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Abstract—Cloud services have provided important 

solutions for drastically reducing the cost of data 

management and maintenance. However, data 

outsourcing not only deprives clients of direct control 

over their data but also allows the server to gain direct 

access to the client data. Data encryption has been 

recognized as the solution to the privacy issue, but it also 

creates new challenges for both industry and academia. A 

naive question is whether the client still has the capability 

to query and obtain useful information when the data are 

encrypted and stored remotely. This paper investigates a 

solution to one of the most important types of query 

operations over encrypted data, namely multi-

dimensional range queries. Our solution combines 

cryptographic techniques with the bucketization approach. 

We leverage a three-party architecture and secure 

multiparty computation to design and analyze the security 

of the protocols. Further, we discuss solutions for both 

static and dynamic datasets where new data records can 

be appended. First, we present the solutions for the case 

when the set of attributes in the query is pre-defined. 

Subsequently, we discuss the generalization. 

 
Index Terms—Secure Computation, Multi-dimensional 

Range Query, Cryptography. 

 

I.  INTRODUCTION 

The cloud computing paradigm has been recognized as 

an important solution for drastically reducing data storage 

and processing costs. Recent years have witnessed an 

increasing trend toward outsourcing data storage to cloud 

computing platforms such as Amazon EC2 [1], Google 

App Engine [2], and Microsoft Azure [3]. Companies and 

service providers in various fields, such as law 

enforcement, finance, and healthcare, are exploring 

solutions for outsourcing data. Outsourcing data enables 

clients to reduce not only infrastructure costs but also 

human costs. 

Despite its advantages, data outsourcing has raised 

critical concerns over data privacy. It not only deprives 

clients of direct control over their data but also allows the 

server to gain direct access to the client data. Thus, 

information leakage can occur on the server side in 

various ways. The first threat is from corrupt employees 

who are able to access and reveal sensitive client 

information. Even if a cloud computing platform 

implements sufficiently robust policies against such 

privacy violations, it may be vulnerable to external 

malicious attacks. A successful cyberattack may lead to 

full exposure of client data. This threat is becoming 

increasingly apparent owing to the popularity of 

cyberattacks as services. Such threats are realistic, and a 

number of data breaches have been reported recently. 

Therefore, outsourcing plaintext datasets is strongly 

discouraged. 

Data encryption is considered as the solution to the 

issue of data confidentiality. However, the context of data 

outsourcing introduces new challenges to managing 

encrypted data. The most critical issue is to preserve data 

usability in the encrypted dataset. This challenge has 

attracted considerable attention from both industry and 

academia in recent years. Searchable encryption 

techniques have been proposed to enable users to 

efficiently use their remote encrypted data without 

retrieving the entire data or exposing sensitive data to the 

data server. However, most existing methods focus on the 

problem of keyword matching and are inherently 

unsuitable for handling certain types of complex queries, 

such as multi-dimensional range queries, where the 

plaintexts are multi-numerical attributes. 

In this paper, we study the problem of supporting an 

important class of complex search operations, namely 

multi-dimensional range queries. Multi-dimensional 

range queries are required for a wide range of practical 

applications, including network traffic log analysis, long-

term health monitoring, and banking audits. There are 

essentially three broad categories of solutions: special 

data structure for range query evaluation, bucketization-

based scheme, and order-preserving encryption-based 

techniques. However, these techniques fail to provide 

rigorous privacy protection owing to their statistical 

patterns, access patterns, or query leakage. Moreover, 
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nearly all existing solutions support only static data (i.e., 

data that have been uploaded to the server only once) and 

previously known queries. To address the above-

mentioned issues, this paper proposes a three-party 

architecture and investigates different protocols that 

support multi-dimensional range queries over encrypted 

remote data while rigorously guaranteeing privacy. We 

examine both static and dynamic cases in which data 

records can be appended to the existing data set. In 

addition, solutions for both fixed and unknown sets of 

queried attributes are studied.  

The remainder of this paper is organized as follows. 

Section II reviews related studies on secure multi-

dimensional range queries. Section III formulates the 

problem statement. Section IV describes our system 

model as well as the requirements for the designed 

protocols. Section V discusses the solution for the full-

domain query in which the set of queried attributes is 

fixed and unchanged for all queries. This type of query is 

similar to most existing techniques for multi-dimensional 

range queries. Section VI presents solutions for a 

generalized version where the set of queried attributes 

can dynamically vary for different queries. The naive 

approach to this problem is to apply multiple single range 

queries. However, this approach leads to single-

dimensional privacy leakage. In the proposed protocol, 

we leverage the concept of secure set intersection to 

resolve this issue. Section VII discusses practical 

considerations for the system implementation. Finally, 

Section VIII concludes the paper. 

 

II.  RELATED WORKS 

This section reviews existing approaches toward to 

problem of secure multi-dimensional range query as well 

as oblivious RAM – a useful cryptographic technique we 

utilize to design the solutions. 

A.  Secure Range Query 

There are essentially three general approaches for 

tackling multi-dimensional range queries on encrypted 

data: special data structure for range query evaluation, 

bucketization-based scheme, and order-preserving 

encryption-based techniques. 

Special data structure. Boneh et al. [4] proposed a 

general public-key approach to support comparison, 

subset, and range queries on encrypted data by using 

hidden vector encryption, whose search complexity is 

O(mT), where m and T are the number of attributes and 

number of discrete values for each attribute, respectively. 

Moreover, the ciphertext size is relatively large owing to 

the use of composite-order bilinear map groups [5], 

which make it infeasible in many applications.  

Shi et al. [6] proposed a scheme that supports a 

conjunction of range queries over multiple attributes (i.e., 

multi-dimensional range queries). The idea is to encrypt 

each data record as a point in multi-dimensional space. 

The query processing is equivalent to testing whether a 

point falls inside a hyper-rectangle for every data record. 

The authors used a segment tree data structure to 

represent the ranges for each dimension. Anonymous 

identity-based encryption is applied at each node of the 

tree with a different key. For a certain query, the client 

needs to reveal the keys corresponding to each range on 

each dimension. Hence, all the attributes on the range will 

be revealed after successful decryption at the server. 

Subsequently, different tree-based approaches have been 

proposed to tackle the problem of secure multi-

dimensional range queries. Lu [7] proposed a range 

search scheme on encrypted data by leveraging predicate 

encryption and B+ trees. He extended the original scheme 

to support multi-dimensional range queries by replacing 

B+ trees with kd-trees in the implementation. Wang et al. 

[8] presented a scheme for evaluating multi-dimensional 

range queries by using asymmetric scalar-product 

preserving encryption and R-trees. However, these two 

methods lead to single-dimensional privacy leakage. 

Bucketization-based scheme.  Bucketization-based 

data representation for query processing in an untrusted 

environment was originally leveraged by Hacigumus et al. 

[9]. Their bucketization simply involves a data 

partitioning step based on equi-depth or equi-width 

partitioning to support single-dimensional range queries. 

The queries are mapped to a set of buckets that contain 

any value satisfying the range of the query. The original 

queries are translated into bucket-level queries, which 

request the encrypted buckets containing the desired 

values. Several studies have attempted to reduce bucket 

costs (i.e., false positives) while preserving the 

anonymity of the data set [10]. Hore et al. [11] extended 

the bucketization-based method to support secure multi-

dimensional range queries. Their method tries to cluster 

d-dimensional space into various hyper-rectangles, and 

bucket indexing is performed on the clustered hyper-

rectangles. 

Order-preserving encryption based techniques. An 

order-preserving encryption scheme is a deterministic 

cryptosystem whose encryption algorithm produces 

ciphertexts that preserve the numerical ordering of the 

plaintexts. Roughly speaking, for any two ciphertexts 𝑐1 

and 𝑐2 corresponding to plaintexts 𝑝1 and 𝑝2, respectively, 

if 𝑝1 ≤ 𝑝2 , then it is guaranteed that 𝑐1 ≤ 𝑐2 . Order-

preserving encryption was first proposed by Agrawal et al. 

[12] to support range queries on encrypted data. When 

the dataset is encrypted by an order-preserving encryption 

scheme, the result of a single-dimensional range query is 

simply determined by the encryptions of the two end-

points. The concept of order-preserving encryption was 

efficiently revised with formal security analysis by 

Boldyreva et al. [13] [14] and Mavroforakis et al. [15]. 

Although these techniques are highly efficient, they 

provide weak privacy. As such, traditional efficient 

indexes can be built directly on encrypted data and 

queried in the same manner as plaintexts. Nevertheless, 

order-preserving encryption is deterministic and hence 

suffers from inherent distribution leakage. In addition, it 

inevitably leaks the ordering of the data. 

B.  Oblivious RAM 

Oblivious RAM (ORAM) is a cryptographic primitive 



 Multi-dimensional Range Query on Outsourced Database with Strong Privacy Guarantee 15 

Copyright © 2017 MECS                                              I.J. Computer Network and Information Security, 2017, 10, 13-23 

that conceals memory access patterns. The idea of 

ORAM is to continuously reshuffle the memory and 

translate the address of each memory access to a set of 

randomized memory locations.  

ORAM was first investigated by Goldreich [16] using 

the “square-root” solution. The objective was to address 

the problem of software protection, i.e., to prevent 

unauthorized copy. Goldreich’s solution partitions the 

server memory into two regions: a main region of O(N) 

blocks and a shelter of (𝑂√𝑁 )  blocks. Each access 

involves linear scan in the shelter region and one access 

to the main region. After (𝑂√𝑁) operations, the data 

structure is reshuffled. Goldreich and Ostrosvky [17] 

presented the well-known “hierarchical” solution to 

achieve polylogarithmic memory bandwidth overhead. 

The key idea of this solution, in contrast to Goldreich’s 

above-mentioned solution, is to organize the server 

memory into a hierarchy of buffers whose sizes grow at a 

geometric rate. 

A recent breakthrough was made by Stefanov et al. 

[18], who mapped each data block to a random path of a 

binary tree. The information for the path of each data 

block is stored in a position map. To access a block, the 

client first looks up the position map and reads all the 

buckets on that path. Each data access requires O(log2N) 

memory bandwidth overhead. The solution requires O(N) 

local data storage for the path of each data block. Shi et al. 

[19] proposed ORAM recursion to reduce the client 

storage to 𝑂(1). The key idea is to store the position map 

on the server side as a second ORAM. This may be 

performed recursively until the client storage is O(1). 

Clearly, the access operation now includes looking up all 

the position map ORAMs in addition to the main data 

ORAM, which increases the bandwidth overhead to 

𝑂(𝑙𝑜𝑔3 𝑁). Stefanov et al. [20] proposed an extremely 

simple and efficient ORAM protocol called Path-ORAM. 

Path-ORAM is the first technique to achieve 𝑂(𝑙𝑜𝑔 𝑁) 

memory bandwidth overhead under small client storage. 

In this paper, we refer to the Path-ORAM design when 

the ORAM technique is used. 

 

III.  PROBLEM FORMULATION 

We consider a scenario involving a data owner Alice. 

Alice possesses a multi-dimensional dataset D of n 

records. Each data record has m numerical attributes. Let 

𝑎𝑖 denote the identifier of the i-th attribute and 𝑥j
𝑖 denote 

the value of the j-th attribute of the i-th record.  

Alice wishes to outsource her dataset (i.e., the set of 

data records) to a cloud server to save local storage costs. 

A typical example is the data of body measurement 

recorded by sensors or mobile devices. Because mobile 

devices are normally limited in terms of storage 

capability, outsourcing such information to cloud services 

offers easy and low-cost solutions for long-term 

continuous health monitoring. On the other hand, such 

data include confidential personal information; hence, 

they should be stored in an encrypted form. At the same 

time, to facilitate health monitoring and treatment, the 

data owner needs to use the outsourced data efficiently.  

To query the outsourced dataset, Alice performs a 

multi-dimensional range query. A multi-dimensional 

range query is a process of retrieval of data records that 

satisfy query values from the relative attribute domains: 

 

Select * from D where 𝑎𝑥𝑖
∈  [𝑠𝑥𝑖

 , 𝑡𝑥𝑖
], 

 𝑥𝑖 ∈  𝑆𝑞 ∈  {1, ⋯ , 𝑚}. 

 

Let [a,b] represent an interval of integers from a to b, 

inclusively. The set of attribute identifiers 𝑆𝑞  =  {𝑥𝑖} is 

called the set of queried attributes. A multi-dimensional 

range query requests data records such as each attribute 

𝑣𝑗  in the set of queried attributes. Note that 𝑆𝑞  takes 

values in the interval [𝑠𝑥𝑖
, 𝑡𝑥𝑖

]. Roughly speaking, each 

data record can be considered as a point in m-dimensional 

space, and the multi-dimensional range query is defined 

by a hyper-rectangle. All the points inside this hyper-

rectangle are considered as the results of the query. 

When the set of queried attributes covers all m 

dimensions of the database D: 𝑆𝑞  =  {𝑥𝑖}  =  {1, ⋯ , 𝑚}, 

we say that the query is a full-domain query. Section V 

discusses the solution for this scenario. Section IV 

discusses viable solutions where the query's dimensions 

change dynamically from one query to another, with no 

fixed set of the concerned attribute domain for the query. 

Although studies have been conducted to address such a 

multi-dimensional query, they require the data owner to 

share his/her private key with a semi-trusted third party, 

which is not practical owing to privacy threats. In 

Sections IV and V, we will discuss the solutions in the 

settings of static and dynamic data storage. In the static 

database settings, the data owner uploads the entire data 

only once and is later able to query for the necessary 

records. On the other hand, in the dynamic database 

settings, new data records can be appended to the 

previously uploaded data, and expired data can be 

transferred to archive data storage and removed from the 

query results. We assume that the three parties loosely 

synchronize the time of archiving the data. 

 

IV.  SYSTEM MODELS 

A.  System Model 

We adopt a three-party architecture described by 

Boneh et al. [21] and Cristofaro et al. [22]. The system 

consists of three parties: the data server, the client, and 

the index server (see Fig.1). 

 

1. Client: possesses a numerical multi-dimensional 

dataset and wishes to outsource his/her dataset in 

encrypted form to the data server. At some point, 

he/she should have the capability to securely construct 

a multi-dimensional range query to obtain the 

requested data. 

2. Data server: provides storage services to the client. 

The cloud server is trusted to provide reliable services 

but it may also be curious about the content of the 
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data records stored in its database or the content of the 

queries submitted by the data owner.  

