
I. J. Computer Network and Information Security, 2017, 10, 13-23
Published Online October 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2017.10.02

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 13-23

Multi-dimensional Range Query on Outsourced

Database with Strong Privacy Guarantee

Do Hoang Giang
School of Computer Science and Engineering, Nanyang Technological University, Singapore

E-mail: do0004ng@e.ntu.edu.sg

Ng Wee Keong
School of Computer Science and Engineering, Nanyang Technological University, Singapore

E-mail: awkng@ntu.edu.sg

Received: 21 July 2017; Accepted: 07 September 2017; Published: 08 October 2017

Abstract—Cloud services have provided important

solutions for drastically reducing the cost of data

management and maintenance. However, data

outsourcing not only deprives clients of direct control

over their data but also allows the server to gain direct

access to the client data. Data encryption has been

recognized as the solution to the privacy issue, but it also

creates new challenges for both industry and academia. A

naive question is whether the client still has the capability

to query and obtain useful information when the data are

encrypted and stored remotely. This paper investigates a

solution to one of the most important types of query

operations over encrypted data, namely multi-

dimensional range queries. Our solution combines

cryptographic techniques with the bucketization approach.

We leverage a three-party architecture and secure

multiparty computation to design and analyze the security

of the protocols. Further, we discuss solutions for both

static and dynamic datasets where new data records can

be appended. First, we present the solutions for the case

when the set of attributes in the query is pre-defined.

Subsequently, we discuss the generalization.

Index Terms—Secure Computation, Multi-dimensional

Range Query, Cryptography.

I. INTRODUCTION

The cloud computing paradigm has been recognized as

an important solution for drastically reducing data storage

and processing costs. Recent years have witnessed an

increasing trend toward outsourcing data storage to cloud

computing platforms such as Amazon EC2 [1], Google

App Engine [2], and Microsoft Azure [3]. Companies and

service providers in various fields, such as law

enforcement, finance, and healthcare, are exploring

solutions for outsourcing data. Outsourcing data enables

clients to reduce not only infrastructure costs but also

human costs.

Despite its advantages, data outsourcing has raised

critical concerns over data privacy. It not only deprives

clients of direct control over their data but also allows the

server to gain direct access to the client data. Thus,

information leakage can occur on the server side in

various ways. The first threat is from corrupt employees

who are able to access and reveal sensitive client

information. Even if a cloud computing platform

implements sufficiently robust policies against such

privacy violations, it may be vulnerable to external

malicious attacks. A successful cyberattack may lead to

full exposure of client data. This threat is becoming

increasingly apparent owing to the popularity of

cyberattacks as services. Such threats are realistic, and a

number of data breaches have been reported recently.

Therefore, outsourcing plaintext datasets is strongly

discouraged.

Data encryption is considered as the solution to the

issue of data confidentiality. However, the context of data

outsourcing introduces new challenges to managing

encrypted data. The most critical issue is to preserve data

usability in the encrypted dataset. This challenge has

attracted considerable attention from both industry and

academia in recent years. Searchable encryption

techniques have been proposed to enable users to

efficiently use their remote encrypted data without

retrieving the entire data or exposing sensitive data to the

data server. However, most existing methods focus on the

problem of keyword matching and are inherently

unsuitable for handling certain types of complex queries,

such as multi-dimensional range queries, where the

plaintexts are multi-numerical attributes.

In this paper, we study the problem of supporting an

important class of complex search operations, namely

multi-dimensional range queries. Multi-dimensional

range queries are required for a wide range of practical

applications, including network traffic log analysis, long-

term health monitoring, and banking audits. There are

essentially three broad categories of solutions: special

data structure for range query evaluation, bucketization-

based scheme, and order-preserving encryption-based

techniques. However, these techniques fail to provide

rigorous privacy protection owing to their statistical

patterns, access patterns, or query leakage. Moreover,

14 Multi-dimensional Range Query on Outsourced Database with Strong Privacy Guarantee

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 13-23

nearly all existing solutions support only static data (i.e.,

data that have been uploaded to the server only once) and

previously known queries. To address the above-

mentioned issues, this paper proposes a three-party

architecture and investigates different protocols that

support multi-dimensional range queries over encrypted

remote data while rigorously guaranteeing privacy. We

examine both static and dynamic cases in which data

records can be appended to the existing data set. In

addition, solutions for both fixed and unknown sets of

queried attributes are studied.

The remainder of this paper is organized as follows.

Section II reviews related studies on secure multi-

dimensional range queries. Section III formulates the

problem statement. Section IV describes our system

model as well as the requirements for the designed

protocols. Section V discusses the solution for the full-

domain query in which the set of queried attributes is

fixed and unchanged for all queries. This type of query is

similar to most existing techniques for multi-dimensional

range queries. Section VI presents solutions for a

generalized version where the set of queried attributes

can dynamically vary for different queries. The naive

approach to this problem is to apply multiple single range

queries. However, this approach leads to single-

dimensional privacy leakage. In the proposed protocol,

we leverage the concept of secure set intersection to

resolve this issue. Section VII discusses practical

considerations for the system implementation. Finally,

Section VIII concludes the paper.

II. RELATED WORKS

This section reviews existing approaches toward to

problem of secure multi-dimensional range query as well

as oblivious RAM – a useful cryptographic technique we

utilize to design the solutions.

A. Secure Range Query

There are essentially three general approaches for

tackling multi-dimensional range queries on encrypted

data: special data structure for range query evaluation,

bucketization-based scheme, and order-preserving

encryption-based techniques.

Special data structure. Boneh et al. [4] proposed a

general public-key approach to support comparison,

subset, and range queries on encrypted data by using

hidden vector encryption, whose search complexity is

O(mT), where m and T are the number of attributes and

number of discrete values for each attribute, respectively.

Moreover, the ciphertext size is relatively large owing to

the use of composite-order bilinear map groups [5],

which make it infeasible in many applications.

Shi et al. [6] proposed a scheme that supports a

conjunction of range queries over multiple attributes (i.e.,

multi-dimensional range queries). The idea is to encrypt

each data record as a point in multi-dimensional space.

The query processing is equivalent to testing whether a

point falls inside a hyper-rectangle for every data record.

The authors used a segment tree data structure to

represent the ranges for each dimension. Anonymous

identity-based encryption is applied at each node of the

tree with a different key. For a certain query, the client

needs to reveal the keys corresponding to each range on

each dimension. Hence, all the attributes on the range will

be revealed after successful decryption at the server.

Subsequently, different tree-based approaches have been

proposed to tackle the problem of secure multi-

dimensional range queries. Lu [7] proposed a range

search scheme on encrypted data by leveraging predicate

encryption and B+ trees. He extended the original scheme

to support multi-dimensional range queries by replacing

B+ trees with kd-trees in the implementation. Wang et al.

[8] presented a scheme for evaluating multi-dimensional

range queries by using asymmetric scalar-product

preserving encryption and R-trees. However, these two

methods lead to single-dimensional privacy leakage.

