PC2 for 6to4 (Windows).

5) NAT64: The testbed for NAT64 is depicted in Fig.

13. In this case PC1 is an IPv6-only host, and PC2 is

an IPv4-only host. The router R1 is in charge of

translating the headers to enable the communication

between the two networks. We chose

192.168.255.0/24 for the dynamic IPv4 pool and

2001:db8: ffff: /96 for the designated IPv6 prefix. In

this testbed, we only use Debian as operating system,

because no suitable implementation of NAT64 was

found for Windows. Two implementations of

NAT64 were installed in R1: TAYGA [44] and Jool

[45].

Fig.13. NAT64 Testbed.

TAYGA is an out-of-kernel stateless NAT64

implementation for Linux. We installed TAYGA v0.9.2

in R1 from its source code. Modified files and

configuration commands in R1 can be observed in Fig. 14.

Lines 01-02 create and setup the translation interface

eth0

Host 6to4

eth0 eth1eth0PC1
R1

PC2

192.168.0.0/24

.2 .1 .1 .2

Host 6to4

2002:c0a8:2::1 2002:c0a8:102::1

192.168.1.0/24

eth0

IPv6 Network

eth0 eth1eth0PC1

R1

PC2
192.168.0.0/24

::2 ::1 .1 .2

2001:db8:b::/64

IPv4 Network

Designated IPv6 Prefix: 2001:db8:ffff::/96

From the IPv4 world, PC2 is reached as

2001:db8:ffff::192.168.0.2

Dynamic IPv4 Pool: 192.168.255.0/24

 Console commands

 01: netsh interface ipv6 6to4 set state enabled

 File /etc/network/interfaces

 01: auto 6to4
 02: iface 6to4 inet6 static

 03: local 192.168.0.2

 Console commands

 01: netsh interface ipv6 isatap set state enabled

 02: netsh interface ipv6 isatap set router 192.168.0.1
 03: netsh interface ipv6 set interface 21 forwarding=enabled

 04: netsh interface ipv6 set interface 22 forwarding=enabled

 05: netsh interface ipv6 set interface 21 advertise=enabled
 06: netsh interface ipv6 add route 2001:db8: fea:/64 21 publish=yes

 07: netsh interface ipv6 add route:/0 22 2001:db8: b: 2 publish=yes

 Console commands

 01: netsh interface ipv6 isatap set state enabled

 02: netsh interface ipv6 isatap set router 192.168.0.1

 Console commands
 01: ip tunnel add is0 mode isatap local 192.168.0.1

 02: ip link set is0 up

 03: ip -6 addr add 2001:db8:fea:5efe:192.168.0.1/64 dev is0

 File /etc/network/interfaces

 01: auto eth0

 02: iface eth0 inet static
 03: address 192.168.0.2

 04: netmask 255.255.255.0

 05: gateway 192.168.0.1
 06: up isatapd –d –l eth0 –r 192.168.0.1

 07: up ip -6 addr add 2001:db8:fea::5efe:192.168.0.2/64 dev is0

6 Performance Evaluation of IPv4/IPv6 Transition Mechanisms

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 2, 1-14

(called nat64). The IPv4 and IPv6 addresses of the

translation interface are indicated in line 03 and line 04,

respectively. These addresses will be used by R1 when it

requires to send an ICMP or ICMPv6 error message.

Lines 05-06 route the dynamic IPv4 pool and the

designated IPv6 pool into the NAT64 interface. Lines 07-

08 activate the IPv4 and IPv6 forwarding. Finally, the

TAYGA daemon is started in debugging mode in line 09.

Fig.14. Configuration of R1 for TAYGA (Debian).