3. Index server: stores meta-data to support answering of 

the query. As with the data server, it is trusted to store 

the meta-data as well as correctly process the query 

initiated by the data owner. In addition, it may be 

curious about the client’s data as well as the query 

content. 

 

 

Fig.1. System Architecture 

Workflow. Based on the notation in Fig.1, the workflow 

of our system can be described as follows. The data are 

first preprocessed by the data preparation module on the 

client side. The dataset and the meta-data (i.e., output of 

the preprocess phase) are encrypted by the 

encryption/decryption module and sent to the data server 

and the index server. The entire dataset should be 

encrypted by a symmetric encryption scheme. It involves 

low overhead for data storage and bandwidth, as well as 

efficient encryption/decryption operations. On the other 

hand, the meta-data should be encrypted by a specific 

public key cryptosystem and embedded in a special data 

structure to enable secure query processing.  

To construct a multi-dimensional range query, the 

client constructs the query content using the query 

processor module, which has an interface with the 

encryption/decryption module. The encrypted query 

content is sent to the index server. The index server will 

output the corresponding indices of the satisfied data 

records so that the client is able to efficiently retrieve 

them from the data server. Further, the query processor 

module may be invoked to filter the results returned from 

the data server. 

B.  Security Assumptions and Requirements 

In this paper, we assume that the user, cloud server, 

and index server are semi-honest. The servers will 

correctly follow the protocol specification; however, at 

the same time, they are also curious about the user’s 

plaintext data. In addition, we assume that there is no 

collusion between two participating parties to access the 

user’s confidential data. We emphasize that this 

assumption is realistic under the cloud environment. At 

present, with the development of cloud services, it is 

difficult to consider the possibility of collusion by well-

established cloud service companies, which would 

damage their reputations and consequently have a 

negative impact on their revenues. In this work, we 

attempt to design a secure multi-dimensional range query 

while preserving the privacy of the database content and 

query values. Ideally, a secure protocol should only 

reveal what is leaked by the system parameters known to 

all parties and by the intended functional output. More 

specifically, we consider the following information 

leakage:  

 

1. Data Privacy. A passive attacker who gets a snapshot 

of the encrypted database and encrypted index data 

should not be able to obtain any information about the 

user’s private data. This implies that these two types 

of data should be encrypted by a probabilistic 

cryptosystem.   

2. Query Privacy. The cloud and index servers should 

not be able to determine whether two queries are the 

same. 

3. Access Pattern. Access to satisfied data records 

should not be revealed to the cloud server. Islam et al. 

[23] showed that data access pattern leakage could 

lead to the disclosure of a significant amount of 

sensitive information.  

4. One-dimensional Privacy. Informally, single-

dimensional privacy means that given a search token 

of a multi-dimensional range query, a computationally 

bounded adversary is not able to independently obtain 

the exact search results for any single-dimensional 

query.  

 

While allowing the user to download the entire 

database and performing the query locally will achieve all 

the above-mentioned privacy requirements, this solution 

is infeasible. The proposed solution should be efficient in 

terms of time complexity, communication, and round 

complexity. 

 

V.  FULL-DOMAIN MULTI-DIMENSIONAL RANGE QUERY 

First, we describe the construction of full-domain 

multi-dimensional range queries. The dataset contains 

multiple data records that are points {𝑥𝑗}
𝑗=1

𝑛
in a m-

dimensional lattices. A full-domain query is defined by a 

hyper-rectangle in the m-dimensional space: 

 

𝐵 =  {[𝑠1, 𝑡1], [𝑠2, 𝑡2], … , [𝑠𝑚 , 𝑡𝑚]} 

 

where [𝑠𝑖  , 𝑡𝑖]  represents a single-dimensional range. A 

data record {𝑥𝑗}
𝑗=1

𝑛
 satisfies a query represented by the 

hyper-rectangle B if and only if 𝑥𝑗 ∈   [𝑠𝑗  , 𝑡𝑗] for ∀ 𝑗: 1 ≤

 𝑗 ≤  𝑚. 

As mentioned above, each record of the dataset is 

encrypted individually by a symmetric encryption scheme 

such as AES. This allows for efficient retrieval of specific 

records from data server. Hence, this work focuses on 

designing the data structure and algorithms to find the 

indices of data records that satisfy the query criteria. 

Specifically, we present a method for constructing the 

meta-data, the data structure to store the metadata at the 

index server, and the algorithms to process the query. Our 

solution for the full-domain multi-dimensional range 
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query problem is inspired by the multi-dimensional 

bucketization approach. First, we partition the data space 

into M disjoint buckets. The number of buckets M is 

smaller than the number of data points n. Each data 

record belongs to exactly one bucket. The query 

processing translates into the problem of retrieving the 

bucket content. Hore et al. [11] claimed that 

nondeterministic encryption of the bucket labels does not 

raise the level of security, because simply encrypting 

bucket labels cannot protect the query privacy or access 

pattern from an adversary. In this paper, we leverage the 

ORAM technique to hide the access pattern and thus 

provide a stronger security guarantee. 

A.  Solution Overview 

The dataset is first pre-processed by the data 

preprocessing module. It is partitioned into non-

overlapping buckets, and the bucket label is set as the tag 

for each data record in the bucket. The data owner 

encrypts each original data record (i.e., a d-dimensional 

data point) and uploads it to the data server. Furthermore, 

an encrypted inverted index table is stored at the index 

server in the following form: 

 

⟨ 𝐵𝑢𝑐𝑘𝑒𝑡 𝐿𝑎𝑏𝑒𝑙, 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑠𝑒𝑡 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ⟩ 
 

The idea of the solution is to leverage ORAM data 

access for each intersecting bucket without leaking any 

information about the data or the query content. The 

satisfied records are determined by buckets intersecting 

the query. Many existing studies have indicated that 

ORAM is impractical owing to its high computational 

cost. However, this claim is not necessarily true, 

especially because nearly all existing studies focus only 

on designing various methods to retrieve the indices of 

the satisfied records while leaving the actual data 

retrieval process to a black box. The black box is 

assumed to be a standard ORAM protocol for data 

records with known indices. It contradicts the above-

mentioned concerns with regard to practical application. 

Recent results on Path-ORAM have shown that it is a 

practical tool for data access. When the record indices are 

known to the client, a constant number of communication 

rounds of ORAM data access should be required to 

retrieve the data. 

 

 

Fig.2. Secure Multi-dimensional Range Query from ORAM 

The two main challenges faced by this approach are 

how to partition the space into buckets and how to embed 

the record indices into the ORAM data structure stored at 

the index server. 

Bucketization algorithms. We retrieve a bucket if and 

only if it overlaps the query rectangle. We partition the 

space into M non-overlapping hyper-rectangles. Each 

rectangle contains approximately the same number of 

data points. The parameter M is determined by the 

tradeoff between the cost of false positives and the cost of 

communication between the client and the index server. 

When the number of buckets increases, each bucket 

contains fewer points, and the false positive rate 

decreases. However, the number of buckets intersecting 

with the query increases, which means that the number of 

ORAM accesses increases. On the other hand, when the 

number of buckets decreases to one, fewer ORAM 

accesses are required for each query. Further, when the 

false positive rate increases, additional bandwidth 

overhead is incurred to retrieve the actual data records 

from the server. With a certain parameter M, we use the 

Mondrian multi-dimensional partition algorithm 

presented by LeFerve et al. [24] (see Algorithm 1). In this 

protocol, we assume that 𝑀 = 2𝑘 for simplicity. 

