
I. J. Computer Network and Information Security, 2017, 10, 41-49
Published Online October 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2017.10.05

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 41-49

Multi-layer Masking of Character Data with a

Visual Image Key

Asif Karim
Charles Darwin University, Northern Territory, Australia

E-mail: asif.karim.2012@live.com

Received: 25 May 2017; Accepted: 01 August 2017; Published: 08 October 2017

Abstract—Information is one of the single most

important factor for understanding a situation as well as

deciding upon a solution by effectively devising a

working method. Thus the magnitude of securely

delivering information to the correct individual or

organization has always been a prime concern. The field

of Cryptography deals with such necessities as to encrypt

the information in such a way so that only the intended

receiver, equipped with the right armoury, can decipher

the message. Here in this paper a method for encrypting

character data has been presented whereby the ASCII

values of individual character is converted into their Hex

values before they are turned into their binary form, and

randomly assigned a single digit Odd integer value for a

1 and single digit Even integer value for a 0. Going

forward we do some more processing of the data to make

it even more secure, these will be discussed in due course.

The receiver must possess a valid Image key in order to

decrypt the text. This image is generated during

encryption from two RGB (Red, Green and Blue) values-

having a difference of a random number produced within

the range of total length of the plaintext.

Index Terms—Cryptanalysis, cryptology, bit masking,

visual key encryption, symmetric encryption.

I. INTRODUCTION

The project includes a working application developed

in Visual Basic 6.0, mainly for the purpose of

demonstration and harnessing VB’s inherent rapid

development features.

Cryptology is the field where mathematics and security

engineering enmesh together to give us tools to protect

systems and information. In a very basic sense,

Cryptography is the art and science of designing

algorithms for performing encryption, while

Cryptanalysis refers to the science and arts behind

breaking them. Cryptology encompasses the study of

both Cryptography and Cryptanalysis.

In today’s modern world, Information Security has

become the most talked about field in computer science,

which clearly underlines the gravity of cryptology and its

related studies. Cryptology has been in use since the time

of Roman emperors [1]. Julius Caesar enciphered A for D,

B for E and so on. In modern parlance, it is said that the

key had been altered from D to A.

However, Arabs are the most prominent for

developing a systematic approach of cryptanalytic

methods. Al-Kindi, an Arab mathematician, sometime

around AD 800 invented the technique of frequency-

analysis for breaking monoalphabetic substitution ciphers,

which was a significant valuable resource on

cryptanalytic field till World War II [2]

Leon Battista Alberti, the Italian Cryptographer,

conveniently known as the “father of Western

Cryptology”, is the first individual to bring forth the

Polyalphabetic Cipher, which is significantly stronger

methodology from that of the earlier monoalphabetic

crypto algorithms [3].

Gilbert Vernam in 1917 proposed a teleprinter cipher.

The method included using a previously prepared key,

kept on paper tape, to combine with each of the

characters of the plaintext message in a view to produce

the cyphertext. This led to the development of

electromechanical devices as cipher machines, and to the

only unbreakable cipher known as, the one time pad [5].

Claude Shannon’s “A mathematical theory of

cryptology”, written in 1945, is considered by most as the

inception of the development of current cryptologic

advancements [6]. Modern encryptions are designed by

employing algorithms having a key to encrypt and

decrypt information. The role of these keys are to change

the original message and data into seemingly nonsensical

data or gibberish thorough encryption and then retrieve

the bona-fide through decryption. The critical factor here

is the key length, which is directly proportional to the

degree of difficulty of breaking the encryption.

II. CLASSES OF CRYPTOSYSTEMS

The data/information that needs to be encrypted are

known as Plaintext, while the output to encryption

function is called Ciphertext. Depending upon the

algorithm, there are number of cryptographic primitives

such as Stream Ciphers, Block Ciphers and Hash

Function.

Block Ciphers

A block cipher is an encryption method which

encrypts the inputted information as a block of data (for

example, 96 contiguous bits) at once as a group instead

42 Multi-layer Masking of Character Data with a Visual Image Key

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 41-49

of one bit at a time. Blocks are of fixed size bytes which

can be up to 128 bits long. The block cipher can encrypt,

for example, a 128 bit plaintext and generate a 128 bit

cipher text as the output result. In order for a block cipher

to encrypt data, the function would require a secret key

which comes as a string of bits normally 128 to 256 bits

long. A preferred block size is a multiple of 8 as it is easy

for implementation as most computer processor handle

data in multiple of 8 bits. As all the blocks need to be of

same size, the last block, if necessary, is padded up to the

length of desired bits [7].

Fig.1. A Graphical Representation of Block Cipher Algorithm

Some of the more popular Block Cipher Encryption

systems are Digital Encryption Standard (DES) – gained

lots of ground in 90s, Triple DES – A variant of DES,

Advanced Encryption Standard (AES) – a newer block

cipher algorithm and IDEA – another modern block

cipher application with wide acceptability and has a

sufficiently robust encryption capability.