Jool is a Linux tool that allows users to work with SIIT

(Stateless IP/ICMP Translation) or NAT64. To do so,

Jool has two kernel modules (jool_siit.ko for SIIT and

jool.ko for NAT64). Also, Jool provides two userspace

applications to configure and query the state of the

modules (jool_siit for SIIT and jool for NAT64). We

compiled Jool v3.3.3 from the source code in R1. Fig. 15

gives the necessary commands for the compilation and

configuration of Jool as a NAT64 server. Line 01 installs

the dependency, in this case the kernel header files. Then,

Jool is downloaded from its home page (line 02), before

been unzipped (line 03). Compilation and installation is

done in lines 04-05. Finally, the NAT64 module is loaded

into memory in line 06, specifying the correct dynamic

IPv4 pool and designated IPv6 prefix.

Fig.15. Configuration of R1 for Jool (Debian).

V. RESULTS AND ANALYTICAL COMPARISON

In this section we show the results obtained by our

OWD and throughput measurements in the testbeds

presented in Section IV. First we introduce the results for

OWD, followed by the results for throughput.

A. Performance Results for One Way Delay

For measuring OWD, the tool developed by Velásquez

and Gamess [42] was used. Theoretically, the OWD of

native IPv4 and native IPv6 represents the lower bound

OWD for each IP version. For reasons of space, results

are presented only for TCP in the case of Ethernet, and

for UDP and TCP in the case of Fast Ethernet.

1) Ethernet: Fig. 16 shows the OWD for TCP

segments over Ethernet using Debian. For almost all

payload sizes, ISATAP and 6to4 have the highest

OWD since these technologies add an additional

IPv4 header to the IPv6 packets, resulting in more

processing and serialization time than the other

technologies. For NAT64 in Debian, Jool and

TAYGA have similar measurements, where there is

a small tendency of a lower OWD for Jool. It is

worth to observe that NAT64 has a lower OWD

than IPv6 in almost all cases despite of the

translation. This is due to the high computational

power of the PCs and the slow serialization of

Ethernet (10 Mbps), hence the translation is done

quickly, but the serialization of the segments is

costly, resulting in a higher OWD for IPv6 where

two serializations of a IPv6 packet are required,

against NAT64 where one IPv6 and one IPv4 packet

serializations are needed.

In Fig. 17, Fig. 18, and Fig. 19, the OWD for TCP

segments over Ethernet is depicted for Windows 7,

Windows 8, and Windows 10, respectively. The behavior

of the measurements is similar to the one of Debian:

OWD of IPv4 and IPv6 are lower than the OWD of

ISATAP and 6to4. At the level of the operating systems,

we can observe that Windows 8 is performing better than

the other ones for almost all the payload sizes.

2) Fast Ethernet: OWD measurements for UDP in Fast

Ethernet can be observed in Fig. 20, Fig. 21, Fig. 22,

and Fig. 23, for Debian, Windows 7, Windows 8,

and Windows 10, respectively. Native IPv4 has the

lowest OWD, closely followed by native IPv6.

ISATAP and 6to4 have a similar OWD for almost

all payload sizes, which is higher than the ones

shown by native IPv4 and native IPv6. In the case of

NAT64 in Debian, Jool shows a normal behavior.

On the other hand, TAYGA has an unexpected high

OWD for payload sizes greater than 1750 bytes. At

the level of the operating systems, there are minor

differences between the OWD for UDP.

OWD measurements for TCP in Fast Ethernet are

shown in Fig. 24, Fig. 25, Fig. 26, and Fig. 27 for Debian,

Windows 7, Windows 8, and Windows 10, respectively.

The global behavior of the OWD for TCP for Fast

Ethernet in the studied transition mechanisms is almost

identical to the OWD of TCP for Ethernet (see Fig. 16,

Fig. 17, Fig. 18, and Fig. 19), but ten times faster. As we

can see, native IPv4 has the lowest OWD, followed by

native IPv6. The measurements of ISATAP and 6to4 are

similar to each other, and higher than native IPv4 and

 Console commands

 01: apt-get install linux-headers-$(uname -r)

 02: wget https://www.jool.mx/download/Jool-3.3.3.zip
 03: unzip Jool-3.3.3.zip

 04: cd Jool-3.3.3/mod

 05: make && make modules_install && depmod

 06: modprobe jool pool4=192.168.255.0/24 pool6=2001:db8: ffff: /96

 File /usr/local/etc/tayga.conf

 tun-device nat64

 ipv4-addr 192.168.0.1
 ipv6-addr 2001:db8:b::1

 prefix 2001:db8:ffff::/96

 dynamic-pool 192.168.255.0/24

 data-dir /var/db/tayga

 Console commands
 01: tayga --mktun

 02: ip link set nat64 up

 03: ip -4 addr add 192.168.0.1 dev nat64
 04: ip -6 addr add 2001:db8: b: 1 dev nat64

 05: ip -4 route add 192.168.255.0/24 dev nat64

 06: ip -6 route add 2001:db8: ffff: /96 dev nat64
 07: sysctl -w net.ipv4.conf.all.forwarding=1

 08: sysctl -w net.ipv6.conf.all.forwarding=1

 09: tayga -d

 Performance Evaluation of IPv4/IPv6 Transition Mechanisms 7

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 2, 1-14

native IPv6. In the case of NAT64 in Debian, Jool has a

lower OWD than TAYGA, however no surprising

behavior is shown by TAYGA in this case. At the level of

the operating systems, the lowest OWD for TCP is

obtained by Windows 7 for almost all payload sizes.

B. Performance Results for Throughput

As mention before, throughput was measure using

Iperf [43]. Theoretically, the throughput of native IPv4

and native IPv6 represent the upper bound for each IP

version. We measured the throughput using Ethernet and

Fast Ethernet. For a limitation of Iperf already mentioned

in Section IV, results are only presented for UDP.

1) Ethernet: The UDP throughput measurements for

Ethernet are depicted in Fig. 28, Fig. 29, Fig. 30,

and Fig. 31, for Debian, Windows 7, Windows 8,

and Windows 10, respectively. As expected, native

IPv4 throughput represents the upper bound,

followed by native IPv6 throughput. Then, the

throughput of ISATAP and 6to4 is always lower

than the throughput of IPv6, and has a similar

behavior. This is expected, as these tunneling

techniques add an IPv4 header to the IPv6 packets to

travel the IPv4 network, which causes an additional

processing and serialization overhead. In the case of

NAT64 in Debian, the throughput of Jool and

TAYGA are similar for almost all payload sizes. At

the level of the operating systems, we can see that

Debian outperforms the other ones for almost all

payload sizes.

2) Fast Ethernet: Fig. 32, Fig. 33, Fig. 34, and Fig. 35

show the UDP throughput measures for Fast

Ethernet in Debian, Windows 7, Windows 8, and

Windows 10, respectively. As we can see, the global

behavior of the throughput of UDP for Fast Ethernet

for the studied transition mechanisms is almost

identical to the throughput of UDP for Ethernet (see

Fig. 28, Fig. 29, Fig. 30, and Fig. 31), but ten times

faster. As we can observe, native IPv4 has the

higher throughput, followed by native IPv6. The

measurements of the tunneling techniques (ISATAP

and 6to4) are similar to each other, and smaller than

native IPv4 and native IPv6. At the level of the

operating systems, as in Ethernet, Debian

outperforms the other ones for almost all payload

sizes.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, several testbeds were proposed to do a

performance evaluation of native IPv4, native IPv6, and

different transition techniques. We chose ISATAP, 6to4,

and NAT64 due to their popularity, their different range

of applications, and because several implementations of

these transition technologies are available. The tests were

performed with different operating systems: Debian,

Windows 7, Windows 8, and Windows 10. We measured

the OWD and the throughput at the level of UDP and

TCP.