 

 
 

At each call, the algorithm partitions the space 

according to the value of attribute attr, which is chosen at 

step 1. The data space is partitioned into two parts. Each 

part has approximately the same number of elements. The 

complexity of the preprocessing phase is 𝑂(𝑙𝑜𝑔 𝑛). 
ORAM storage. Each data label is associated with a list 

of record indices. Our solution stores these indices in the 

ORAM data structure so that we can secure access to the 

content of a particular bucket. A naive solution is to use a 

sufficiently large ORAM data block to store the entire set 

of encrypted record indices. The user can retrieve the 

entire set of indices for a block label at once. However, 

because the size of the index set of each bucket label may 

vary, it is wasteful to use a large-sized data block to store 

a small piece of information. Moreover, it is 

computationally expensive to read from and write to a 

large-sized data block. Our approach is to represent the 

index sets in a compact form so that the data ORAM 

block can be determined beforehand with reasonable size. 

B.  Static Dataset 

First, we consider the simplest scenario where the 

dataset is intact after uploading to the server. Archiving 

data is an example of this scenario. 

The dataset is preprocessed and encrypted once before 

being uploaded to the data server. In the preprocessing 
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stage, the bucketization algorithm (Algorithm 1) is 

applied to partition the space into buckets. Each record 

(i.e., a data point) belongs to exactly one bucket. Data are 

rearranged so that the identifiers of data records in the 

same bucket label form a consecutive numerical counter. 

Hence, the necessary information to reconstruct an index 

set is the starting counter and ending counter. The meta-

data stored at the index server are ORAM data structures 

such that each block has an encrypted bucket label as the 

key for the encryption of the starting counter and ending 

counter as the values. Hence, to query for a data bucket, 

the data owner performs an ORAM data access with the 

index server; the access key is the bucket label. Then, the 

client obtains the range of data identifiers. The last step is 

to perform one more round of data access for each data 

identifier with the data server. 

Analysis. Because the data and their indices are 

encrypted on the client side by a standard secure 

cryptosystem, the data server and index server obtain no 

information from the view of the stored data. Furthermore, 

the data owner accesses the index data at the index server 

and the data content at the data server by means of 

ORAM. The two servers are not able to obtain additional 

information of the query content or the access pattern. 

Because the data are obtained by the bucket label, one-

dimensional privacy is satisfied for the query. 

The bandwidth overhead of the solution is O(log n) 

owing to the overhead of Path ORAM. The client is also 

required to maintain a local storage of O(log n). Finally, 

the complexity of each data access incurred at the server 

is O(log n). 

We also note that in the case of the static dataset, 

private information retrieval (PIR) can be used as an 

alternative to ORAM. In the PIR approach, for reading 

data, the computational complexity for the data owner is 

linearly related to the size of the retrieved data; in terms 

of the server size, the computational cost is linearly 

related to the size of the entire data set. 

C.  Dynamic Dataset 

We consider the case where the update operation is 

allowed. More specifically, new data records may be 

appended to the existing dataset. Log file is an example 

of this scenario.  

Because the new data records can be in any data bucket, 

we cannot use the previous approach. In the above-

mentioned approach, the indices of data records in the 

same bucket label are required to form consecutive 

integers. Because the new records are not necessarily in 

the bucket containing the previous records, this 

requirement does not hold. We adopt another approach to 

index the records. We make use of the collision-

resistance hash function. The index of a new record is 

determined by the hash of the previous record index that 

is in the same bucket. More specifically, we consider a 

collision-resistant hash function ℎ: {0,1}𝑛 ↦  {0,1}𝑚  and 

define a sequence generated by h as follows:  

 

𝑎0  =  𝑙𝑎𝑏𝑒𝑙 − 𝑖𝑑, 𝑎𝑖  =  ℎ(𝑎𝑖−1). 
 

To obtain the index set of the bucket label for the i-th 

bucket, we need to know the values of 𝑎0
𝑖  and 𝑎𝑛

𝑖 , where 

𝑎𝑛
𝑖  is the last element in the sequence generated for data 

records belonging to the i-th bucket. In this case, when 

the data are appended, the data owner is required to 

modify the corresponding ORAM data block to update 

the last element of the current index set. On the other 

hand, to obtain the index sets of buckets intersecting the 

query, the data owner retrieves the corresponding block 

to get 𝐸𝑛𝑐(𝑎0
𝑖 )  and 𝐸𝑛𝑐(𝑎𝑛

𝑖 ) . Further, the data owner 

decrypts the encrypted content and iteratively generates 

the sequence starting from the first element until the last 

element using the formula 𝑎𝑖  =  ℎ(𝑎𝑖−1).  A collision-

resistant hash function is required for this construction so 

that different data records are not mapped to the same 

index. 

To insert a new record into the data set, the data owner 

first determines the bucket label of the new data record. 

Next, he/she performs a read and an update operation 

with the index server by means of ORAM. The new 

content of the ORAM block now contains the encrypted 

next sequential number of the last record index in this 

bucket. 

Analysis. We use a collision-resistant hash function to 

index the records because each data record belongs to 

exactly on data bucket. Moreover, it is difficult to find a 

collision; each data record has a unique identifier 

determined by the hash functions.  

The security of the dynamic case construction is 

analyzed in the same was as that of the static case. In both 

cases, the user accesses the indices and the real data 

records using ORAM. Hence, the only information 

leakage to the cloud server is the result size, which is the 

lower bound of the number of satisfied records. The 

reason is that the user is required to make at least the 

minimum number of satisfied record ORAM data 

accesses to the cloud server data.  

The complexity and bandwidth overhead of the 

solution remain polylogarithmic owing to the use of Path 

ORAM. The update operation as an ORAM write 

operation also requires O(log n) memory bandwidth and 

computational complexity. 

 

VI.  DYNAMIC MULTI-DIMENSIONAL RANGE QUERY 

The aforementioned approach can be generalized to 

address the scenario in which the set of queried attributes 

is fixed. Roughly speaking, we should be able to 

efficiently represent the query space by a small number of 

fixed hyper-rectangles. In this section, we examine a 

more general case where the set of queried attributes 

varies for different queries. In other words, the number of 

dimensions in each query can vary from one to $m$ - the 

number attributes in each data record. Clearly, we can 

treat the query as a full-domain query by considering 

each missing dimension as the full range. However, this 

approach normally leads to an excessive number of 

communication rounds with the index server. Instead of 

using the multi-dimensional bucketization technique, we 

apply the single-dimensional bucketization approach as a 
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solution to this generalized problem. 

A general multi-dimensional range query is defined by 

an unordered set:  

 

𝐵 =  {[𝑠𝑖1
, 𝑡𝑖1

], [𝑠𝑖2
, 𝑡𝑖2

], … , [𝑠𝑖𝑘
, 𝑡𝑖𝑘

]} 

 

1 ≤  𝑖𝑗 ≤  𝑚 , and [𝑠𝑖𝑗
 , 𝑡𝑖𝑗

]  represents a single-

dimensional range. The size of the set of queried 

attributes is 𝑘, 1 ≤  𝑘 ≤  𝑚. 