Stream Ciphers

This types of encryption algorithm encrypts a single

bit or bytes of plain text at a time. It applies a

pseudorandom cipher digit stream (keystream) on each

bit of the message to be encrypted. For a stream cipher

implementation to remain absolutely secure, its

pseudorandom generator has to be unpredictable plus the

key should never be reemployed.

Fig.2. A graphical representation of Stream Cipher Algorithm

Stream ciphers can often be designed to attain the

allusive characteristic of “Perfect Secrecy”, one such

example of an encryption system is the “One Time Pad”.

It’s a technique that cannot be broken, but needs the use

of a one-time key which is pre-shared, the key is of the

same size, or longer, as that of the message being sent.

To begin with, a plaintext is paired with a random secret

key (also denoted as a one-time pad). Then, each bit or

character of the plaintext is encrypted by combining it

with the corresponding bit or character from the. Now if

the key used, kept completely secret, is truly random, and

at least as long as the plaintext, also if never reused in

whole or partially then the resulting ciphertext will be

impossible to crack [8].

Fig.3. One Time Pad Encryption Algorithm

However, one time pad did not get wide

implementation due its key-length issues, which can

sometimes be extremely large. However, one algorithm

that did get wide popularity is RC4 (Rivest Cipher 4).

RC4 has been used in wireless network security protocols

such as WEP and WPA. Besides RC4, which has recently

lost some grounds, other stream cipher systems such

PANAMA and SALSA may come into foreground.

Hash Functions

Hash functions, first used around 1960 in computer

systems, these days have become extremely important

and useful in many sorts of applications. Hash functions

are mathematical functions that convert a numerical input

value into another numerical value, often compressed.

The input to the can be of arbitrary length whilst the

output is always of fixed length. The encrypted values are

often known as Hash values or message digest as the

content is considerably smaller than the inputted data.

The process of converting the raw data to a message

digest is known as Hashing. Hash functions are

computationally faster than symmetric algorithms such as

block ciphers. Hash functions have few fundamental

properties such the easiness of calculating the hash for

any given data, the extreme difficulty of reversing the

process and having the same hash for different data, as a

slight modification in the original data entails a great

change in the hash itself [9].

Fig.4. Changing of Just a Single Bit Can Bring a Considerably Change

in the Corresponding Hash Value

 Multi-layer Masking of Character Data with a Visual Image Key 43

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 41-49

Some popular Hash encryption systems are Message

Digest 5 (MD5) and Secure Hash Function (SHA).

Storage of passwords and verifying data integrity are two

most widely used applications of Hash functions.

Public-Private Encryption

In a revolutionary 1976 paper, W. Diffie and M.

Hellman brought forward the notion of Public-Key

cryptography in which two different but mathematically

oriented keys are used — a public key and a private key.

A public key system is designed in such a way that

calculation of one key (the 'private key') is

computationally infeasible from the other (the 'public

key'), even though they are necessarily interrelated.

Instead, both keys are produced secretly, as an

interrelated pair. In public-key cryptosystems, the public

key may be distributed freely, while its paired private key

must remain secret. The public key is typically used for

encryption, whilst the private key is employed for

decryption. RSA is an example of such cryptography. [4]

Fig.5. Public-Private Key Cryptosystem

The durability of systems like RSA (Ron Rivest, Adi

Shamir, and Leonard Adleman) lies in the difficulty of

the modern computer systems to address the

computational intractability of the Integer Factorization

problem. RSA is used in most Web browsers and in the

SSL protocol. However, to make a system fully secured

using RSA, the two prime number needed for the

calculation has to be sufficiently large to make it

computationally infeasible as far as possible, but still,

extremely powerful machines or the advent of quantum

computing may challenge this crypto system. Besides

repetitive occurrence of a character in a plaintext may

sometimes causes some security issues. To tackle such

problems, few works have already been done, and one

notable schema is the use of different ASCII value from a

matrix each time for encryption. [11] RSA have also been

used to encrypt audio data, and till now not many

algorithms are available for developing cryptosystems on

audio signal. [15]

Visual Cryptography

Visual cryptography is a cryptographic technique

which allows visual information such as texts, images etc.

to be encrypted in manners by which the decryption can

be achieved without using any computers at all, just by

using the human visual system if the correct Key image is

used. It is an encryption system strongly based upon

graphical data and the first introduction of such a

cryptosystem appeared in 1994 through the work of Naor

and Adi Shamir. Visual cryptography uses two

transparent images, often known as Shares; one image

contains random pixels while the other contains the

clandestine information. It is not at all possible to retrieve

the secret information from one of the images. Both

transparent images and layers (shares) are required to get

the encrypted information. The shares are superimposed

on each other to reveal the desired information [10]. But

Visual Cryptography often suffers with the problem of

Pixel Alignment [14].

Fig.6. