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Abstract—The exhaustion of IPv4 addresses has forced 

the deployment of the new version of the Internet 

Protocol (IPv6). However, the migration to the new 

protocol is done gradually and with the due care for many 

reasons that include: cost, inclusion of support for IPv6 in 

existing applications, training of technical staff, lack of 

web content available over IPv6 from important providers, 

and obsolete devices not anymore supported by 

manufacturers. For those reasons, many transition 

mechanisms have been proposed, each one to fill distinct 

requirements, with different operational theory and 

availability according to the network environment. A 

performance evaluation of these mechanisms can help 

network administrators and researchers in their selection 

of the best transition technology for their environment. In 

this paper, we present a performance comparison of some 

transition mechanisms such as ISATAP, 6to4, and 

NAT64 in real testbeds with Debian, Windows 7, 

Windows 8, and Windows 10. For NAT64, two different 

tools were tested: TAYGA and Jool. We measure the 

OWD and the throughput for UDP and TCP for every 

mechanism, for both Ethernet and Fast Ethernet 

technologies. From this research, we can conclude that all 

the modern operating systems for PCs already have good 

support for IPv6, and a very similar network performance. 

Also, we can infer from our work that in controlled 

environments, native IPv4 has the best performance, 

closely followed by native IPv6. The difference is 

essentially due to the length of the IP header (20 bytes in 

IPv4 and 40 bytes in IPv6). The tunneling solutions 

chosen for this research (ISATAP and 6to4) have a 

similar performance, which is the lowest of the studied 

technologies, because of the additional IPv4 header in the 

tunnel. 

 
Index Terms—Performance Evaluation, Benchmarking 

Tools, IPv6, IPv4, Transition Mechanisms, ISATAP, 6to4, 

NAT64. 

 

I.  INTRODUCTION 

With its unexpected growth, Internet has been facing 

for several years the exhaustion of available IPv4 

addresses. To tackle this problem, many solutions have 

been proposed. One of the most popular solutions is the 

implementation of Network Address Translation (NAT) 

[1], where internal hosts with private IPv4 addresses are 

―represented‖ by a NAT server in Internet. Nevertheless, 

this is not a practical solution, since NAT clients do not 

have true end-to-end connectivity.  

Another solution to this problem is the use of Internet 

Protocol version 6 (IPv6) [2]. This new version of IP has 

128-bit addresses, while IPv4 is limited to 32-bit 

addresses. Furthermore, IPv6 adds many improvements 

in areas such as routing, multicasting, security, mobility, 

and network auto configuration. Also, it is worth to 

mention that the majority of the current operating systems 

has IPv6 support. 

It is not possible to carry out the transition from IPv4 

to IPv6 in a short period of time. Hence, during the 

transition, IPv4 and IPv6 will coexist. Many reasons 

extend the time of this coexistence period, including cost, 

inclusion of support for IPv6 in existing applications, 

training of technical staff, lack of web content available 

over IPv6 from important providers, and obsolete devices 

not supported anymore by manufacturers where it is 

impossible to upgrade to a new firmware with IPv6 

support. As a consequence, IPv6 must be deployed 

gradually. Therefore, in the early deployment of IPv6, 

there are small isolated islands of IPv6 in an IPv4 ocean, 

and some transition mechanisms were created to allow 

the coexistence of the two versions of the protocol. 

There are three types of transition mechanisms: dual-

stack, translators, and tunneling techniques. In dual-stack, 

devices have IPv4 and IPv6 simultaneously, allowing the 

communication with both versions of the protocol. The 

translation mechanisms translate IPv6 packets into IPv4 

packets and vice versa, allowing the communication 

between hosts with different IP versions. In the tunneling 

techniques, the basic idea is to communicate IPv6 hosts 

that are separated by an IPv4-only network. In this case, 

IPv6 packets are encapsulated into IPv4 packets to 

traverse IPv4 networks. Similarly, the tunneling 

technologies also include the reverse case, that is, the 

communication of IPv4 hosts that are separated by an 

IPv6 network. However, this last case is seldom used 

since IPv4 is still by far the dominant protocol. 

Since there are several different transition mechanisms, 

it is important to know which is more suitable and will 

perform better in a specific situation. In this paper, we 

propose testbeds and do a performance evaluation of 

three transition mechanisms: ISATAP, 6to4, and NAT64. 

Their performance is compared with the one of native 

IPv4 and native IPv6 traffic. We use benchmarking tools 

to measure One Way Delay (OWD) and throughput for 
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the different mechanisms and make an analytical 

comparison of the results. 

The rest of this paper is organized as follows. Section 

II makes a survey of the related work. Section III briefly 

describes the transition mechanisms that we chose for our 

study. Information about our testbeds and traffic 

generation tools is presented in Section IV. In Section V, 

an analytical comparison of the obtained results is done. 