A.  Solution Overview 

Our solution for the generalized problem employs 

private set intersection techniques. First, we partition 

each single-dimensional domain into buckets. A data 

record of m attributes falls into m buckets. For each 

single-dimensional range in the query, the requested data 

records must belong to the buckets intersecting with the 

range. A naive solution is to perform multiple queries on 

each queried dimension. The results are the intersection 

of the results. This approach has been used by Zhang et al. 

[25] to design multi-dimensional range queries in sensor 

environments. However, the naive approach fails to 

provide single-dimensional privacy because the server 

gains the results for each queried dimension. In this paper, 

instead of performing the intersection operation on the 

client side, we conduct it on the server side in a privacy 

preserving manner. 

The query is firstly decomposed to each corresponding 

dimension. For each queried dimension, the intersecting 

buckets are enumerated. The query now can be translated 

into the one or multiple conjunctive queries. The 

variables in the conjunctive query are intersection buckets 

in each dimension. Finally, secure set intersection 

algorithm should be applied to answer the conjunctive 

query. 

To illustrate our idea, we consider the following 

example. Alice has a dataset where each data record is a 

three-dimensional point (𝑥, 𝑦, 𝑧) . The attributes receive 

integer values in the domain [1,10]. Alice decomposes 

the data space with eight buckets: 
[0,5]𝑥, [6,10]𝑥 , [0,5]𝑦 , [6,10]𝑦 , [0,5]𝑧 , [6,10]𝑧 . Each 

record is in exactly three buckets. Alice wishes to 

perform a simple multi-dimensional range query: 

3 ≤  𝑥 ≤  6, 2 ≤  𝑦 ≤  4. The query can be transformed 

into two conjunctive queries: [0,5]𝑥  ˄ [0,5]𝑦  and 

[6,10]𝑥 ˄[0,5]𝑦 . Query [0,5]𝑥 ˄ [0,5]𝑦  (similar for the 

other) is translated as retrieving all the data records 

belonging to both [0,5]𝑥 and [0,5]𝑦. The answer for it is 

the intersection between two buckets. 

Bucketization algorithms. We apply a simple equi-

depth bucketization approach to partition each dimension 

for the data space. The number of buckets M in each 

dimension is determined by the tradeoff between the 

number of conjunctive queries and the false-positive rate. 

If we partition the dimension into many small buckets, 

we are able to reduce the false positive rate of the results. 

On the other hand, if M in each dimension is small, we 

are required to perform fewer conjunctive queries but 

additional work is required for the post-processing. 

We now describe the method for securely answering 

each transformed conjunctive query in two different 

settings. 

B.  Static Dataset 

For the case of a static dataset, the entire dataset is 

processed and uploaded only once to the servers. We 

leverage the Kissner-Song private set intersection [26] to 

perform conjunctive queries. 

The idea underlying the Kissner-Song protocol is to fix 

a large field F and represent a set 𝑆 ⊂  𝐹 by a polynomial 

𝐴𝑆 that has zeros in all the elements of S, i.e., 𝐴𝑆 (𝑥)  =
 ∏ (𝑥 − 𝑠)𝑠∈ 𝑆 . To compute the intersection of many sets 

𝑆𝑖 , we construct a polynomial 𝐵  whose zeros are the 

intersection of these sets. Clearly, if a point 𝑠 ∈  𝐹  is 

contained in all the sets 𝑆𝑖 , then 𝐴𝑆𝑖
(𝑠) =  0 ∀ 𝑖,  and 

therefore, if we compute B as a linear combination of 

𝐴𝑆𝑖
’s, then 𝐵(𝑠)  =  0. On the other hand, if 𝐴𝑆𝑖

(𝑠) ≠  0 

for some i and B is a random linear combination of 𝐴𝑆𝑖
’s, 

then 𝐵(𝑠) ≠  0 with high probability. Roughly speaking, 

instead of storing the record indices for each bucket, we 

store the coefficients of the polynomial that represents the 

index set. However, the coefficients should be encrypted 

so that the index server is not able to trace the indices. 

In this paper, we use the BGN encryption technique [5] 

to encrypt the polynomial coefficients. The BGN 

cryptosystem, proposed by Boneh, Goh, and Nissim, 

allows both additions and multiplications with a constant 

size ciphertext. However, there is a catch: while the 

addition can be performed multiple times, only one 

instance of multiplication is permitted. Nevertheless, this 

protocol is considered to be much more practical than 

fully homomorphic encryption schemes. The 

homomorphism allows us to compute a linear 

combination of the polynomial in encrypted form so that 

set intersection operations can be securely performed on 

the index server. 

Let 𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐  denote three BGN cryptosystem 

algorithms: key generation, encryption, and decryption. 

We have the following properties: 

 

 𝐺𝑒𝑛: generates a key pair (𝑝𝑘, 𝑠𝑘) where 𝑝𝑘 and 𝑠𝑘 

are public and private keys, respectively. 

 𝐷𝑒𝑐(𝐸𝑛𝑐(𝑚))  =  𝑚 for 𝑚 in the message space. 

 𝐴𝑑𝑑(𝑝𝑘, 𝐸𝑛𝑐(𝑥), 𝐸𝑛𝑐(𝑦))  =  𝐸𝑛𝑐(𝑥 + 𝑦) can be 

performed multiple times on two encrypted 

values 𝐸𝑛𝑐(𝑥) and 𝐸𝑛𝑐(𝑦). 

 𝑀𝑢𝑙(𝑝𝑘, 𝐸𝑛𝑐(𝑥), 𝐸𝑛𝑐(𝑦))  =  𝐸𝑛𝑐(𝑥 ⋅  𝑦)  can be 

done only once. 

 

Consider a bucket consisting of ℓ  data records with 

indices 𝑖1, ⋯ , 𝑖ℓ. It can be represented by a polynomial of 

the form 𝐴(𝑥) =  (𝑥 − 𝑖1) ⋯ (𝑥 − 𝑖ℓ) = ∑ 𝑐𝑖 ×  𝑥𝑖.  The 

coefficients 𝑐𝑖 of the polynomial are encrypted by a BGN 

cryptosystem and stored at the index server. The index 

server stores 𝑚 ×  𝑀 encrypted polynomials, where 𝑀 is 

the number of buckets for each dimension and 𝑚 is the 

number of attributes in each data record. 

To issue a multi-dimensional range query (i.e., 
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 𝑄 =  {[𝑠𝑖1
, 𝑡𝑖1

], ⋯ , [𝑠𝑖𝑘
, 𝑡𝑖𝑘

]}  ), the client first 

decomposes the query into 𝑘  dimensions: 𝑖1, 𝑖2, ⋯ , 𝑖𝑘 . 
The query is transformed to multiple conjunctive queries; 

each one is associated with 𝑘 buckets corresponding to 𝑘 

dimensions. To obtain the answer for each conjunctive 

query, the client does the following: 

 

1. We consider a bit 𝑏𝑖  =  1  if the 𝑖 − 𝑡ℎ  bucket 

intersects with the query (0 otherwise). There are 

exactly 𝑘  encryptions of bit 1  for each conjunctive 

query. 