Similarly to other studies [6][26], our research

confirmed that native IPv4 has a better performance than

native IPv6 in controlled testbeds. This is due to the

length of the IP headers (20 bytes for IPv4, and 40 bytes

for IPv6). Also, our experiments showed that generally,

ISATAP and 6to4 have similar network performances,

encouraging network administrators to choose the one

that better suit their needs, or to mix both technologies if

required. For translation mechanisms, NAT64 is now the

de facto standard. Since it is still a recent and evolving

technology, NAT64 is supported just by a few

manufacturers, such as Cisco Systems in new routers. In

this paper, we compared Jool and TAYGA, two open

source implementations of NAT64 for Linux. In this case,

our recommendation to network administrators is to use

Jool because it did not show the performance problems

depicted in Fig. 20, and it is an active project. The last

version of TAYGA was released in June 2011, and it

seems to be a dead project now.

The studies presented in this paper were done in small

testbeds to compare the performance of different

transition mechanisms in a controlled environment. For

further studies, we plan to consider more complex and

realistic networks. We are also interested in developing

analytical models for the performance evaluation of some

transition technologies.

Fig.16. OWD for Ethernet with TCP – Debian.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
W

D
 (

m
ic

r
o

se
c
o

n
d

s)

TCP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4 Jool-NAT64 TAYGA-NAT64

8 Performance Evaluation of IPv4/IPv6 Transition Mechanisms

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 2, 1-14

Fig.17. OWD for Ethernet with TCP – Windows 7.

Fig.18. OWD for Ethernet with TCP – Windows 8.

Fig.19. OWD for Ethernet with TCP – Windows 10.

Fig.20. OWD for Fast Ethernet with UDP – Debian.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
W

D
 (

m
ic

r
o

se
c
o

n
d

s)

TCP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4

0.00

2.00

4.00

6.00

8.00

10.00

12.00

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
W

D
 (

m
ic

r
o

se
co

n
d

s)

TCP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4

0.00

2.00

4.00

6.00

8.00

10.00

12.00

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
W

D
 (

m
ic

r
o

se
co

n
d

s)

TCP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4

0.00

0.50

1.00

1.50

2.00

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
W

D
 (

m
ic

r
o

se
co

n
d

s)

UDP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4 Jool-NAT64 TAYGA-NAT64

 Performance Evaluation of IPv4/IPv6 Transition Mechanisms 9

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 2, 1-14

Fig.21. OWD for Fast Ethernet with UDP – Windows 7.

Fig.22. OWD for Fast Ethernet with UDP – Windows 8.

Fig.23. OWD for Fast Ethernet with UDP – Windows 10.

Fig.24. OWD for Fast Ethernet with TCP – Debian.

0.00

0.50

1.00

1.50

2.00

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
W

D
 (

m
ic

r
o

se
c
o

n
d

s)

UDP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4

0.00

0.50

1.00

1.50

2.00

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
W

D
 (

m
ic

r
o

se
c
o

n
d

s)

UDP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4

0.00

0.50

1.00

1.50

2.00

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
W

D
 (

m
ic

r
o

se
co

n
d

s)

UDP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4

0.00

0.20

0.40

0.60

0.80

1.00

1.20

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
W

D
 (

m
ic

r
o

se
c
o

n
d

s)

TCP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4 Jool-NAT64 TAYGA-NAT64

10 Performance Evaluation of IPv4/IPv6 Transition Mechanisms

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 2, 1-14

Fig.25. OWD for Fast Ethernet with TCP – Windows 7.

Fig.26. OWD for Fast Ethernet with TCP – Windows 8.

Fig.27. OWD for Fast Ethernet with TCP – Windows 10.

Fig.28. Throughput for Ethernet with UDP – Debian.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
W

D
 (

m
ic

r
o

se
c
o

n
d

s)

TCP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4

0.00

0.20

0.40

0.60

0.80

1.00

1.20

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
W

D
 (

m
ic

r
o

se
c
o

n
d

s)

TCP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4

0.00

0.20

0.40

0.60

0.80

1.00

1.20

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
W

D
 (

m
ic

r
o

se
c
o

n
d

s)

TCP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4

0.00

2.00

4.00

6.00

8.00

10.00

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

UDP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4 Jool-NAT64 TAYGA-NAT64

 Performance Evaluation of IPv4/IPv6 Transition Mechanisms 11

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 2, 1-14

Fig.29. Throughput for Ethernet with UDP – Windows 7.