Bucketization-based scheme. Bucketization-based

data representation for query processing in an untrusted

environment was originally leveraged by Hacigumus et al.

[9]. Their bucketization simply involves a data

partitioning step based on equi-depth or equi-width

partitioning to support single-dimensional range queries.

The queries are mapped to a set of buckets that contain

any value satisfying the range of the query. The original

queries are translated into bucket-level queries, which

request the encrypted buckets containing the desired

values. Several studies have attempted to reduce bucket

costs (i.e., false positives) while preserving the

anonymity of the data set [10]. Hore et al. [11] extended

the bucketization-based method to support secure multi-

dimensional range queries. Their method tries to cluster

d-dimensional space into various hyper-rectangles, and

bucket indexing is performed on the clustered hyper-

rectangles.

Order-preserving encryption based techniques. An

order-preserving encryption scheme is a deterministic

cryptosystem whose encryption algorithm produces

ciphertexts that preserve the numerical ordering of the

plaintexts. Roughly speaking, for any two ciphertexts 𝑐1

and 𝑐2 corresponding to plaintexts 𝑝1 and 𝑝2, respectively,

if 𝑝1 ≤ 𝑝2 , then it is guaranteed that 𝑐1 ≤ 𝑐2 . Order-

preserving encryption was first proposed by Agrawal et al.

[12] to support range queries on encrypted data. When

the dataset is encrypted by an order-preserving encryption

scheme, the result of a single-dimensional range query is

simply determined by the encryptions of the two end-

points. The concept of order-preserving encryption was

efficiently revised with formal security analysis by

Boldyreva et al. [13] [14] and Mavroforakis et al. [15].

Although these techniques are highly efficient, they

provide weak privacy. As such, traditional efficient

indexes can be built directly on encrypted data and

queried in the same manner as plaintexts. Nevertheless,

order-preserving encryption is deterministic and hence

suffers from inherent distribution leakage. In addition, it

inevitably leaks the ordering of the data.

B. Oblivious RAM

Oblivious RAM (ORAM) is a cryptographic primitive

 Multi-dimensional Range Query on Outsourced Database with Strong Privacy Guarantee 15

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 13-23

that conceals memory access patterns. The idea of

ORAM is to continuously reshuffle the memory and

translate the address of each memory access to a set of

randomized memory locations.

ORAM was first investigated by Goldreich [16] using

the “square-root” solution. The objective was to address

the problem of software protection, i.e., to prevent

unauthorized copy. Goldreich’s solution partitions the

server memory into two regions: a main region of O(N)

blocks and a shelter of (𝑂√𝑁) blocks. Each access

involves linear scan in the shelter region and one access

to the main region. After (𝑂√𝑁) operations, the data

structure is reshuffled. Goldreich and Ostrosvky [17]

presented the well-known “hierarchical” solution to

achieve polylogarithmic memory bandwidth overhead.

The key idea of this solution, in contrast to Goldreich’s

above-mentioned solution, is to organize the server

memory into a hierarchy of buffers whose sizes grow at a

geometric rate.

A recent breakthrough was made by Stefanov et al.

[18], who mapped each data block to a random path of a

binary tree. The information for the path of each data

block is stored in a position map. To access a block, the

client first looks up the position map and reads all the

buckets on that path. Each data access requires O(log2N)

memory bandwidth overhead. The solution requires O(N)

local data storage for the path of each data block. Shi et al.

[19] proposed ORAM recursion to reduce the client

storage to 𝑂(1). The key idea is to store the position map

on the server side as a second ORAM. This may be

performed recursively until the client storage is O(1).

Clearly, the access operation now includes looking up all

the position map ORAMs in addition to the main data

ORAM, which increases the bandwidth overhead to

𝑂(𝑙𝑜𝑔3 𝑁). Stefanov et al. [20] proposed an extremely

simple and efficient ORAM protocol called Path-ORAM.

Path-ORAM is the first technique to achieve 𝑂(𝑙𝑜𝑔 𝑁)

memory bandwidth overhead under small client storage.

In this paper, we refer to the Path-ORAM design when

the ORAM technique is used.

III. PROBLEM FORMULATION

We consider a scenario involving a data owner Alice.

Alice possesses a multi-dimensional dataset D of n

records. Each data record has m numerical attributes. Let

𝑎𝑖 denote the identifier of the i-th attribute and 𝑥j
𝑖 denote

the value of the j-th attribute of the i-th record.

Alice wishes to outsource her dataset (i.e., the set of

data records) to a cloud server to save local storage costs.

A typical example is the data of body measurement

recorded by sensors or mobile devices. Because mobile

devices are normally limited in terms of storage

capability, outsourcing such information to cloud services

offers easy and low-cost solutions for long-term

continuous health monitoring. On the other hand, such

data include confidential personal information; hence,

they should be stored in an encrypted form. At the same

time, to facilitate health monitoring and treatment, the

data owner needs to use the outsourced data efficiently.

To query the outsourced dataset, Alice performs a

multi-dimensional range query. A multi-dimensional

range query is a process of retrieval of data records that

satisfy query values from the relative attribute domains:

Select * from D where 𝑎𝑥𝑖
∈ [𝑠𝑥𝑖

 , 𝑡𝑥𝑖
],

 𝑥𝑖 ∈ 𝑆𝑞 ∈ {1, ⋯ , 𝑚}.

Let [a,b] represent an interval of integers from a to b,

inclusively. The set of attribute identifiers 𝑆𝑞 = {𝑥𝑖} is

called the set of queried attributes. A multi-dimensional

range query requests data records such as each attribute

𝑣𝑗 in the set of queried attributes. Note that 𝑆𝑞 takes

values in the interval [𝑠𝑥𝑖
, 𝑡𝑥𝑖

]. Roughly speaking, each

data record can be considered as a point in m-dimensional

space, and the multi-dimensional range query is defined

by a hyper-rectangle. All the points inside this hyper-

rectangle are considered as the results of the query.

When the set of queried attributes covers all m

dimensions of the database D: 𝑆𝑞 = {𝑥𝑖} = {1, ⋯ , 𝑚},

we say that the query is a full-domain query. Section V

discusses the solution for this scenario. Section IV

discusses viable solutions where the query's dimensions

change dynamically from one query to another, with no

fixed set of the concerned attribute domain for the query.

Although studies have been conducted to address such a

multi-dimensional query, they require the data owner to

share his/her private key with a semi-trusted third party,

which is not practical owing to privacy threats. In

Sections IV and V, we will discuss the solutions in the

settings of static and dynamic data storage. In the static

database settings, the data owner uploads the entire data

only once and is later able to query for the necessary

records. On the other hand, in the dynamic database

settings, new data records can be appended to the

previously uploaded data, and expired data can be

transferred to archive data storage and removed from the

query results. We assume that the three parties loosely

synchronize the time of archiving the data.

IV. SYSTEM MODELS

A. System Model

We adopt a three-party architecture described by

Boneh et al. [21] and Cristofaro et al. [22]. The system

consists of three parties: the data server, the client, and

the index server (see Fig.1).

1. Client: possesses a numerical multi-dimensional

dataset and wishes to outsource his/her dataset in

encrypted form to the data server. At some point,

he/she should have the capability to securely construct

a multi-dimensional range query to obtain the

requested data.

2. Data server: provides storage services to the client.

The cloud server is trusted to provide reliable services

but it may also be curious about the content of the

16 Multi-dimensional Range Query on Outsourced Database with Strong Privacy Guarantee

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 13-23

data records stored in its database or the content of the

queries submitted by the data owner.

3. Index server: stores meta-data to support answering of

the query. As with the data server, it is trusted to store

the meta-data as well as correctly process the query

initiated by the data owner. In addition, it may be

curious about the client’s data as well as the query

content.

Fig.1. System Architecture

Workflow. Based on the notation in Fig.1, the workflow

of our system can be described as follows. The data are

first preprocessed by the data preparation module on the

client side. The dataset and the meta-data (i.e., output of

the preprocess phase) are encrypted by the

encryption/decryption module and sent to the data server

and the index server. The entire dataset should be

encrypted by a symmetric encryption scheme. It involves

low overhead for data storage and bandwidth, as well as

efficient encryption/decryption operations. On the other

hand, the meta-data should be encrypted by a specific

public key cryptosystem and embedded in a special data

structure to enable secure query processing.

To construct a multi-dimensional range query, the

client constructs the query content using the query

processor module, which has an interface with the

encryption/decryption module. The encrypted query

content is sent to the index server. The index server will

output the corresponding indices of the satisfied data

records so that the client is able to efficiently retrieve

them from the data server. Further, the query processor

module may be invoked to filter the results returned from

the data server.

B. Security Assumptions and Requirements

In this paper, we assume that the user, cloud server,

and index server are semi-honest. The servers will

correctly follow the protocol specification; however, at

the same time, they are also curious about the user’s

plaintext data. In addition, we assume that there is no

collusion between two participating parties to access the

user’s confidential data. We emphasize that this

assumption is realistic under the cloud environment. At

present, with the development of cloud services, it is

difficult to consider the possibility of collusion by well-

established cloud service companies, which would

damage their reputations and consequently have a

negative impact on their revenues. In this work, we

attempt to design a secure multi-dimensional range query

while preserving the privacy of the database content and

query values. Ideally, a secure protocol should only

reveal what is leaked by the system parameters known to

all parties and by the intended functional output. More

specifically, we consider the following information

leakage:

1. Data Privacy. A passive attacker who gets a snapshot

of the encrypted database and encrypted index data

should not be able to obtain any information about the

user’s private data. This implies that these two types

of data should be encrypted by a probabilistic

cryptosystem.

2. Query Privacy. The cloud and index servers should

not be able to determine whether two queries are the

same.

3. Access Pattern. Access to satisfied data records

should not be revealed to the cloud server. Islam et al.

[23] showed that data access pattern leakage could

lead to the disclosure of a significant amount of

sensitive information.

4. One-dimensional Privacy. Informally, single-

dimensional privacy means that given a search token

of a multi-dimensional range query, a computationally

bounded adversary is not able to independently obtain

the exact search results for any single-dimensional

query.

While allowing the user to download the entire

database and performing the query locally will achieve all

the above-mentioned privacy requirements, this solution

is infeasible. The proposed solution should be efficient in

terms of time complexity, communication, and round

complexity.

V. FULL-DOMAIN MULTI-DIMENSIONAL RANGE QUERY

First, we describe the construction of full-domain

multi-dimensional range queries. The dataset contains

multiple data records that are points {𝑥𝑗}
𝑗=1

𝑛
in a m-

dimensional lattices. A full-domain query is defined by a

hyper-rectangle in the m-dimensional space:

𝐵 = {[𝑠1, 𝑡1], [𝑠2, 𝑡2], … , [𝑠𝑚 , 𝑡𝑚]}

where [𝑠𝑖 , 𝑡𝑖] represents a single-dimensional range. A

data record {𝑥𝑗}
𝑗=1

𝑛
 satisfies a query represented by the

hyper-rectangle B if and only if 𝑥𝑗 ∈ [𝑠𝑗 , 𝑡𝑗] for ∀ 𝑗: 1 ≤

 𝑗 ≤ 𝑚.

As mentioned above, each record of the dataset is

encrypted individually by a symmetric encryption scheme

such as AES. This allows for efficient retrieval of specific

records from data server. Hence, this work focuses on

designing the data structure and algorithms to find the

indices of data records that satisfy the query criteria.

Specifically, we present a method for constructing the

meta-data, the data structure to store the metadata at the

index server, and the algorithms to process the query. Our

solution for the full-domain multi-dimensional range

 Multi-dimensional Range Query on Outsourced Database with Strong Privacy Guarantee 17

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 13-23

query problem is inspired by the multi-dimensional

bucketization approach. First, we partition the data space

into M disjoint buckets. The number of buckets M is

smaller than the number of data points n. Each data

record belongs to exactly one bucket. The query

processing translates into the problem of retrieving the

bucket content. Hore et al. [11] claimed that

nondeterministic encryption of the bucket labels does not

raise the level of security, because simply encrypting

bucket labels cannot protect the query privacy or access

pattern from an adversary. In this paper, we leverage the

ORAM technique to hide the access pattern and thus

provide a stronger security guarantee.

A. Solution Overview

The dataset is first pre-processed by the data

preprocessing module. It is partitioned into non-

overlapping buckets, and the bucket label is set as the tag

for each data record in the bucket. The data owner

encrypts each original data record (i.e., a d-dimensional

data point) and uploads it to the data server. Furthermore,

an encrypted inverted index table is stored at the index

server in the following form:

⟨ 𝐵𝑢𝑐𝑘𝑒𝑡 𝐿𝑎𝑏𝑒𝑙, 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑠𝑒𝑡 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ⟩

The idea of the solution is to leverage ORAM data

access for each intersecting bucket without leaking any

information about the data or the query content. The

satisfied records are determined by buckets intersecting

the query. Many existing studies have indicated that

ORAM is impractical owing to its high computational

cost. However, this claim is not necessarily true,

especially because nearly all existing studies focus only

on designing various methods to retrieve the indices of

the satisfied records while leaving the actual data

retrieval process to a black box. The black box is

assumed to be a standard ORAM protocol for data

records with known indices. It contradicts the above-

mentioned concerns with regard to practical application.

Recent results on Path-ORAM have shown that it is a

practical tool for data access. When the record indices are

known to the client, a constant number of communication

rounds of ORAM data access should be required to

retrieve the data.

Fig.2. Secure Multi-dimensional Range Query from ORAM

The two main challenges faced by this approach are

how to partition the space into buckets and how to embed

the record indices into the ORAM data structure stored at

the index server.

Bucketization algorithms. We retrieve a bucket if and

only if it overlaps the query rectangle. We partition the

space into M non-overlapping hyper-rectangles. Each

rectangle contains approximately the same number of

data points. The parameter M is determined by the

tradeoff between the cost of false positives and the cost of

communication between the client and the index server.

When the number of buckets increases, each bucket

contains fewer points, and the false positive rate

decreases. However, the number of buckets intersecting

with the query increases, which means that the number of

ORAM accesses increases. On the other hand, when the

number of buckets decreases to one, fewer ORAM

accesses are required for each query. Further, when the

false positive rate increases, additional bandwidth

overhead is incurred to retrieve the actual data records

from the server. With a certain parameter M, we use the

Mondrian multi-dimensional partition algorithm

presented by LeFerve et al. [24] (see Algorithm 1). In this

protocol, we assume that 𝑀 = 2𝑘 for simplicity.

At each call, the algorithm partitions the space

according to the value of attribute attr, which is chosen at

step 1. The data space is partitioned into two parts. Each

part has approximately the same number of elements. The

complexity of the preprocessing phase is 𝑂(𝑙𝑜𝑔 𝑛).
ORAM storage. Each data label is associated with a list

of record indices. Our solution stores these indices in the

ORAM data structure so that we can secure access to the

content of a particular bucket. A naive solution is to use a

sufficiently large ORAM data block to store the entire set

of encrypted record indices. The user can retrieve the

entire set of indices for a block label at once. However,

because the size of the index set of each bucket label may

vary, it is wasteful to use a large-sized data block to store

a small piece of information. Moreover, it is

computationally expensive to read from and write to a

large-sized data block. Our approach is to represent the

index sets in a compact form so that the data ORAM

block can be determined beforehand with reasonable size.

B. Static Dataset

First, we consider the simplest scenario where the

dataset is intact after uploading to the server. Archiving

data is an example of this scenario.

The dataset is preprocessed and encrypted once before

being uploaded to the data server. In the preprocessing

18 Multi-dimensional Range Query on Outsourced Database with Strong Privacy Guarantee

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 13-23

stage, the bucketization algorithm (Algorithm 1) is

applied to partition the space into buckets. Each record

(i.e., a data point) belongs to exactly one bucket. Data are

rearranged so that the identifiers of data records in the

same bucket label form a consecutive numerical counter.

Hence, the necessary information to reconstruct an index

set is the starting counter and ending counter. The meta-

data stored at the index server are ORAM data structures

such that each block has an encrypted bucket label as the

key for the encryption of the starting counter and ending

counter as the values. Hence, to query for a data bucket,

the data owner performs an ORAM data access with the

index server; the access key is the bucket label. Then, the

client obtains the range of data identifiers. The last step is

to perform one more round of data access for each data

identifier with the data server.

Analysis. Because the data and their indices are

encrypted on the client side by a standard secure

cryptosystem, the data server and index server obtain no

information from the view of the stored data. Furthermore,

the data owner accesses the index data at the index server

and the data content at the data server by means of

ORAM. The two servers are not able to obtain additional

information of the query content or the access pattern.

Because the data are obtained by the bucket label, one-

dimensional privacy is satisfied for the query.

The bandwidth overhead of the solution is O(log n)

owing to the overhead of Path ORAM. The client is also

required to maintain a local storage of O(log n). Finally,

the complexity of each data access incurred at the server

is O(log n).

We also note that in the case of the static dataset,

private information retrieval (PIR) can be used as an

alternative to ORAM. In the PIR approach, for reading

data, the computational complexity for the data owner is

linearly related to the size of the retrieved data; in terms

of the server size, the computational cost is linearly

related to the size of the entire data set.

C. Dynamic Dataset

We consider the case where the update operation is

allowed. More specifically, new data records may be

appended to the existing dataset. Log file is an example

of this scenario.

Because the new data records can be in any data bucket,

we cannot use the previous approach. In the above-

mentioned approach, the indices of data records in the

same bucket label are required to form consecutive

integers. Because the new records are not necessarily in

the bucket containing the previous records, this

requirement does not hold. We adopt another approach to

index the records. We make use of the collision-

resistance hash function. The index of a new record is

determined by the hash of the previous record index that

is in the same bucket. More specifically, we consider a

collision-resistant hash function ℎ: {0,1}𝑛 ↦ {0,1}𝑚 and

define a sequence generated by h as follows:

𝑎0 = 𝑙𝑎𝑏𝑒𝑙 − 𝑖𝑑, 𝑎𝑖 = ℎ(𝑎𝑖−1).

To obtain the index set of the bucket label for the i-th

bucket, we need to know the values of 𝑎0
𝑖 and 𝑎𝑛

𝑖 , where

𝑎𝑛
𝑖 is the last element in the sequence generated for data

records belonging to the i-th bucket. In this case, when

the data are appended, the data owner is required to

modify the corresponding ORAM data block to update

the last element of the current index set. On the other

hand, to obtain the index sets of buckets intersecting the

query, the data owner retrieves the corresponding block

to get 𝐸𝑛𝑐(𝑎0
𝑖) and 𝐸𝑛𝑐(𝑎𝑛

𝑖) . Further, the data owner

decrypts the encrypted content and iteratively generates

the sequence starting from the first element until the last

element using the formula 𝑎𝑖 = ℎ(𝑎𝑖−1). A collision-

resistant hash function is required for this construction so

that different data records are not mapped to the same

index.

To insert a new record into the data set, the data owner

first determines the bucket label of the new data record.

Next, he/she performs a read and an update operation

with the index server by means of ORAM. The new

content of the ORAM block now contains the encrypted

next sequential number of the last record index in this

bucket.

Analysis. We use a collision-resistant hash function to

index the records because each data record belongs to

exactly on data bucket. Moreover, it is difficult to find a

collision; each data record has a unique identifier

determined by the hash functions.

The security of the dynamic case construction is

analyzed in the same was as that of the static case. In both

cases, the user accesses the indices and the real data

records using ORAM. Hence, the only information

leakage to the cloud server is the result size, which is the

lower bound of the number of satisfied records. The

reason is that the user is required to make at least the

minimum number of satisfied record ORAM data

accesses to the cloud server data.

The complexity and bandwidth overhead of the

solution remain polylogarithmic owing to the use of Path

ORAM. The update operation as an ORAM write

operation also requires O(log n) memory bandwidth and

computational complexity.

VI. DYNAMIC MULTI-DIMENSIONAL RANGE QUERY

The aforementioned approach can be generalized to

address the scenario in which the set of queried attributes

is fixed. Roughly speaking, we should be able to

efficiently represent the query space by a small number of

fixed hyper-rectangles. In this section, we examine a

more general case where the set of queried attributes

varies for different queries. In other words, the number of

dimensions in each query can vary from one to m - the

number attributes in each data record. Clearly, we can

treat the query as a full-domain query by considering

each missing dimension as the full range. However, this

approach normally leads to an excessive number of

communication rounds with the index server. Instead of

using the multi-dimensional bucketization technique, we

apply the single-dimensional bucketization approach as a

 Multi-dimensional Range Query on Outsourced Database with Strong Privacy Guarantee 19

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 13-23

solution to this generalized problem.