Finally, Section VI discusses the conclusions and future 

work. 

 

II.  RELATED WORK 

Many studies have been conducted to measure the 

progress of IPv6 deployment. For example, Colitti et al. 

[3] developed a method for measuring IPv6 adoption. 

Claffy [4] provided an excellent summary of the 

deployment of IPv6 and also identified areas that require 

further study. 

In the field of performance evaluation, on one hand 

there are several studies that evaluate the performance of 

IPv4 and IPv6 in different operating systems. Zeadally 

and Raicu [5] compared the performance of IPv6 in 

Windows 2000 and Solaris 8. An upper bound model to 

compute TCP and UDP throughput for IPv4 and IPv6, in 

a full-duplex point-to-point connection, was presented by 

Gamess and Surós [6]. They compared the performance 

of various operating systems with this upper bound. 

Narayan, Shang, and Fan [7][8] studied the performance 

of IPv4 and IPv6 traffic on various distributions of 

Windows and Linux for TCP and UDP. A similar study 

was conducted by Kolahi et al. [9], where the TCP 

throughput of Windows Vista and Windows XP was 

compared using IPv4 and IPv6. A comparison of network 

performance evaluation between Windows XP, Windows 

Vista, and Windows 7 was conducted by Balen, 

Martinovic, and Hocenski [10]. Svec and Munk [11] 

considered the usage of TCP, UDP and SCTP traffic in 

IPv4 and IPv6 networks. Furthermore, Gamess and 

Velásquez [12] made an analysis of the forwarding 

engine performance of PC-based routers using Solaris, 

Windows, and Debian for both, IPv4 and IPv6. Narayan 

et al. [13] did a similar work but with Fedora, Ubuntu, 

and Windows Server as operating systems. Finally, the 

performance of the IP protocols has also been compared 

in wireless networks [14][15][16], and with the use of 

QoS [17]. 

On the other hand, many authors have evaluated the 

performance of various tunneling mechanisms. Huang, 

Wu, and Lin [18] did a complete evaluation of the 

performance of Teredo on a testbed. Both Teredo latency 

and throughput were compared to ISATAP by Aazam et 

al. [19]. Web-based applications were implemented by 

Zander et al. [20] to test latency and delay introduced by 

Teredo and to compare it with 6to4. Narayan and Tauch 

[21][22] compared 6to4 with configured tunnels, using 

Windows Server 2003, Windows Server 2008, Ubuntu 

11.0, and Fedora 9.10. In a more recent studies, Hadiya, 

Save, and Geetu [23] also evaluated the performance of 

6to4 and configured tunnels in a network infrastructure, 

while Amr and Abdelbaki [24] compared the routing 

convergence of 6to4 and configured tunnels versus the 

conventional IPv4 and IPv6 protocols. Yoon et al. [25] 

did a comparison of 6to4, 6rd, and ISATAP throughput 

and CPU utilization when using these communication 

techniques on testbeds for Ubuntu. An analytical 

performance evaluation for ISATAP, 6to4, 6rd, and 

Teredo was performed by Sans and Gamess [26]. 

At the level of translation techniques, many studies are 

specific to NAT64/DNS64. For example, Llanto and Yu 

[27] measured the performance of TAYGA and TOTD (a 

DNS proxy nameserver). Monte et al. [28], and Yu and 

Carpenter [29] evaluated the performance of an Ecdysis 

NAT64 and DNS64 implementation. Hozdic and 

Mrdovic [30] combined an Ecdysis NAT64 with a BIND 

DNS64 server for their evaluation. Performance of BIND 

DNS64 has also been evaluated with TAYGA by Lencse 

and Takacs [31]. BIND and TOTD DNS64 servers’ 

performance has been compared by Lencse and Repas 

[32] in Linux, OpenBSD, and FreeBSD. These authors 

also studied the stability of two NAT64 implementations: 

TAYGA and PF, using ICMP [33]. Finally, Repas, 

Farnadi, and Lencse [34] did a performance evaluation of 

free NAT64 implementations at the level of UDP and 

TCP. 

Simulation tools have also been used for performance 

evaluation of IPv4 and IPv6. For example, the authors of 

[35] worked with OPNET IT Guru to investigate areas of 

performance weakness in VoIP. 

In our work, we consider native IPv4, native IPv6, and 

three transition mechanisms (ISATAP, 6to4, and NAT64), 

on conventional PCs with four different operating 

systems (Debian, Windows 7, Windows 8, and Windows 

10) that are used as a router, and as communication end-

points. For NAT64, we propose a comparison between 

TAYGA and Jool implementations (a comparison that 

has not been done to the best of our knowledge). 

 

III.  TRANSITION MECHANISMS 

Tunneling mechanisms allow remote IPv6 nodes to 

communicate with each other through an IPv4-only 

network. These methods provide an IPv6 virtual-link on 

an actual IPv4 network to enable IPv6 communication. 