Fig.30. Throughput for Ethernet with UDP – Windows 8.

Fig.31. Throughput for Ethernet with UDP – Windows 10.

Fig.32. Throughput for Fast Ethernet with UDP – Debian.

0.00

2.00

4.00

6.00

8.00

10.00

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
h

r
o

u
g

h
p

u
t

(M
b

p
s)

UDP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4

0.00

2.00

4.00

6.00

8.00

10.00

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

UDP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4

0.00

2.00

4.00

6.00

8.00

10.00

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

UDP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4

0.00

20.00

40.00

60.00

80.00

100.00

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

UDP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4 Jool-NAT64 TAYGA-NAT64

12 Performance Evaluation of IPv4/IPv6 Transition Mechanisms

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 2, 1-14

Fig.33. Throughput for Fast Ethernet with UDP – Windows 7.

Fig.34. Throughput for Fast Ethernet with UDP – Windows 8.

Fig.35. Throughput for Fast Ethernet with UDP – Windows 10.

ACKNOWLEDGMENT

We want to thank the CDCH-UCV (Consejo de

Desarrollo Científico y Humanístico) which partially

supported this research under grant number: PG 03-8066-

2011/1.

REFERENCES

[1] P. Srisuresh and K. Egevang, ―Tradicional IP Network

Address Translator (Traditional NAT),‖ IETF, RFC 3022,

January 2001.

[2] J. Davies, Understanding IPv6, 3rd ed., Microsoft Press,

June 2012.

[3] L. Colitti, S. H. Gunderson, E. Kline, and T. Refice,

―Evaluating IPv6 Adoption in the Internet,‖ in

Proceedings of the 11th International Conference on

Passive and Active Measurement (PAM’10), Zurich,

Switzerland, April 2010, pp. 141–150.

[4] kc Claffy, ―Tracking IPv6: Data We Have and Data We

Need,‖ ACM SIGCOMM Computer Communication

Review, vol. 41, no. 3, pp. 43–48, July 2011.

[5] S. Zeadally and I. Raicu, ―Evaluating IPv6 on Windows

and Solaris,‖ IEEE Internet Computing, vol. 7, no. 3, pp.

51–57, May 2003.

[6] E. Gamess and R. Surós, ―An Upper Bound Model for

TCP and UDP Throughput in IPv4 and IPv6,‖ Journal of

Network and Computer Applications, vol. 31, no. 4, pp.

585–602, November 2008.

[7] S. Narayan, P. Shang, and N. Fan, ―Performance

Evaluation of IPv4 and IPv6 on Windows Vista and Linux

Ubuntu,‖ in Proceedings of the 2009 International

Conference on Networks Security, Wireless

Communications and Trusted Computing (NSWCTC’09),

vol. 1, Wuhan, China, April 2009, pp. 653–656.

[8] S. Narayan, P. Shang, and N. Fan, ―Network Performance

Evaluation of Internet Protocols IPv4 and IPv6 on

Operating Systems,‖ in Proceedings of the 6th

International Conference on Wireless and Optical

0.00

20.00

40.00

60.00

80.00

100.00

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

UDP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4

0.00

20.00

40.00

60.00

80.00

100.00

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
h

r
o

u
g

h
p

u
t

(M
b

p
s)

UDP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4

0.00

20.00

40.00

60.00

80.00

100.00

50 100 250 500 750 1000 1250 1500 1750 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

UDP Payload (Bytes)

IPv4 IPv6 ISATAP 6to4

 Performance Evaluation of IPv4/IPv6 Transition Mechanisms 13

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 2, 1-14

Communications Networks (WOCN’09), Cairo, Egypt,

April 2009, pp. 1–5.