2. The client generates appropriate tags, 𝜎𝑖 =  𝐸𝑛𝑐(𝑏𝑖), 

and sends 𝜎𝑖 to the index server. 

3. The index server generates random non-zero 

numbers 𝑝𝑖  and computes 𝐵(𝑥)  = ∑ 𝜎𝑖 ×  𝑝𝑖 × 𝐴𝑖𝑖    
(in encrypted form), and sends the corresponding 

result to the user. 

4. The client decrypts and factors the polynomial 𝐵(𝑥) 

and finds its roots, which are the indices of the 

records that are of interest to the user.  

5. The client performs ORAM data access to obtain the 

necessary data records from the cloud server. 

 

Analysis. To analyze the security of the proposed 

protocol, we need to examine the data view of the two 

servers. Because the server stores securely encrypted data, 

and the data are accessed only by ORAM, it gains no 

knowledge of the user sensitive data, query content, or 

access pattern. Moreover, the index server receives only 

BGN-encrypted bits; it is not able to obtain any 

information about the query. Hence, the proposed 

protocol leaks no information of the data content, query 

content, or query result to the server or the index server, 

except for the upper bound of the number of matching 

records (owing to the number of ORAM accesses). 

The proposed solution requires the client to send 

𝑂(𝑚 ×  𝑀) encrypted bits to the index server and receive 

approximately 𝑂(𝑛/𝑀) bits from the index server. At the 

same time, the index server is also required to perform up 

to 𝑂(𝑛) multiplication and exponentiation operations in 

the ciphertext space. The computation and 

communication costs for the server are the same as those 

of the previous methods. 

C.  Dynamic Dataset 

In the dynamic dataset case, the new data records may 

be dynamically appended to the existing dataset. The 

aforementioned approach, which represents the index sets 

by polynomials, requires the entire encrypted coefficients 

for each corresponding bucket of the new record to be 

recomputed. We propose another approach that requires 

interaction between the server and the index server. We 

note that the abovementioned methods for both full-

domain queries and dynamic multi-dimensional range 

queries do not require any communication between the 

two servers. The proposed protocol is inspired by a 

conjunctive keyword searchable encryption protocol 

proposed by Cash et al. [27]. We use it with a major 

modification to adapt our privacy requirements. 

We start the protocol description by reviewing a few 

concepts related to bilinear maps. We will use the 

following notation: 

 

1) 𝐺1 and 𝐺2 are two (multiplicative) cyclic groups of 

prime order 𝑝. 

2) 𝑔1 is a generator of 𝐺1and 𝑔2 is a generator of 𝐺2. 

 

 

A bilinear map is a map 𝑒 ∶  𝐺1 × 𝐺2 →  𝐺𝑇  with the 

following two properties: 

INSERT (Record id:: 𝑥 =  {𝑥1,· · · , _𝑥𝑚}) 

 For each 𝑖 − 𝑡ℎ dimension (1 ≤  𝑖 ≤  𝑚), the client 

does: 

 Let 𝑗 − 𝑡ℎ  bucket of 𝑖 − 𝑡ℎ  dimension: 

bucket 𝑙𝑖
𝑗
 contains attribute value 𝑥𝑖. 

 Compute 𝑥𝑖𝑛𝑑 ←  𝐹𝐾𝐼
(𝑖𝑑), 𝑧 ←  𝐹𝐾𝑍

(𝑙𝑖
𝑗
) 

and 𝑦 ←  𝑔1

𝑥𝑖𝑛𝑑

𝑧  

 Set 𝑒𝑖𝑑 ←  𝐸𝑛𝑐(𝑖𝑑) , append (𝑒𝑖𝑑, 𝑦)  to a 

list for bucket 𝑙𝑖
𝑗
 at index server. 

 Set 𝑥𝑡𝑎𝑔 ←  𝑒(𝑔1, 𝑔2)(𝐹𝐾𝑥(𝑙𝑖
𝑗

)⋅  𝑥𝑖𝑛𝑑)
  and 

append to a set S at cloud server. 

 Encrypt the data record and upload the cloud 

server. 

SEARCH ( 𝑄 =  { [𝑠𝑖1
  , 𝑡𝑖1

], … , [𝑠𝑖𝑘
, 𝑡𝑖𝑘

]}) 

 Client decomposes the query into 𝑘  dimensions: 

𝑖1, 𝑖2, … , 𝑖𝑘 . The query is transformed into 

conjunctive query of buckets. For each conjunctive 

query 𝑞, we denote the buckets of interest for these 

𝑘 dimensions as 𝐿1, … , 𝐿𝑘 . 

 For 𝑖 =  2, … , 𝑘: 

 Client computes 𝑥𝑡𝑜𝑘𝑒𝑛𝑖 ←  𝑔2

𝐹𝐾𝑧(𝐿1)⋅ 𝐹𝐾𝑥(𝐿𝑖)
 

 Client sends 𝐿1 , {𝑥𝑡𝑜𝑘𝑒𝑛2, ⋯ , 𝑥𝑡𝑜𝑘𝑒𝑛𝑛}  to the 

index server. 

 For each item (𝑒𝑖𝑑, 𝑦) in 𝐿1 list in random order: 

 Index server sends 𝑒𝑖𝑑 to the cloud server. 

 Securely compute the cardinality 𝑠𝑖𝑧𝑒 of the 

intersection between set S at the server and 

{𝑒(𝑦, 𝑥𝑡𝑜𝑘𝑒𝑛2), … , 𝑒(𝑦, 𝑥𝑡𝑜𝑘𝑒𝑛𝑘)} 

 If 𝑠𝑖𝑧𝑒 =  𝑘 −  1 , the cloud server sends 

𝑒𝑖𝑑 to the client. 

 Client decrypts and obtains the indices. 

 Client performs ORAM data access to obtain the 

necessary data records from the cloud server. 
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1) Bilinear: for all 𝑢 ∈  𝐺1, 𝑣 ∈  𝐺2 , and 𝑎, 𝑏 ∈  𝑍 , 

𝑒(𝑢𝑎, 𝑣𝑏)  =  𝑒(𝑢, 𝑣)𝑎𝑏 . 

2) Non-degenerate: 𝑒(𝑔1, 𝑔2) ≠ 1. 

 

The proposed solution consists of two algorithms: 

INSERT and SEARCH for appending new records and 

performing multi-dimensional range queries on the 

encrypted data set respectively. 

Let 𝐹  denote a keyed pseudo-random function 

𝑓: 𝑍𝑝 ×  𝐾 →  𝑍𝑝, and select keys 𝐾𝑆 , 𝐾𝑋, 𝐾𝐼 , 𝐾𝑍 for 𝐹. 

The correctness of the search protocol relies on the 

following fact: 

 

𝑒(𝑦, 𝑥𝑡𝑜𝑘𝑒𝑛_𝑖)  =   𝑒(𝑔1
𝑥𝑖𝑛𝑑/𝑧

, 𝑔2

𝐹𝐾𝑧(𝐿1)⋅ 𝐹𝐾𝑥(𝐿𝑖)
)  

                               =  𝑒(𝑔1

𝐹𝐾𝐼
(𝑖𝑑)

𝐹𝐾𝑍
(𝐿1)

, 𝑔2

𝐹𝐾𝑍
(𝐿1)⋅ 𝐹𝐾𝑋

(𝐿𝑖)
 ) 

                     =  𝑒(𝑔1, 𝑔2)𝐹𝐾𝐼
(𝑖𝑑)⋅ 𝐹𝐾𝑋

(𝐿𝑖) 

 

Hence, if the set {𝑒(𝑦, 𝑥𝑡𝑜𝑘𝑒𝑛2), . . . , 𝑒(𝑦, 𝑥𝑡𝑜𝑘𝑒𝑛𝑘)} is 

a subset of set S, the data record belongs to exactly all the 

requested buckets. 