The basic idea of tunnels is to encapsulate IPv6 packets 

into IPv4 packets, by adding an IPv4 header with 

protocol number 41. In this way, IPv6 packets can 

traverse IPv4-only networks to reach the IPv6 destination. 

In one end-point of the virtual link, a device encapsulates 

(adds an IPv4 header to the IPv6 packet), while 

decapsulation (removing the IPv4 header from the IPv6 

packet) is done in the second end-point. 

In the other hand, translation mechanisms translate 

IPv6 packets into IPv4 packets and vice versa. When an 

IPv4 to IPv6 translator receives an IPv4 packet that goes 

to the IPv6 world, the IPv4 header is eliminated and used 

to construct an IPv6 header as its substitute. A similar 

process occurs when an IPv6 packet is received by an 

IPv6 to IPv4 translator. 

For this study, we chose ISATAP and 6to4 for 
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tunneling mechanisms, and NAT64 for translation 

mechanisms. We selected these technologies due to their 

popularity, their different range of applications, and 

because many implementations are available from both 

the Internet community and manufacturers. It is worth 

remembering that Network Address Translation-Protocol 

Translation (NAT-PT) was a popular translation 

technique, which has been deprecated by [36], hence it is 

not covered in this research. 

A.  ISATAP 

Intra-Site Automatic Tunnel Addressing Protocol 

(ISATAP) [37] is a tunneling mechanism that allows 

dual-stack hosts within an IPv4 underlying network to 

communicate with remote IPv6 devices. 

The ISATAP address is configured with a modified 

EUI-64 format, by concatenating the 24-bit IEEE OUI 

(00-00-5E for private IPv4 address and 02-00-5E for 

public IPv4 address), the 8-bit hexadecimal value 0xFE, 

and the 32-bit IPv4 address of the node. In this way, the 

node configures an initial link-local address, which 

allows it to communicate with other ISATAP nodes that 

are in the same virtual local link. 

ISATAP mechanism assumes that multicast is not 

available in the IPv4 network, so it provides a way to 

discover potential routers. ISATAP hosts keep a list of 

routers, configured manually or obtained by a DNS query 

to isatap or isatap.company.com (where the local domain 

is company.com). With the IPv4 address of the router, 

hosts can perform a router solicitation to acquire a global 

IPv6 address, with the same modified EUI-64 format 

described above. This allows an ISATAP host to 

communicate with the IPv6 Internet. 

ISATAP is implemented in most platforms (Windows 

XP/Vista/7/8/10, Linux, etc) and it is easy to configure. 

B.  6to4 

6to4 [38] is a tunneling mechanism that allows routers 

with a global IPv4 address to create an IPv6 site. It uses 

the 2002::/16 prefix, designated by the Internet Assigned 

Numbers Authority (IANA) to create the address block. 

A 6to4 site can have up to 2
80

 IPv6 addresses of the type 

2002:<IPv4Address>:/48, which are made by combining 

the prefix designated by the IANA with the 32 bits of the 

IPv4 address of the 6to4 router. It is possible to route any 

packet to these addresses by encapsulating and sending 

the packet to the IPv4 address of the 6to4 router 

embedded in the IPv6 address, allowing the 

communication between any 6to4 domains. 

The communication between a 6to4 domain and the 

IPv6 Internet requires a 6to4 relay. This device advertises 

the 2002:/16 prefix to the IPv6 Internet, letting native 

IPv6 hosts to send packets to a 6to4 host. When a 6to4 

router has to forward an IPv6 packet to a native IPv6 host, 

it encapsulates and sends the packet to one of the 6to4 

relays, which then routes the packet in the IPv6 Internet 

in a normal way, after decapsulation. To avoid manual 

configuration of the IPv4 addresses of the relays, IANA 

has designated the IPv4 anycast address 192.88.99.1 [39]. 

With this anycast address, routing is improved, and third-

party relays can be used for robustness, redundancy, and 

high availability. 

C.  NAT64 

NAT64 [40] is a translation mechanism that allows 

IPv6-only clients to access IPv4-only servers, through 

translation of IP headers. Two different devices are 

needed in NAT64: a DNS64 server and a NAT64 router. 

Also, this technology requires two IP pools. The first pool 

is an /96 IPv6 prefix [41] (usually 64:ff9b::/96) used to 

embed the IPv4 address of the servers to be reached by 

IPv6-clients. It is also known as the designated IPv6 

prefix. The other pool is a pool of IPv4 addresses (at least 

one IPv4 address) that will be temporarily employed to 

represent the IPv6-clients in the IPv4 Internet. It is also 

known as the dynamic IPv4 pool. When an IPv6 client 

want to establish a connection with a server, it consults its 

DNS server (in this case a DNS64 server). If the solicited 

server has an IPv6 address, the DNS64 server answers 

with the corresponding IPv6 address (AAAA record), and 

the IPv6 packet is submitted to regular IPv6 routing. 