[9] S. S. Kolahi, B. K. Soorty, Z. Qu, and N. Chand,

―Performance Analysis of IPv4 and IPv6 on Windows

Vista and Windows XP over Fast Ethernet in Peer-peer

LAN,‖ in Proceedings of the 3rd International Conference

on New Technologies, Mobility and Security (NTMS’09).

Piscataway, NJ, USA: IEEE Press, 2009, pp. 450–453.

[10] J. Balen, G. Martinovic, and Z. Hocenski, ―Network

Performance Evaluation of Latest Windows Operating

Systems,‖ in Proceedings of the 20th International

Conference on Software, Telecommunications and

Computer Networks (SoftCOM), vol. 7, Split, Croatia,

September 2012, pp. 1–6.

[11] P. Svec and M. Munk, ―IPv4/IPv6 Performance Analysis:

Transport Layer Protocol Impact to Transmission Time,‖

in Proceedings of International Conference on Internet

Technology and Applications (iTAP 2011), Wuhan, China,

August 2011, pp.1–4.

[12] E. Gamess and K. Velásquez, ―IPv4 and IPv6 Forwarding

Performance Evaluation on Different Operating Systems,‖

in Proceedings of the XXXIV Latin American Computing

Conference (CLEI’08), Santa Fe, Argentina, September

2008.

[13] S. Narayan, S. S. Sodhi, P. R. Lutui, and K. J.

Vijayakumar, ―Network Performance Evaluation of

Routers in IPv4/IPv6 Environment,‖ in Proceedings of the

2010 IEEE International Conference on Wireless

Communications, Networking, and Information Security

(WCNIS), Beijing, China, June 2010.

[14] S. S. Kolahi, Z. Qu, B. K. Soorty, and N. Chand, ―The

Impact of Security on the Performance of IPv4 and IPv6

using 802.11n Wireless LAN,‖ in Proceedings of the 3rd

International Conference on New Technologies, Mobility

and Security (NTMS’09). Piscataway, NJ, USA: IEEE

Press, 2009, pp. 454–457.

[15] S. S. Kolahi, Z. Qu, B. K. Soorty, and N. Chand, ―The

Performance of IPv4 and IPv6 Using DP on IEEE 802.11n

WLANs with WPA2 security,‖ in Proceedings of the 2nd

International Conference on Interaction Sciences:

Information Technology, Culture and Human (ICIS’09).

New York, NY, USA: ACM, 2009, pp. 873–876.

[16] H. Fahmy and S. Ghoneim, ―Performance Comparison of

Wireless Networks over IPv6 and IPv4 under Several

Operating Systems,‖ in Proceedings of the IEEE 20th

International Conference on Electronics, Circuits, and

Systems (ICECS’13), Abu Dhabi, UAE, December 2013,

pp. 670–673.

[17] M. Ahmed, M. A. Suhaimi, Q. S. Md. Faisal, and S.

Haseeb, ―Evaluating QoS Performance of Streaming

Video on Both IPv4 and IPv6 Protocols,‖ in Proceedings

of the 2007 Spring Simulaiton Multiconference - Volume 1

(SpringSim’07). San Diego, CA, USA: Society for

Computer Simulation International, 2007, pp. 109–116.

[18] S.-M. Huang, Q. Wu, and Y.-B. Lin, ―Tunneling IPv6

through NAT with Teredo Mechanism,‖ in Proceedings of

the 19th International Conference on Advanced

Information Networking and Applications, vol. 2, Taipei,

Taiwan, March 2005, pp. 813–818.

[19] M. Aazam, S. A. H. Shah, I. Khan, and A. Qayyum,

―Deployment and Performance Evaluation of Teredo and

ISATAP over Real Test-bed Setup,‖ in Proceedings of the

International Conference on Management of Emergent

Digital EcoSystems (MEDES’10), Bangkok, Thailand,

October 2010, pp. 229–233.

[20] S. Zander, L. L. H. Andrew, G. Armitage, G. Huston, and

G. Michaelson, ―Investigating the IPv6 Teredo Tunnelling

Capability and Performance of Internet Clients,‖ ACM

SIGCOMM Computer Communication Review, vol. 42, no.