A general multi-dimensional range query is defined by

an unordered set:

𝐵 = {[𝑠𝑖1
, 𝑡𝑖1

], [𝑠𝑖2
, 𝑡𝑖2

], … , [𝑠𝑖𝑘
, 𝑡𝑖𝑘

]}

1 ≤ 𝑖𝑗 ≤ 𝑚 , and [𝑠𝑖𝑗
 , 𝑡𝑖𝑗

] represents a single-

dimensional range. The size of the set of queried

attributes is 𝑘, 1 ≤ 𝑘 ≤ 𝑚.

A. Solution Overview

Our solution for the generalized problem employs

private set intersection techniques. First, we partition

each single-dimensional domain into buckets. A data

record of m attributes falls into m buckets. For each

single-dimensional range in the query, the requested data

records must belong to the buckets intersecting with the

range. A naive solution is to perform multiple queries on

each queried dimension. The results are the intersection

of the results. This approach has been used by Zhang et al.

[25] to design multi-dimensional range queries in sensor

environments. However, the naive approach fails to

provide single-dimensional privacy because the server

gains the results for each queried dimension. In this paper,

instead of performing the intersection operation on the

client side, we conduct it on the server side in a privacy

preserving manner.

The query is firstly decomposed to each corresponding

dimension. For each queried dimension, the intersecting

buckets are enumerated. The query now can be translated

into the one or multiple conjunctive queries. The

variables in the conjunctive query are intersection buckets

in each dimension. Finally, secure set intersection

algorithm should be applied to answer the conjunctive

query.

To illustrate our idea, we consider the following

example. Alice has a dataset where each data record is a

three-dimensional point (𝑥, 𝑦, 𝑧) . The attributes receive

integer values in the domain [1,10]. Alice decomposes

the data space with eight buckets:
[0,5]𝑥, [6,10]𝑥 , [0,5]𝑦 , [6,10]𝑦 , [0,5]𝑧 , [6,10]𝑧 . Each

record is in exactly three buckets. Alice wishes to

perform a simple multi-dimensional range query:

3 ≤ 𝑥 ≤ 6, 2 ≤ 𝑦 ≤ 4. The query can be transformed

into two conjunctive queries: [0,5]𝑥 ˄ [0,5]𝑦 and

[6,10]𝑥 ˄[0,5]𝑦 . Query [0,5]𝑥 ˄ [0,5]𝑦 (similar for the

other) is translated as retrieving all the data records

belonging to both [0,5]𝑥 and [0,5]𝑦. The answer for it is

the intersection between two buckets.

Bucketization algorithms. We apply a simple equi-

depth bucketization approach to partition each dimension

for the data space. The number of buckets M in each

dimension is determined by the tradeoff between the

number of conjunctive queries and the false-positive rate.

If we partition the dimension into many small buckets,

we are able to reduce the false positive rate of the results.

On the other hand, if M in each dimension is small, we

are required to perform fewer conjunctive queries but

additional work is required for the post-processing.

We now describe the method for securely answering

each transformed conjunctive query in two different

settings.

B. Static Dataset

For the case of a static dataset, the entire dataset is

processed and uploaded only once to the servers. We

leverage the Kissner-Song private set intersection [26] to

perform conjunctive queries.

The idea underlying the Kissner-Song protocol is to fix

a large field F and represent a set 𝑆 ⊂ 𝐹 by a polynomial

𝐴𝑆 that has zeros in all the elements of S, i.e., 𝐴𝑆 (𝑥) =
 ∏ (𝑥 − 𝑠)𝑠∈ 𝑆 . To compute the intersection of many sets

𝑆𝑖 , we construct a polynomial 𝐵 whose zeros are the

intersection of these sets. Clearly, if a point 𝑠 ∈ 𝐹 is

contained in all the sets 𝑆𝑖 , then 𝐴𝑆𝑖
(𝑠) = 0 ∀ 𝑖, and

therefore, if we compute B as a linear combination of

𝐴𝑆𝑖
’s, then 𝐵(𝑠) = 0. On the other hand, if 𝐴𝑆𝑖

(𝑠) ≠ 0

for some i and B is a random linear combination of 𝐴𝑆𝑖
’s,

then 𝐵(𝑠) ≠ 0 with high probability. Roughly speaking,

instead of storing the record indices for each bucket, we

store the coefficients of the polynomial that represents the

index set. However, the coefficients should be encrypted

so that the index server is not able to trace the indices.

In this paper, we use the BGN encryption technique [5]

to encrypt the polynomial coefficients. The BGN

cryptosystem, proposed by Boneh, Goh, and Nissim,

allows both additions and multiplications with a constant

size ciphertext. However, there is a catch: while the

addition can be performed multiple times, only one

instance of multiplication is permitted. Nevertheless, this

protocol is considered to be much more practical than

fully homomorphic encryption schemes. The

homomorphism allows us to compute a linear

combination of the polynomial in encrypted form so that

set intersection operations can be securely performed on

the index server.

Let 𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐 denote three BGN cryptosystem

algorithms: key generation, encryption, and decryption.

We have the following properties:

 𝐺𝑒𝑛: generates a key pair (𝑝𝑘, 𝑠𝑘) where 𝑝𝑘 and 𝑠𝑘

are public and private keys, respectively.

 𝐷𝑒𝑐(𝐸𝑛𝑐(𝑚)) = 𝑚 for 𝑚 in the message space.

 𝐴𝑑𝑑(𝑝𝑘, 𝐸𝑛𝑐(𝑥), 𝐸𝑛𝑐(𝑦)) = 𝐸𝑛𝑐(𝑥 + 𝑦) can be

performed multiple times on two encrypted

values 𝐸𝑛𝑐(𝑥) and 𝐸𝑛𝑐(𝑦).

 𝑀𝑢𝑙(𝑝𝑘, 𝐸𝑛𝑐(𝑥), 𝐸𝑛𝑐(𝑦)) = 𝐸𝑛𝑐(𝑥 ⋅ 𝑦) can be

done only once.

Consider a bucket consisting of ℓ data records with

indices 𝑖1, ⋯ , 𝑖ℓ. It can be represented by a polynomial of

the form 𝐴(𝑥) = (𝑥 − 𝑖1) ⋯ (𝑥 − 𝑖ℓ) = ∑ 𝑐𝑖 × 𝑥𝑖. The

coefficients 𝑐𝑖 of the polynomial are encrypted by a BGN

cryptosystem and stored at the index server. The index

server stores 𝑚 × 𝑀 encrypted polynomials, where 𝑀 is

the number of buckets for each dimension and 𝑚 is the

number of attributes in each data record.

To issue a multi-dimensional range query (i.e.,

20 Multi-dimensional Range Query on Outsourced Database with Strong Privacy Guarantee

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 13-23

 𝑄 = {[𝑠𝑖1
, 𝑡𝑖1

], ⋯ , [𝑠𝑖𝑘
, 𝑡𝑖𝑘

]}), the client first

decomposes the query into 𝑘 dimensions: 𝑖1, 𝑖2, ⋯ , 𝑖𝑘 .
The query is transformed to multiple conjunctive queries;

each one is associated with 𝑘 buckets corresponding to 𝑘

dimensions. To obtain the answer for each conjunctive

query, the client does the following:

1. We consider a bit 𝑏𝑖 = 1 if the 𝑖 − 𝑡ℎ bucket

intersects with the query (0 otherwise). There are

exactly 𝑘 encryptions of bit 1 for each conjunctive

query.