Otherwise, the DNS64 server generates an IPv6 address 

that represents the IPv4-only server by concatenating the 

/96 well-known prefix with its IPv4 address (usually 

64:ff9b:<IPv4Address>). Hence, the IPv6 client does not 

need support for NAT64/DNS64. The resulting IPv6 

packet will travel in the IPv6 world (using the IPv6 

address of the IPv6 client as source address, and the IPv6 

address given by the DNS64 server as destination address) 

until the NAT64 router. The later translates the IPv6 

header into an IPv4 header, by using one of the IPv4 

address in its second pool as the source IPv4 address, and 

the IPv4 address embedded in the IPv6 destination 

address, as the destination IPv4 address. The NAT64 

router also adds an entry in the session table, for the 

inverse translation (IPv4 to IPv6), for returning packets. 

This entry is established with the first packet of the flow, 

and maintained while there is communication activities 

between the IPv6 client and the IPv4 server. 

 

IV.  BENCHMARKING TOOLS AND TESTBEDS 

A.  Test Method 

In this section, we present the benchmarking tools 

selected for our study. We also propose the testbed for the 

different technologies: native IPv4, native IPv6, ISATAP, 

6to4, and NAT64. 

To calculate the OWD, we chose a benchmark 

developed previously by this research group [42]. As 

stated in [42], OWD or Round Trip Time (RTT) reported 

in many evaluation tools are not reliable since they are 

based on synchronized computers, which is difficult to 

achieve at the level of microseconds. The key is to take 

all the timestamps in the same computer. Our benchmark 

is based on the client/server model. Basically, a packet 

(IPv4 or IPv6) of a fixed length is exchanged between the 

client and the server a number of times (defined by the 

users). The benchmark takes a timestamp before and after 

the interchange. The difference of the timestamps is 
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divided by the number of time the packet was sent and 

received to obtain an average of the RTT over the path, 

and then again by 2 to get the average OWD. 

For the throughput, we selected Iperf [43], also based 

on the client/server model. This benchmark sends traffic 

from the client to the server, which then calculates the 

number of bits per seconds received. A high bandwidth 

has to be specify to ensure that the tool saturates the 

network in order to obtain the maximum throughput. 

Even though Iperf can measure both TCP and UDP 

throughput, the tool only allows to specify the bandwidth 

in UDP. Therefore, we only perform throughput tests for 

UDP in our experiments. 

The performance evaluation is done by sending IPv6 

packets (or IPv4 packets, depending of the technology 

used) between two PCs with the benchmarking tools 

mentioned above. The main skeleton of the testbeds 

consists of two PCs (PC1 and PC2) connected with 

another PC (R1) with two NICs (Network Interface Cards) 

functioning as a router. This basic configuration is shown 

in Fig. 1. We used PCs with the same characteristics: HP 

xw4600 with an Intel Core 2 Duo E6750 CPU at 2.67 

GHz and 8 GB of RAM. For the NICs, we installed Intel 

PCI Ethernet adapters (Intel PRO/100 S). 

 

 

Fig.1. Skeleton of Testbed. 

We created four partitions in the hard disk of the PCs 

(PC1, PC2, and R1) and installed the following operating 

systems: Debian 7.0.8 (Wheezy), Windows 7, Windows 8, 

and Windows 10, all in their 64-bit version. We chose 

those operating systems because of their popularity and 

robustness. For any experiment, we run the same 

operating system in the three PCs, with the goal of 

evaluating the performance of a transition technology for 

this particular operation system. 

Every test was performed for Ethernet and Fast 

Ethernet technologies. All the experiments were repeated 

10 to 20 times to get consistent measurements. The 

average obtained for each test is presented as the result. 

The packets were sent using UDP and/or TCP as the 

transport protocols. We varied the values for the UDP 

and TCP payload as specified in the following list: 50, 

100, 250, 500, 750, 1000, 1250, 1500, 1750, 2000, 3000, 

4000, 5000, 6000, 7000, 8000, 9000, and 10000 bytes. 

B.  Testbeds 

1) Native IPv4: In the native IPv4 testbed, both router 

and PCs were configured only with IPv4 as shown 

in Fig. 2. The IPv4 addresses and the routes of all 

devices were statically configured. 

 

Fig.2. Native IPv4 Testbed. 

Enabling IPv4 forwarding in Debian is done by setting 

the sysctl kernel parameter net.ipv4.conf.all.forwarding to 

1. In the case of Windows, variable IPEnableRouter must 

be set to 1 in the following system registry key: 

 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlS

et\Services\Tcpip\Parameters 

 

This router’s configuration was used in every testbed 

in which an IP4 router was needed. 