5, pp. 13–20, October 2012.

[21] S. Narayan and S. Tauch, ―Network Performance

Evaluation of IPv4-v6 Configured Tunnel and 6to4

Transition Mechanisms on Windows Server Operating

Systems,‖ in Proceedings of the 2010 International

Conference on Computer Design and Applications

(ICCDA), vol. 5, Qinhuangdao, China, June 2010.

[22] S. Narayan and S. Tauch, ―IPv4-v6 Configured Tunnel

and 6to4 Transition Mechanisms Network Performance

Evaluation on Linux Operating Systems,‖ in Proceedings

of the 2nd International Conference on Signal Processing

Systems (ICSPS), vol. 2, Dalian, China, October 2010.

[23] D. Hadiya, R. Save, and G. Geetu, ―Network Performance

Evaluation of 6to4 and Configured Tunnel Transition

Mechanisms: An Empirical Test-bed Analysis,‖ in

Proceedings of the 6th International Conference on

Emerging Trends in Engineering and Technology

(ICETET’13), Nagpur, India, December 2013, pp. 56–60.

[24] P. Amr and N. Abdelbaki, ―Convergence Study of IPv6

Tunneling Techniques,‖ in Proceedings of the 10th

International Conference on Communications

(COMM’14), Bucharest, Romania, May 2014, pp. 1–6.

[25] S.-J. Yoon, J.-T. Park, D.-I. Choi, and H. K. Kahng,

―Performance Comparison of 6to4, 6rd, and ISATAP

Tunnelling Methods on Real Testbeds,‖ International

Journal on Internet and Distributed Computing Systems,

vol. 2, no. 2, pp. 149–156, July 2012.

[26] F. Sans and E. Gamess, ―Analytical Performance

Evaluation of Native IPv6 and Several Tunneling Technics

Using Benchmarking Tools,‖ in Proceedings of the XXXIX

Latin American Computing Conference (CLEI’13),

Naiguata, Venezuela, October 2013, pp 1-9.

[27] K. J. O. Llanto and W. E. S. Yu, ―Performance of NAT64

versus NAT44 in the Context of IPv6 Migration,‖ in

Proceedings of the International MultiConference of

Engineers and Compuer Scientists (IMECS’ 12), Hong

Kong, China, March 2012, pp. 638–645.

[28] C. P. Monte, M. I. Robles, G. Mercado, C. Taffernaberry,

M. Orbiscay, S. Tobar, R. Moralejo, and S. Pérez,

―Implementation and Evaluation of Protocols Translating

Methods for IPv4 to IPv6 Transition,‖ Journal of

Computer Science & Technology, vol. 12, no. 2, pp. 64–70,

2010.

[29] S.-Y. Yu and B. E. Carpenter, ―Measuring IPv4 IPv6

Translation Techniques,‖ Department of Computer

Science, The University of Auckland, Tech. Rep. 2012-

001, January 2012.

[30] E. Hodzic and S. Mrdovic, ―IPv4/IPv6 Transition using

DNS64/NAT64: Deployment Issues,‖ in Proceedings of

the IX International Symposium on Telecommunications

(BIHTEL’12), Sarajevo, Bosnia and Herzegovina, October

2012, pp. 1–6.

[31] G. Lencse and G. Takacs, ―Performance Analysis of

DNS64 and NAT64 Solutions,‖ Infocommunications

Journal, vol. 4, no. 2, pp. 29–36, 2012.

[32] G. Lencse and S. Repas, ―Performance Analysis and

Comparison of Different DNS64 Implementations for

Linux, OpenBSD and FreeBSD,‖ in Proceedings of the

IEEE 27th International Conference on Advanced

Information Networking and Applications (AINA’13),

Barcelona, Spain, March 2013, pp. 877–884.