2. The client generates appropriate tags, 𝜎𝑖 = 𝐸𝑛𝑐(𝑏𝑖),

and sends 𝜎𝑖 to the index server.

3. The index server generates random non-zero

numbers 𝑝𝑖 and computes 𝐵(𝑥) = ∑ 𝜎𝑖 × 𝑝𝑖 × 𝐴𝑖𝑖
(in encrypted form), and sends the corresponding

result to the user.

4. The client decrypts and factors the polynomial 𝐵(𝑥)

and finds its roots, which are the indices of the

records that are of interest to the user.

5. The client performs ORAM data access to obtain the

necessary data records from the cloud server.

Analysis. To analyze the security of the proposed

protocol, we need to examine the data view of the two

servers. Because the server stores securely encrypted data,

and the data are accessed only by ORAM, it gains no

knowledge of the user sensitive data, query content, or

access pattern. Moreover, the index server receives only

BGN-encrypted bits; it is not able to obtain any

information about the query. Hence, the proposed

protocol leaks no information of the data content, query

content, or query result to the server or the index server,

except for the upper bound of the number of matching

records (owing to the number of ORAM accesses).

The proposed solution requires the client to send

𝑂(𝑚 × 𝑀) encrypted bits to the index server and receive

approximately 𝑂(𝑛/𝑀) bits from the index server. At the

same time, the index server is also required to perform up

to 𝑂(𝑛) multiplication and exponentiation operations in

the ciphertext space. The computation and

communication costs for the server are the same as those

of the previous methods.

C. Dynamic Dataset

In the dynamic dataset case, the new data records may

be dynamically appended to the existing dataset. The

aforementioned approach, which represents the index sets

by polynomials, requires the entire encrypted coefficients

for each corresponding bucket of the new record to be

recomputed. We propose another approach that requires

interaction between the server and the index server. We

note that the abovementioned methods for both full-

domain queries and dynamic multi-dimensional range

queries do not require any communication between the

two servers. The proposed protocol is inspired by a

conjunctive keyword searchable encryption protocol

proposed by Cash et al. [27]. We use it with a major

modification to adapt our privacy requirements.

We start the protocol description by reviewing a few

concepts related to bilinear maps. We will use the

following notation:

1) 𝐺1 and 𝐺2 are two (multiplicative) cyclic groups of

prime order 𝑝.

2) 𝑔1 is a generator of 𝐺1and 𝑔2 is a generator of 𝐺2.

A bilinear map is a map 𝑒 ∶ 𝐺1 × 𝐺2 → 𝐺𝑇 with the

following two properties:

INSERT (Record id:: 𝑥 = {𝑥1,· · · , _𝑥𝑚})

 For each 𝑖 − 𝑡ℎ dimension (1 ≤ 𝑖 ≤ 𝑚), the client

does:

 Let 𝑗 − 𝑡ℎ bucket of 𝑖 − 𝑡ℎ dimension:

bucket 𝑙𝑖
𝑗
 contains attribute value 𝑥𝑖.

 Compute 𝑥𝑖𝑛𝑑 ← 𝐹𝐾𝐼
(𝑖𝑑), 𝑧 ← 𝐹𝐾𝑍

(𝑙𝑖
𝑗
)

and 𝑦 ← 𝑔1

𝑥𝑖𝑛𝑑

𝑧

 Set 𝑒𝑖𝑑 ← 𝐸𝑛𝑐(𝑖𝑑) , append (𝑒𝑖𝑑, 𝑦) to a

list for bucket 𝑙𝑖
𝑗
 at index server.

 Set 𝑥𝑡𝑎𝑔 ← 𝑒(𝑔1, 𝑔2)(𝐹𝐾𝑥(𝑙𝑖
𝑗

)⋅ 𝑥𝑖𝑛𝑑)
 and

append to a set S at cloud server.

 Encrypt the data record and upload the cloud

server.

SEARCH (𝑄 = { [𝑠𝑖1
 , 𝑡𝑖1

], … , [𝑠𝑖𝑘
, 𝑡𝑖𝑘

]})

 Client decomposes the query into 𝑘 dimensions:

𝑖1, 𝑖2, … , 𝑖𝑘 . The query is transformed into

conjunctive query of buckets. For each conjunctive

query 𝑞, we denote the buckets of interest for these

𝑘 dimensions as 𝐿1, … , 𝐿𝑘 .

 For 𝑖 = 2, … , 𝑘:

 Client computes 𝑥𝑡𝑜𝑘𝑒𝑛𝑖 ← 𝑔2

𝐹𝐾𝑧(𝐿1)⋅ 𝐹𝐾𝑥(𝐿𝑖)

 Client sends 𝐿1 , {𝑥𝑡𝑜𝑘𝑒𝑛2, ⋯ , 𝑥𝑡𝑜𝑘𝑒𝑛𝑛} to the

index server.

 For each item (𝑒𝑖𝑑, 𝑦) in 𝐿1 list in random order:

 Index server sends 𝑒𝑖𝑑 to the cloud server.

 Securely compute the cardinality 𝑠𝑖𝑧𝑒 of the

intersection between set S at the server and

{𝑒(𝑦, 𝑥𝑡𝑜𝑘𝑒𝑛2), … , 𝑒(𝑦, 𝑥𝑡𝑜𝑘𝑒𝑛𝑘)}

 If 𝑠𝑖𝑧𝑒 = 𝑘 − 1 , the cloud server sends

𝑒𝑖𝑑 to the client.

 Client decrypts and obtains the indices.

 Client performs ORAM data access to obtain the

necessary data records from the cloud server.

 Multi-dimensional Range Query on Outsourced Database with Strong Privacy Guarantee 21

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 13-23

1) Bilinear: for all 𝑢 ∈ 𝐺1, 𝑣 ∈ 𝐺2 , and 𝑎, 𝑏 ∈ 𝑍 ,

𝑒(𝑢𝑎, 𝑣𝑏) = 𝑒(𝑢, 𝑣)𝑎𝑏 .

2) Non-degenerate: 𝑒(𝑔1, 𝑔2) ≠ 1.

The proposed solution consists of two algorithms:

INSERT and SEARCH for appending new records and

performing multi-dimensional range queries on the

encrypted data set respectively.

Let 𝐹 denote a keyed pseudo-random function

𝑓: 𝑍𝑝 × 𝐾 → 𝑍𝑝, and select keys 𝐾𝑆 , 𝐾𝑋, 𝐾𝐼 , 𝐾𝑍 for 𝐹.