 

2) Native IPv6: Similarly to the native IPv4 testbed, 

the addresses and routes of both router and PCs 

were configured statically, as depicted in Fig. 3. 

 

 

Fig.3. Native IPv6 Testbed. 

Enabling IPv6 forwarding in Debian is straightforward. 

It is just a matter of setting the sysctl kernel parameter 

net.ipv6.conf.all.forwarding to 1. In the case of Windows, 

the command indicated in Fig. 4 must be typed into the 

console to activate the forwarding of packets. Since the 

router has two NICs, it is necessary to execute the 

command twice, once for every interface. This router’s 

configuration was used in every testbed that needed an 

IPv6 router. 

 

 

Fig.4. Enabling Forwarding in R1 for Native IPv6 (Windows). 

3) ISATAP: Fig. 5 shows the ISATAP testbed. For the 

configuration of the ISATAP tunnel, PC1 (an 

ISATAP host) must have the IPv4 address of the 

ISATAP router. In our experiments, R1 acts as the 

ISATAP router. 

 

 

Fig.5. ISATAP Testbed.

PC1
R1

PC2

eth0

IPv4 Network

eth0 eth1eth0PC1

R1

PC2
192.168.0.0/24

.2 .1 .1 .2

192.168.1.0/24

eth0

IPv6 Network

eth0 eth1eth0PC1

R1

PC2
2001:db8:a::/64

::2 ::1 ::1 ::2

2001:db8:b::/64

eth0

IPv4 Network

eth0 eth1eth0PC1

R1

PC2

192.168.0.0/24

.2 .1 ::1 ::2

2001:db8:b::/64

IPv6 Network
Prefix

2001:db8:fea::/96

2001:db8:fea::5efe:192.168.0.2
ISATAP  host

fe80::5efe:192.168.0.2 fe80::5efe:192.168.0.1
ISATAP  router

 Console commands 

 01: netsh interface ipv6 set interface <NIC> forwarding=enabled 
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To configure ISATAP in Debian, the daemon isatapd 

was installed in PC1. PC1 was set as illustrated in Fig. 6. 

The ISATAP daemon is run in line 06, and an IPv6 

address is statically assigned in line 07. The ISATAP 

router was configured as shown in Fig. 7. The tunnel is 

setup in lines 01-03, indicating that the local end-point of 

the tunnel is associated to IP address 192.168.0.1. Note 

that line 07 will not have been required in PC1 (see Fig. 

6), if an advertisement daemon (such as radvd) were 

installed and configured in R1. In this case, PC1 will 

have learnt its global unicast address from the 

advertisement daemon. 

 

 

Fig.6. Configuration of PC1 for ISATAP (Debian). 

 

Fig.7. Configuration of R1 for ISATAP (Debian). 

In the case of Windows, PC1 must be configured by 

typing the commands indicated in Fig. 8. In line 01, the 

ISATAP tunnel is enabled, whereas line 02 indicates the 

IPv4 address of the ISATAP router. 

 

 

Fig.8. Configuration of PC1 for ISATAP (Windows). 

The Windows router, R1, is configured with the 

commands depicted in Fig. 9. Lines 01-02 enable 

ISATAP and indicate the IPv4 address of the router. 

Since this IPv4 address belongs to R1, it now knows that 

it is an ISATAP router. Then, packet forwarding is enable 

for IPv6 in lines 03-04, allowing the router to forward 

packets. Lines 05-06 indicate that R1 must advertise 

prefix 2001:db8: fea:/64 through Router Advertisement to 

ISATAP clients. 

 

 

Fig.9. Configuration of R1 for ISATAP (Windows). 

4) 6to4: This testbed was configured as shown in 

Fig.10. In this case, R1 is an IPv4-only router, and 

PC1 and PC2 are configured as 6to4 hosts/routers. 

That is, PC1 and PC2 have both stacks. For the IPv6 

packets generated by PC1 and PC2, an IPv4 header 

is added by the generating host before sending them 

through the IPv4 network toward its destination. 

 

 

Fig.10. 6to4 Testbed. 

For Debian, the configuration of PC1 as a 6to4 

host/router is shown in Fig. 11. In this case, lines 01-03 

create and setup the pseudo-interface (called 6to4). The 

configuration of PC2 is similar to PC1, with the 

exception of the local IPv4 address (192.168.1.2). 

 

 

Fig.11. Configuration of PC1 for 6to4 (Debian). 

In Windows, 6to4 is configured as presented in Fig. 12. 

PC1 and PC2 only require the command of line 01 to 

indicate that 6to4 must be enabled. 

 

 

Fig.12. Configuration of PC1 and PC2 for 6to4 (Windows). 

5) NAT64: The testbed for NAT64 is depicted in Fig. 