Our construction of the index list for the bucket and for 

the set S are similar to the construction of TSet and XSet 
proposed by Cash et al. [27]. In their protocol, TSet and 

XSet are stored in the same place in the cloud server. The 

correctness and the privacy of the two sets follow the 

proofs of the authors, given in [27]. However, because 

the set intersection is performed locally by the cloud 

server, that construction leads to unnecessary information 

leakage (i.e., access pattern). In the proposed construction, 

the storage of the bucket list and set S is separated into 

two parts, and the set intersection cardinality is obtained 

by a secure two-party computation protocol. We apply 

the protocol proposed by Cristofaro et al. [28]. Fig. 3 

shows the workflow of the protocol. The protocol is 

secure under semi-honest model assumptions. The 

complexity is linearly related to the sizes of the two sets. 

 

 

Fig.3. Secure set Intersection Cardinality 

Analysis. The insertion algorithm only appends the 

semantically secure encryptions to the server and index 

server. It leaks no information to the two servers; for 

details of the proof, readers may refer to [27]. 

During the search phase, the server only receives the 

encryption of the record index 𝑒𝑖𝑑  and knows whether 

the encrypted index belongs to the results. By observing 

the value of 𝑒𝑖𝑑, the server is able to determine whether 

there are records that satisfy multiple queries. This 

information leakage can be eliminated by applying one 

more encryption layer on 𝑒𝑖𝑑. 
On the other hand, the newly proposed protocol does 

not provide query privacy to the index server. The index 

server is able to determine whether two queries are the 

same by observing the xtoken sets received from the 

client. However, this is the only information leakage of 

the client’s private data to the index server. Because the 

cardinality of private set intersection is only revealed to 

the cloud server, the index server does not obtain any 

information about the satisfied records. 

The computational complexity and communication 

cost of the two servers are linearly related to the number 

of data records. The communication cost and 

computational complexity for the client are 

O(max(log|D|,n)), where |D| is the number of data 

records and n is the dimension of the query Q. 

 

VII.  EXPERIMENTAL RESULTS 

We conducted a number of experiments to verify the 

practicality of the proposed solution. The experiments 

were performed on a synthetic dataset. We created the 

synthetic dataset by sampling 20,000 data points, each 

having 4 integral attributes from the domain [0,999]. 
Our implementation of Path ORAM requires up to 2 

minutes to construct the ORAM data structures of the 

dataset of 10,000 data records. It also only takes only 

0.02 s per access, including the time for decryption. This 

execution time is considered as a criterion for the tradeoff 

between the accuracy and the number of buckets, as 
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discussed in Section V. For full-domain multi-

dimensional range queries, we randomly generate 10,000 

queries where each dimension is selected randomly from 

a uniform distribution from the same domain with the 

dataset. We took the average results of these queries and 

reported them. 

Consider the number of buckets M. The accuracy of 

the intersection bucket approach is 0.1, 0.15, 0.3, 0.5 for 

𝑀 =  128,256,512,1028 , respectively. On the other 

hand, the numbers of buckets intersecting with the query 

are 22, 33, 53, 107  for each configuration of 𝑀 . Thus, 

when the parameter 𝑀 increases, we are able to reduce 

the false-positive rate; however, we need to perform 

additional ORAM queries with the index server. 

To test dynamic multi-dimensional range queries, we 

considered 5000 random queries. The set of queried 

attributes contains 1–3 attributes. The two end points of 

each query are uniformly generated from the attribute 

domain. 

Fig.4 shows the relation between the accuracy of the 

proposed approach and the number of buckets in each 

dimension (M). We conducted experiments with M in the 

range of 5–20. When we used only 5 buckets per 

dimension, the reported false positive rate was high, but 

we were only required to perform 5 conjunctive queries 

on average for each query. On the other hand, when we 

increased M to 20, the accuracy increased to 70%. 

However, we also needed to answer 60 conjunctive 

queries (i.e., depicted Fig.5) to obtain the complete set of 

requested records. 

 

 

Fig.4. Accuracy for Different Numbers of Buckets (M) 

 

Fig.5. Number of Conjunctive Queries for Different Numbers of 
Buckets (M) 

VIII.  CONCLUSION 

In this paper, we investigated different protocols to 

securely evaluate multi-dimensional range queries over 

encrypted data in cloud platforms. Our main idea is to 

leverage the bucketization algorithm to label the 

numerical range. The server stores the encrypted data, 

while the index server stores the meta-data output by the 

bucketization algorithm. When the multi-dimensional 

range queries are fixed beforehand, we perform two 

rounds of ORAM data access to answer the queries. The 

data records are labeled before encryption and sent to the 

server. On the other hand, to support more general 

queries, we presented novel solutions that allow multi-

dimensional range queries to be answered, where the 

query constraints are not required to be fixed. The idea is 

to bucketize each attribute of a multi-dimensional data 

record and perform set intersection to answer conjunctive 

queries for multiple data labels. While the latter approach 

is able to support more general requirements, it is costly 

in terms of both computational complexity and bandwidth 

communication. In the most general case, where the 

dataset can be dynamically appended and the set of 

queried attributes is not fixed, our approach leaks a small 

amount of information to the index server. 

REFERENCES 

[1] Amazon Web Services (AWS) - Cloud Computing Services. 

[2] Google App Engine. 
[3] Microsoft Azure.  
[4] D. Boneh and B. Waters, "Conjunctive, Subset, and Range 

Queries on Encrypted Data," in Theory of Cryptography, 

4th Theory of Cryptography Conference, TCC 2007, 

Amsterdam, The Netherlands, February 21-24, 2007. 
[5] D. Boneh, E.-J. Goh and K. Nissim, "Evaluating 2-DNF 

Formulas on Ciphertexts," in Theory of Cryptography, 

Second Theory of Cryptography Conference, TCC 2005, 

Cambridge, MA, USA, February 10-12, 2005.  
[6] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song and A. 

Perrig, "Multi-Dimensional Range Query over Encrypted 

Data," in 2007 IEEE Symposium on Security and Privacy 

S&P 2007, Oakland, California, USA, 20-23 May 2007. 
[7] Y. Lu, "Privacy-preserving Logarithmic-time Search on 

Encrypted Data in Cloud," in 19th Annual Network and 

Distributed System Security Symposium, NDSS 2012, San 

Diego, California, USA, February 5-8, 2012.  
[8] B. Wang, Y. Hou, M. Li, H. Wang and H. Li, "Maple: 

scalable multi-dimensional range search over encrypted 

cloud data with tree-based index," in 9th ACM Symposium 

on Information, Computer and Communications Security, 

ASIA CCS '14, Kyoto, Japan - June 03 - 06, 2014.  
[9] H. Hacigümüs, B. R. Iyer, C. Li and S. Mehrotra, 

"Executing SQL over encrypted data in the database-

service-provider model," in Proceedings of the 2002 ACM 

SIGMOD International Conference on Management of 

Data, Madison, Wisconsin, June 3-6, 2002.  
[10] B. Hore, S. Mehrotra and G. Tsudik, "A Privacy-

Preserving Index for Range Queries," in Proceedings of 

the Thirtieth International Conference on Very Large 

Data Bases, Toronto, Canada, August 31 - September 3, 

2004.  
[11] B. Hore, S. Mehrotra, M. Canim and M. Kantarcioglu, 

"Secure multidimensional range queries over outsourced 

data," {VLDB} J., vol. 21, pp. 333-358, 2012.  