[33] G. Lencse and S. Repas, ―Performance Analysis and

Comparison of the TAYGA and of the PF NAT64

Implementations,‖ in Proceedings of the 36th

International Conference on Telecommunications and

14 Performance Evaluation of IPv4/IPv6 Transition Mechanisms

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 2, 1-14

Signal Processing (TSP’13), Rome, Italy, July 2013, pp.

71–76.

[34] S. Repas, P. Farnadi, and G. Lencse, ―Performance and

Stability Analysis of Free NAT64 Implementations with

Different Protocols,‖ Acta Technica Jaurinensis, vol. 7, no.

4, pp. 404–427, 2014.

[35] M. Ahmed, A. Litchfield, S. Ahmed, A. Mahmood, Md. E.

Hossain, ―VoIP Performance Analysis over IPv4 and IPv6,‖

International Journal of Computer Network and

Information Security, vol.6, no.11, pp.43-48, October

2014.

[36] C. Aoun and E. Davies, ―Reasons to Move the Network

Address Translator - Protocol Translator (NAT-PT) to

Historic Status,‖ IETF, RFC 4966, July 2007.

[37] F. Templin, T. Gleeson, and D. Thaler, ―Intra-Site

Automatic Tunnel Addressing Protocol (ISATAP),‖ IETF,

RFC 5214, March 2008.

[38] B. Carpenter and K. Moore, ―Connection of IPv6

Domains via IPv4 Clouds,‖ IETF, RFC 3056, February

2001.

[39] C. Huitema, ―An Anycast Prefix for 6to4 Relay Routers,‖

IETF, RFC 3068, June 2001.

[40] M. Bagnulo, P. Matthews, and I. van Beijnum, ―Stateful

NAT64: Network Address and Protocol Translation from

IPv6 Clients to IPv4 Servers,‖ IETF, RFC 6146, April

2011.

[41] C. Bao, C. Huitema, M. Bagnulo, M. Boucadair, and X. Li,

―IPv6 Addressing of IPv4/IPv6 Translators,‖ IETF, RFC

6052, October 2010.

[42] K. Velásquez and E. Gamess, ―A Survey of Network

Benchmark Tools,‖ Machine Learning and System

Engineering, vol. 68, pp. 465–480, October 2010.

[43] NLANR/DAST. Iperf Homepage. http://iperf.fr.

[44] Nathan Lutchansky. TAYGA Homepage.

http://www.litech.org/tayga.

[45] Tecnológico de Monterrey. Jool Homepage.

http://www.jool.mx.

Authors’ Profiles

Adira Quintero received a B.S. in

Computer Science from the Central

University of Venezuela, Venezuela, in

2015. Her research interests include

Network Performance Evaluation, Data

Security, and Voice over IP.

Francisco Sans received a B.S. in

Computer Science from the Central

University of Venezuela, Venezuela, in

2012 with magna cum laude. He is now a

master student in Computer Science and

will soon defend its thesis. He is currently

working as a professor at Central

University of Venezuela, Venezuela. His

research interest includes Computer Networks, Computer

Graphics, and Video Games.

Eric Gamess received a M.S. in Industrial

Computation from the National Institute of

Applied Sciences of Toulouse (INSA de

Toulouse), France, in 1989, and a Ph.D. in

Computer Science from the Central

University of Venezuela, Venezuela, in

2010. He is currently working as a

professor at Central University of

Venezuela, Venezuela. Previously, he worked as a professor at

University of Puerto Rico, Puerto Rico, and ―Universidad del

Valle‖, Colombia. His research interests include Vehicular

Adhoc Networks, Network Performance Evaluation, IPv6, and

Network Protocol Specifications. He is a member of the

Venezuelan Society of Computing and has been in the

organization committee of several national and international

conferences.

How to cite this paper: Adira Quintero, Francisco Sans, Eric Gamess,"Performance Evaluation of IPv4/IPv6

Transition Mechanisms", International Journal of Computer Network and Information Security(IJCNIS), Vol.8, No.2,

pp.1-14, 2016.DOI: 10.5815/ijcnis.2016.02.01