13. In this case PC1 is an IPv6-only host, and PC2 is 

an IPv4-only host. The router R1 is in charge of 

translating the headers to enable the communication 

between the two networks. We chose 

192.168.255.0/24 for the dynamic IPv4 pool and 

2001:db8: ffff: /96 for the designated IPv6 prefix. In 

this testbed, we only use Debian as operating system, 

because no suitable implementation of NAT64 was 

found for Windows. Two implementations of 

NAT64 were installed in R1: TAYGA [44] and Jool 

[45]. 

 

 

Fig.13. NAT64 Testbed. 

TAYGA is an out-of-kernel stateless NAT64 

implementation for Linux. We installed TAYGA v0.9.2 

in R1 from its source code. Modified files and 

configuration commands in R1 can be observed in Fig. 14. 

Lines 01-02 create and setup the translation interface 

eth0

Host 6to4

eth0 eth1eth0PC1
R1

PC2

192.168.0.0/24

.2 .1 .1 .2

Host 6to4

2002:c0a8:2::1 2002:c0a8:102::1

192.168.1.0/24

eth0

IPv6 Network

eth0 eth1eth0PC1

R1

PC2
192.168.0.0/24

::2 ::1 .1 .2

2001:db8:b::/64

IPv4 Network

Designated IPv6 Prefix: 2001:db8:ffff::/96

From the IPv4 world, PC2 is reached as

2001:db8:ffff::192.168.0.2

Dynamic IPv4 Pool: 192.168.255.0/24

 Console commands 

 01: netsh interface ipv6 6to4 set state enabled 

 File  /etc/network/interfaces 

 01: auto 6to4 
 02: iface 6to4 inet6 static 

 03: local 192.168.0.2 

 Console commands 

 01: netsh interface ipv6 isatap set state enabled 

 02: netsh interface ipv6 isatap set router 192.168.0.1 
 03: netsh interface ipv6 set interface 21 forwarding=enabled 

 04: netsh interface ipv6 set interface 22 forwarding=enabled  

 05: netsh interface ipv6 set interface 21 advertise=enabled 
 06: netsh interface ipv6 add route 2001:db8: fea:/64 21 publish=yes 

 07: netsh interface ipv6 add route:/0 22 2001:db8: b: 2 publish=yes 

 Console commands 

 01: netsh interface ipv6 isatap set state enabled 

 02: netsh interface ipv6 isatap set router 192.168.0.1 

 Console commands 
 01: ip tunnel add is0 mode isatap local 192.168.0.1 

 02: ip link set is0 up 

 03: ip -6 addr add 2001:db8:fea:5efe:192.168.0.1/64 dev is0 

 File  /etc/network/interfaces 

 01: auto eth0 

 02: iface eth0 inet static 
 03: address 192.168.0.2 

 04: netmask 255.255.255.0 

 05: gateway 192.168.0.1 
 06: up isatapd –d –l eth0 –r 192.168.0.1 

 07: up ip -6 addr add 2001:db8:fea::5efe:192.168.0.2/64 dev is0 
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(called nat64). The IPv4 and IPv6 addresses of the 

translation interface are indicated in line 03 and line 04, 

respectively. These addresses will be used by R1 when it 

requires to send an ICMP or ICMPv6 error message. 

Lines 05-06 route the dynamic IPv4 pool and the 

designated IPv6 pool into the NAT64 interface. Lines 07-

08 activate the IPv4 and IPv6 forwarding. Finally, the 

TAYGA daemon is started in debugging mode in line 09. 

 

 

Fig.14. Configuration of R1 for TAYGA (Debian). 

Jool is a Linux tool that allows users to work with SIIT 

(Stateless IP/ICMP Translation) or NAT64. To do so, 

Jool has two kernel modules (jool_siit.ko for SIIT and 

jool.ko for NAT64). Also, Jool provides two userspace 

applications to configure and query the state of the 

modules (jool_siit for SIIT and jool for NAT64). We 

compiled Jool v3.3.3 from the source code in R1. Fig. 15 

gives the necessary commands for the compilation and 

configuration of Jool as a NAT64 server. Line 01 installs 

the dependency, in this case the kernel header files. Then, 

Jool is downloaded from its home page (line 02), before 

been unzipped (line 03). Compilation and installation is 

done in lines 04-05. Finally, the NAT64 module is loaded 

into memory in line 06, specifying the correct dynamic 

IPv4 pool and designated IPv6 prefix. 

 

 

Fig.15. Configuration of R1 for Jool (Debian). 

 

V.  RESULTS AND ANALYTICAL COMPARISON 

In this section we show the results obtained by our 

OWD and throughput measurements in the testbeds 

presented in Section IV. First we introduce the results for 

OWD, followed by the results for throughput. 

A.  Performance Results for One Way Delay 

For measuring OWD, the tool developed by Velásquez 

and Gamess [42] was used. Theoretically, the OWD of 

native IPv4 and native IPv6 represents the lower bound 

OWD for each IP version. For reasons of space, results 

are presented only for TCP in the case of Ethernet, and 

for UDP and TCP in the case of Fast Ethernet. 

 

1) Ethernet: Fig. 16 shows the OWD for TCP 

segments over Ethernet using Debian. For almost all 

payload sizes, ISATAP and 6to4 have the highest 

OWD since these technologies add an additional 

IPv4 header to the IPv6 packets, resulting in more 

processing and serialization time than the other 

technologies. For NAT64 in Debian, Jool and 

TAYGA have similar measurements, where there is 

a small tendency of a lower OWD for Jool. It is 

worth to observe that NAT64 has a lower OWD 

than IPv6 in almost all cases despite of the 

translation. This is due to the high computational 

power of the PCs and the slow serialization of 

Ethernet (10 Mbps), hence the translation is done 

quickly, but the serialization of the segments is 

costly, resulting in a higher OWD for IPv6 where 

two serializations of a IPv6 packet are required, 

against NAT64 where one IPv6 and one IPv4 packet 

serializations are needed. 

 

In Fig. 17, Fig. 18, and Fig. 19, the OWD for TCP 

segments over Ethernet is depicted for Windows 7, 

Windows 8, and Windows 10, respectively. The behavior 

of the measurements is similar to the one of Debian: 

OWD of IPv4 and IPv6 are lower than the OWD of 

ISATAP and 6to4. At the level of the operating systems, 

we can observe that Windows 8 is performing better than 

the other ones for almost all the payload sizes. 

 

2) Fast Ethernet: OWD measurements for UDP in Fast 

Ethernet can be observed in Fig. 20, Fig. 21, Fig. 22, 

and Fig. 23, for Debian, Windows 7, Windows 8, 

and Windows 10, respectively. Native IPv4 has the 

lowest OWD, closely followed by native IPv6. 

ISATAP and 6to4 have a similar OWD for almost 

all payload sizes, which is higher than the ones 

shown by native IPv4 and native IPv6. In the case of 

NAT64 in Debian, Jool shows a normal behavior. 

On the other hand, TAYGA has an unexpected high 

OWD for payload sizes greater than 1750 bytes. At 

the level of the operating systems, there are minor 

differences between the OWD for UDP. 

 

OWD measurements for TCP in Fast Ethernet are 

shown in Fig. 24, Fig. 25, Fig. 26, and Fig. 27 for Debian, 

Windows 7, Windows 8, and Windows 10, respectively. 

The global behavior of the OWD for TCP for Fast 

Ethernet in the studied transition mechanisms is almost 

identical to the OWD of TCP for Ethernet (see Fig. 16, 

Fig. 17, Fig. 18, and Fig. 19), but ten times faster. As we 

can see, native IPv4 has the lowest OWD, followed by 

native IPv6. The measurements of ISATAP and 6to4 are 

similar to each other, and higher than native IPv4 and 

 Console commands 

 01: apt-get install linux-headers-$(uname -r) 

 02: wget https://www.jool.mx/download/Jool-3.3.3.zip 
 03: unzip Jool-3.3.3.zip 

 04: cd Jool-3.3.3/mod 

 05: make && make modules_install && depmod 

 06: modprobe jool pool4=192.168.255.0/24 pool6=2001:db8: ffff: /96 

 File  /usr/local/etc/tayga.conf 

 tun-device nat64 

 ipv4-addr 192.168.0.1 
 ipv6-addr 2001:db8:b::1 

 prefix 2001:db8:ffff::/96 

 dynamic-pool 192.168.255.0/24 

 data-dir /var/db/tayga 

 

 Console commands 
 01: tayga --mktun 

 02: ip link set nat64 up 

 03: ip -4 addr add 192.168.0.1 dev nat64 
 04: ip -6 addr add 2001:db8: b: 1 dev nat64 

 05: ip -4 route add 192.168.255.0/24 dev nat64 

 06: ip -6 route add 2001:db8: ffff: /96 dev nat64 
 07: sysctl -w net.ipv4.conf.all.forwarding=1 

 08: sysctl -w net.ipv6.conf.all.forwarding=1 

 09: tayga -d 
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native IPv6. In the case of NAT64 in Debian, Jool has a 

lower OWD than TAYGA, however no surprising 

behavior is shown by TAYGA in this case. At the level of 

the operating systems, the lowest OWD for TCP is 

obtained by Windows 7 for almost all payload sizes. 

B.  Performance Results for Throughput 

As mention before, throughput was measure using 

Iperf [43]. Theoretically, the throughput of native IPv4 

and native IPv6 represent the upper bound for each IP 

version. We measured the throughput using Ethernet and 

Fast Ethernet. For a limitation of Iperf already mentioned 

in Section IV, results are only presented for UDP. 