The correctness of the search protocol relies on the

following fact:

𝑒(𝑦, 𝑥𝑡𝑜𝑘𝑒𝑛_𝑖) = 𝑒(𝑔1
𝑥𝑖𝑛𝑑/𝑧

, 𝑔2

𝐹𝐾𝑧(𝐿1)⋅ 𝐹𝐾𝑥(𝐿𝑖)
)

 = 𝑒(𝑔1

𝐹𝐾𝐼
(𝑖𝑑)

𝐹𝐾𝑍
(𝐿1)

, 𝑔2

𝐹𝐾𝑍
(𝐿1)⋅ 𝐹𝐾𝑋

(𝐿𝑖)
)

 = 𝑒(𝑔1, 𝑔2)𝐹𝐾𝐼
(𝑖𝑑)⋅ 𝐹𝐾𝑋

(𝐿𝑖)

Hence, if the set {𝑒(𝑦, 𝑥𝑡𝑜𝑘𝑒𝑛2), . . . , 𝑒(𝑦, 𝑥𝑡𝑜𝑘𝑒𝑛𝑘)} is

a subset of set S, the data record belongs to exactly all the

requested buckets.

Our construction of the index list for the bucket and for

the set S are similar to the construction of TSet and XSet
proposed by Cash et al. [27]. In their protocol, TSet and

XSet are stored in the same place in the cloud server. The

correctness and the privacy of the two sets follow the

proofs of the authors, given in [27]. However, because

the set intersection is performed locally by the cloud

server, that construction leads to unnecessary information

leakage (i.e., access pattern). In the proposed construction,

the storage of the bucket list and set S is separated into

two parts, and the set intersection cardinality is obtained

by a secure two-party computation protocol. We apply

the protocol proposed by Cristofaro et al. [28]. Fig. 3

shows the workflow of the protocol. The protocol is

secure under semi-honest model assumptions. The

complexity is linearly related to the sizes of the two sets.

Fig.3. Secure set Intersection Cardinality

Analysis. The insertion algorithm only appends the

semantically secure encryptions to the server and index

server. It leaks no information to the two servers; for

details of the proof, readers may refer to [27].

During the search phase, the server only receives the

encryption of the record index 𝑒𝑖𝑑 and knows whether

the encrypted index belongs to the results. By observing

the value of 𝑒𝑖𝑑, the server is able to determine whether

there are records that satisfy multiple queries. This

information leakage can be eliminated by applying one

more encryption layer on 𝑒𝑖𝑑.
On the other hand, the newly proposed protocol does

not provide query privacy to the index server. The index

server is able to determine whether two queries are the

same by observing the xtoken sets received from the

client. However, this is the only information leakage of

the client’s private data to the index server. Because the

cardinality of private set intersection is only revealed to

the cloud server, the index server does not obtain any

information about the satisfied records.

The computational complexity and communication

cost of the two servers are linearly related to the number

of data records. The communication cost and

computational complexity for the client are

O(max(log|D|,n)), where |D| is the number of data

records and n is the dimension of the query Q.

VII. EXPERIMENTAL RESULTS

We conducted a number of experiments to verify the

practicality of the proposed solution. The experiments

were performed on a synthetic dataset. We created the

synthetic dataset by sampling 20,000 data points, each

having 4 integral attributes from the domain [0,999].
Our implementation of Path ORAM requires up to 2

minutes to construct the ORAM data structures of the

dataset of 10,000 data records. It also only takes only

0.02 s per access, including the time for decryption. This

execution time is considered as a criterion for the tradeoff

between the accuracy and the number of buckets, as

22 Multi-dimensional Range Query on Outsourced Database with Strong Privacy Guarantee

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 13-23

discussed in Section V. For full-domain multi-

dimensional range queries, we randomly generate 10,000

queries where each dimension is selected randomly from

a uniform distribution from the same domain with the

dataset. We took the average results of these queries and

reported them.

Consider the number of buckets M. The accuracy of

the intersection bucket approach is 0.1, 0.15, 0.3, 0.5 for

𝑀 = 128,256,512,1028 , respectively. On the other

hand, the numbers of buckets intersecting with the query

are 22, 33, 53, 107 for each configuration of 𝑀 . Thus,

when the parameter 𝑀 increases, we are able to reduce

the false-positive rate; however, we need to perform

additional ORAM queries with the index server.

To test dynamic multi-dimensional range queries, we

considered 5000 random queries. The set of queried

attributes contains 1–3 attributes. The two end points of

each query are uniformly generated from the attribute

domain.

Fig.4 shows the relation between the accuracy of the

proposed approach and the number of buckets in each

dimension (M). We conducted experiments with M in the

range of 5–20. When we used only 5 buckets per

dimension, the reported false positive rate was high, but

we were only required to perform 5 conjunctive queries

on average for each query. On the other hand, when we

increased M to 20, the accuracy increased to 70%.

However, we also needed to answer 60 conjunctive

queries (i.e., depicted Fig.5) to obtain the complete set of

requested records.

Fig.4. Accuracy for Different Numbers of Buckets (M)

Fig.5. Number of Conjunctive Queries for Different Numbers of
Buckets (M)

VIII. CONCLUSION

In this paper, we investigated different protocols to

securely evaluate multi-dimensional range queries over

encrypted data in cloud platforms. Our main idea is to

leverage the bucketization algorithm to label the

numerical range. The server stores the encrypted data,

while the index server stores the meta-data output by the

bucketization algorithm. When the multi-dimensional

range queries are fixed beforehand, we perform two

rounds of ORAM data access to answer the queries. The

data records are labeled before encryption and sent to the

server. On the other hand, to support more general

queries, we presented novel solutions that allow multi-

dimensional range queries to be answered, where the

query constraints are not required to be fixed. The idea is

to bucketize each attribute of a multi-dimensional data

record and perform set intersection to answer conjunctive

queries for multiple data labels. While the latter approach

is able to support more general requirements, it is costly

in terms of both computational complexity and bandwidth

communication. In the most general case, where the

dataset can be dynamically appended and the set of

queried attributes is not fixed, our approach leaks a small

amount of information to the index server.

REFERENCES

[1] Amazon Web Services (AWS) - Cloud Computing Services.

[2] Google App Engine.
[3] Microsoft Azure.
[4] D. Boneh and B. Waters, "Conjunctive, Subset, and Range

Queries on Encrypted Data," in Theory of Cryptography,

4th Theory of Cryptography Conference, TCC 2007,

Amsterdam, The Netherlands, February 21-24, 2007.
[5] D. Boneh, E.-J. Goh and K. Nissim, "Evaluating 2-DNF

Formulas on Ciphertexts," in Theory of Cryptography,

Second Theory of Cryptography Conference, TCC 2005,

Cambridge, MA, USA, February 10-12, 2005.
[6] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song and A.