 



 Multi-dimensional Range Query on Outsourced Database with Strong Privacy Guarantee 23 

Copyright © 2017 MECS                                              I.J. Computer Network and Information Security, 2017, 10, 13-23 

[12] R. Agrawal, J. Kiernan, R. Srikant and Y. Xu, "Order-

preserving encryption for numeric data," in Proceedings 

of the ACM SIGMOD International Conference on 

Management of Data, Paris, France, June 13-18, 2004, 

2004.  
[13] A. Boldyreva, N. Chenette, Y. Lee and A. OŃeill, "Order-

Preserving Symmetric Encryption," in Advances in 

Cryptology - EUROCRYPT 2009, 28th Annual 

International Conference on the Theory and Applications 

of Cryptographic Techniques, Cologne, Germany, April 

26-30, 2009.  
[14] A. Boldyreva, N. Chenette and A. OŃeill, "Order-

Preserving Encryption Revisited: Improved Security 

Analysis and Alternative Solutions," in Advances in 

Cryptology - CRYPTO 2011 - 31st Annual Cryptology 

Conference, CA, USA, August 14-18, 2011.  
[15] C. Mavroforakis, N. Chenette, A. OŃeill, G. Kollios and 

R. Canetti, "Modular Order-Preserving Encryption, 

Revisited," in Proceedings of the 2015 ACM SIGMOD 

International Conference on Management of Data, 

Melbourne, Australia, May 31 - June 4, 2015.  
[16] O. Goldreich, "Towards a Theory of Software Protection 

and Simulation by Oblivious RAMs," in Proceedings of 

the 19th Annual ACM Symposium on Theory of 

Computing, New York, New York, USA, 1987.  
[17] O. Goldreich, "Software Protection and Simulation on 

Oblivious RAMs," J. ACM, vol. 43, no. 3, pp. 431-473, 

1996.  
[18] E. Stefanov, E. Shi and D. X. Song, "Towards Practical 

Oblivious RAM," in 19th Annual Network and 

Distributed System Security Symposium, NDSS 2012, San 

Diego, California, USA, February 5-8, 2012.  
[19] E. Shi, T.-H. H. Chan, E. Stefanov and M. Li, "Oblivious 

RAM with O((logN)3) Worst-Case Cost," in Advances in 

Cryptology - ASIACRYPT 2011 - 17th International 

Conference on the Theory and Application of Cryptology 

and Information Security, Seoul, South Korea, December 

4-8, 2011.  
[20] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, 

X. Yu and S. Devadas, "Path ORAM: an extremely simple 

oblivious RAM protocol," in 2013 {ACM} {SIGSAC} 

Conference on Computer and Communications Security, 

CCS'13, Berlin, Germany, November 4-8, 2013.  
[21] D. Boneh, C. Gentry, S. Halevi, F. Wang and D. J. Wu, 

"Private Database Queries Using Somewhat 

Homomorphic Encryption," in Applied Cryptography and 

Network Security - 11th International Conference, ACNS 

2013, Canada, June 25-28, 2013.  
[22] E. D. Cristofaro, Y. Lu and G. Tsudik, "Efficient 

Techniques for Privacy-Preserving Sharing of Sensitive 

Information," in Trust and Trustworthy Computing - 4th 

International Conference, TRUST 2011, Pittsburgh, PA, 

USA, June 22-24, 2011.  
[23] M. S. Islam, M. Kuzu and M. Kantarcioglu, "Access 

Pattern disclosure on Searchable Encryption: Ramification, 

Attack and Mitigation," in 19th Annual Network and 

Distributed System Security Symposium, NDSS 2012, San 

Diego, California, USA, February 5-8, 2012.  
[24] LeFevre, Kristen, D. J. DeWitt and R. Ramakrishnan, 

"Mondrian Multidimensional K-Anonymity," in 

Proceedings of the 22nd International Conference on 

Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta, 

GA, USA, 2016. 
[25] R. Zhang, J. Shi and Y. Zhang, "Secure multidimensional 

range queries in sensor networks," in Proceedings of the 

10th ACM Interational Symposium on Mobile Ad Hoc 

Networking and Computing, MobiHoc 2009, New Orleans, 

LA, USA, May 18-21, 2009.  
[26] L. Kissner and D. X. Song, "Privacy-Preserving Set 

Operations," in Advances in Cryptology - CRYPTO 2005: 

25th Annual International Cryptology Conference, Santa 

Barbara, California, USA, August 14-18, 2005.  
[27] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu 

and M. Steiner, "Highly-Scalable Searchable Symmetric 

Encryption with Support for Boolean Queries," in 

Advances in Cryptology - CRYPTO 2013 - 33rd Annual 

Cryptology Conference, Santa Barbara, CA, USA, August 

18-22, 2013.  
[28] E. D. Cristofaro, P. Gasti and G. Tsudik, "Fast and Private 

Computation of Cardinality of Set Intersection and 

Union," in Cryptology and Network Security, 11th 

International Conference, CANS 2012, Darmstadt, 

Germany, December 12-14, 2012.  
 

 
 

Authors’ Profiles 

 
Hoang Giang Do received the B.Eng. 

degree in computer science and 

engineering from Nanyang Technological 

University, Singapore, in 2013, where he 

is currently working toward the Ph.D. 

degree. His current research interests 

include applied cryptography, privacy 

preserving query processing and 

applications of cryptocurrency. 
 

 

Dr. Wee Keong Ng is Associate Professor 

in the School of Computer Science & 

Engineering, Nanyang Technological 

University, Singapore.  He received his 

Ph.D. from the University of Michigan at 

Ann Arbor, USA.  His research areas are 

secure data analytics, secure data storage, 

data monetization, and data security, and 

has published more than 200 technical 

papers in these areas. Dr. Ng has served in program/organizing 

committees of international conferences. In recent years, he is 

General Co-chair of the International Conference on 

Information and Communications Security 2016; Jury Member 

of the Second Dutch Cyber Security Research Award in March 

2016; Senior PC Member of the 20th, 19th, 18th, 17th Pacific-

Asia Conference on Knowledge Discovery and Data 

Mining.  Dr. Ng has advised and graduated more than 20 Ph.D. 

students and 20 Master students. 

 

 

 

 

 

 

 

 

How to cite this paper: Do Hoang Giang, Ng Wee Keong,"Multi-dimensional Range Query on Outsourced Database 

with Strong Privacy Guarantee", International Journal of Computer Network and Information Security(IJCNIS), Vol.9, 

No.10, pp.13-23, 2017.DOI: 10.5815/ijcnis.2017.10.02 