 

1) Ethernet: The UDP throughput measurements for 

Ethernet are depicted in Fig. 28, Fig. 29, Fig. 30, 

and Fig. 31, for Debian, Windows 7, Windows 8, 

and Windows 10, respectively. As expected, native 

IPv4 throughput represents the upper bound, 

followed by native IPv6 throughput. Then, the 

throughput of ISATAP and 6to4 is always lower 

than the throughput of IPv6, and has a similar 

behavior. This is expected, as these tunneling 

techniques add an IPv4 header to the IPv6 packets to 

travel the IPv4 network, which causes an additional 

processing and serialization overhead. In the case of 

NAT64 in Debian, the throughput of Jool and 

TAYGA are similar for almost all payload sizes. At 

the level of the operating systems, we can see that 

Debian outperforms the other ones for almost all 

payload sizes. 

2) Fast Ethernet: Fig. 32, Fig. 33, Fig. 34, and Fig. 35 

show the UDP throughput measures for Fast 

Ethernet in Debian, Windows 7, Windows 8, and 

Windows 10, respectively. As we can see, the global 

behavior of the throughput of UDP for Fast Ethernet 

for the studied transition mechanisms is almost 

identical to the throughput of UDP for Ethernet (see 

Fig. 28, Fig. 29, Fig. 30, and Fig. 31), but ten times 

faster. As we can observe, native IPv4 has the 

higher throughput, followed by native IPv6. The 

measurements of the tunneling techniques (ISATAP 

and 6to4) are similar to each other, and smaller than 

native IPv4 and native IPv6. At the level of the 

operating systems, as in Ethernet, Debian 

outperforms the other ones for almost all payload 

sizes. 

 

VI.  CONCLUSIONS AND FUTURE WORK 

In this paper, several testbeds were proposed to do a 

performance evaluation of native IPv4, native IPv6, and 

different transition techniques. We chose ISATAP, 6to4, 

and NAT64 due to their popularity, their different range 

of applications, and because several implementations of 

these transition technologies are available. The tests were 

performed with different operating systems: Debian, 

Windows 7, Windows 8, and Windows 10. We measured 

the OWD and the throughput at the level of UDP and 

TCP. 

Similarly to other studies [6][26], our research 

confirmed that native IPv4 has a better performance than 

native IPv6 in controlled testbeds. This is due to the 

length of the IP headers (20 bytes for IPv4, and 40 bytes 

for IPv6). Also, our experiments showed that generally, 

ISATAP and 6to4 have similar network performances, 

encouraging network administrators to choose the one 

that better suit their needs, or to mix both technologies if 

required. For translation mechanisms, NAT64 is now the 

de facto standard. Since it is still a recent and evolving 

technology, NAT64 is supported just by a few 

manufacturers, such as Cisco Systems in new routers. In 

this paper, we compared Jool and TAYGA, two open 

source implementations of NAT64 for Linux. In this case, 

our recommendation to network administrators is to use 

Jool because it did not show the performance problems 

depicted in Fig. 20, and it is an active project. The last 

version of TAYGA was released in June 2011, and it 

seems to be a dead project now. 

The studies presented in this paper were done in small 

testbeds to compare the performance of different 

transition mechanisms in a controlled environment. For 

further studies, we plan to consider more complex and 

realistic networks. We are also interested in developing 

analytical models for the performance evaluation of some 

transition technologies. 

 

 

Fig.16. OWD for Ethernet with TCP – Debian.
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Fig.17. OWD for Ethernet with TCP – Windows 7. 

 

Fig.18. OWD for Ethernet with TCP – Windows 8. 

 

Fig.19. OWD for Ethernet with TCP – Windows 10. 

 

Fig.20. OWD for Fast Ethernet with UDP – Debian.
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Fig.21. OWD for Fast Ethernet with UDP – Windows 7. 

 

Fig.22. OWD for Fast Ethernet with UDP – Windows 8. 

 

Fig.23. OWD for Fast Ethernet with UDP – Windows 10. 

 

Fig.24. OWD for Fast Ethernet with TCP – Debian. 
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Fig.25. OWD for Fast Ethernet with TCP – Windows 7. 

 

Fig.26. OWD for Fast Ethernet with TCP – Windows 8. 

 

Fig.27. OWD for Fast Ethernet with TCP – Windows 10. 

 

Fig.28. Throughput for Ethernet with UDP – Debian. 
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Fig.29. Throughput for Ethernet with UDP – Windows 7. 

 

Fig.30. Throughput for Ethernet with UDP – Windows 8. 

 

Fig.31. Throughput for Ethernet with UDP – Windows 10. 

 

Fig.32. Throughput for Fast Ethernet with UDP – Debian. 
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Fig.33. Throughput for Fast Ethernet with UDP – Windows 7. 

 

Fig.34. Throughput for Fast Ethernet with UDP – Windows 8. 

 

Fig.35. Throughput for Fast Ethernet with UDP – Windows 10. 
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