Perrig, "Multi-Dimensional Range Query over Encrypted

Data," in 2007 IEEE Symposium on Security and Privacy

S&P 2007, Oakland, California, USA, 20-23 May 2007.
[7] Y. Lu, "Privacy-preserving Logarithmic-time Search on

Encrypted Data in Cloud," in 19th Annual Network and

Distributed System Security Symposium, NDSS 2012, San

Diego, California, USA, February 5-8, 2012.
[8] B. Wang, Y. Hou, M. Li, H. Wang and H. Li, "Maple:

scalable multi-dimensional range search over encrypted

cloud data with tree-based index," in 9th ACM Symposium

on Information, Computer and Communications Security,

ASIA CCS '14, Kyoto, Japan - June 03 - 06, 2014.
[9] H. Hacigümüs, B. R. Iyer, C. Li and S. Mehrotra,

"Executing SQL over encrypted data in the database-

service-provider model," in Proceedings of the 2002 ACM

SIGMOD International Conference on Management of

Data, Madison, Wisconsin, June 3-6, 2002.
[10] B. Hore, S. Mehrotra and G. Tsudik, "A Privacy-

Preserving Index for Range Queries," in Proceedings of

the Thirtieth International Conference on Very Large

Data Bases, Toronto, Canada, August 31 - September 3,

2004.
[11] B. Hore, S. Mehrotra, M. Canim and M. Kantarcioglu,

"Secure multidimensional range queries over outsourced

data," {VLDB} J., vol. 21, pp. 333-358, 2012.

 Multi-dimensional Range Query on Outsourced Database with Strong Privacy Guarantee 23

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 13-23

[12] R. Agrawal, J. Kiernan, R. Srikant and Y. Xu, "Order-

preserving encryption for numeric data," in Proceedings

of the ACM SIGMOD International Conference on

Management of Data, Paris, France, June 13-18, 2004,

2004.
[13] A. Boldyreva, N. Chenette, Y. Lee and A. OŃeill, "Order-

Preserving Symmetric Encryption," in Advances in

Cryptology - EUROCRYPT 2009, 28th Annual

International Conference on the Theory and Applications

of Cryptographic Techniques, Cologne, Germany, April

26-30, 2009.
[14] A. Boldyreva, N. Chenette and A. OŃeill, "Order-

Preserving Encryption Revisited: Improved Security

Analysis and Alternative Solutions," in Advances in

Cryptology - CRYPTO 2011 - 31st Annual Cryptology

Conference, CA, USA, August 14-18, 2011.
[15] C. Mavroforakis, N. Chenette, A. OŃeill, G. Kollios and

R. Canetti, "Modular Order-Preserving Encryption,

Revisited," in Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data,

Melbourne, Australia, May 31 - June 4, 2015.
[16] O. Goldreich, "Towards a Theory of Software Protection

and Simulation by Oblivious RAMs," in Proceedings of

the 19th Annual ACM Symposium on Theory of

Computing, New York, New York, USA, 1987.
[17] O. Goldreich, "Software Protection and Simulation on

Oblivious RAMs," J. ACM, vol. 43, no. 3, pp. 431-473,

1996.
[18] E. Stefanov, E. Shi and D. X. Song, "Towards Practical

Oblivious RAM," in 19th Annual Network and

Distributed System Security Symposium, NDSS 2012, San

Diego, California, USA, February 5-8, 2012.
[19] E. Shi, T.-H. H. Chan, E. Stefanov and M. Li, "Oblivious

RAM with O((logN)3) Worst-Case Cost," in Advances in

Cryptology - ASIACRYPT 2011 - 17th International

Conference on the Theory and Application of Cryptology

and Information Security, Seoul, South Korea, December

4-8, 2011.
[20] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren,

X. Yu and S. Devadas, "Path ORAM: an extremely simple

oblivious RAM protocol," in 2013 {ACM} {SIGSAC}

Conference on Computer and Communications Security,

CCS'13, Berlin, Germany, November 4-8, 2013.
[21] D. Boneh, C. Gentry, S. Halevi, F. Wang and D. J. Wu,

"Private Database Queries Using Somewhat

Homomorphic Encryption," in Applied Cryptography and

Network Security - 11th International Conference, ACNS

2013, Canada, June 25-28, 2013.
[22] E. D. Cristofaro, Y. Lu and G. Tsudik, "Efficient

Techniques for Privacy-Preserving Sharing of Sensitive

Information," in Trust and Trustworthy Computing - 4th

International Conference, TRUST 2011, Pittsburgh, PA,

USA, June 22-24, 2011.
[23] M. S. Islam, M. Kuzu and M. Kantarcioglu, "Access

Pattern disclosure on Searchable Encryption: Ramification,

Attack and Mitigation," in 19th Annual Network and

Distributed System Security Symposium, NDSS 2012, San

Diego, California, USA, February 5-8, 2012.
[24] LeFevre, Kristen, D. J. DeWitt and R. Ramakrishnan,

"Mondrian Multidimensional K-Anonymity," in

Proceedings of the 22nd International Conference on

Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta,

GA, USA, 2016.
[25] R. Zhang, J. Shi and Y. Zhang, "Secure multidimensional

range queries in sensor networks," in Proceedings of the

10th ACM Interational Symposium on Mobile Ad Hoc

Networking and Computing, MobiHoc 2009, New Orleans,

LA, USA, May 18-21, 2009.
[26] L. Kissner and D. X. Song, "Privacy-Preserving Set

Operations," in Advances in Cryptology - CRYPTO 2005:

25th Annual International Cryptology Conference, Santa

Barbara, California, USA, August 14-18, 2005.
[27] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu

and M. Steiner, "Highly-Scalable Searchable Symmetric

Encryption with Support for Boolean Queries," in

Advances in Cryptology - CRYPTO 2013 - 33rd Annual

Cryptology Conference, Santa Barbara, CA, USA, August

18-22, 2013.
[28] E. D. Cristofaro, P. Gasti and G. Tsudik, "Fast and Private

Computation of Cardinality of Set Intersection and

Union," in Cryptology and Network Security, 11th

International Conference, CANS 2012, Darmstadt,

Germany, December 12-14, 2012.

Authors’ Profiles

Hoang Giang Do received the B.Eng.

degree in computer science and

engineering from Nanyang Technological

University, Singapore, in 2013, where he

is currently working toward the Ph.D.

degree. His current research interests

include applied cryptography, privacy

preserving query processing and

applications of cryptocurrency.

Dr. Wee Keong Ng is Associate Professor

in the School of Computer Science &

Engineering, Nanyang Technological

University, Singapore. He received his

Ph.D. from the University of Michigan at

Ann Arbor, USA. His research areas are

secure data analytics, secure data storage,

data monetization, and data security, and

has published more than 200 technical

papers in these areas. Dr. Ng has served in program/organizing

committees of international conferences. In recent years, he is

General Co-chair of the International Conference on

Information and Communications Security 2016; Jury Member

of the Second Dutch Cyber Security Research Award in March

2016; Senior PC Member of the 20th, 19th, 18th, 17th Pacific-

Asia Conference on Knowledge Discovery and Data

Mining. Dr. Ng has advised and graduated more than 20 Ph.D.

students and 20 Master students.

How to cite this paper: Do Hoang Giang, Ng Wee Keong,"Multi-dimensional Range Query on Outsourced Database

with Strong Privacy Guarantee", International Journal of Computer Network and Information Security(IJCNIS), Vol.9,

No.10, pp.13-23, 2017.DOI: 10.5815/ijcnis.2017.10.02

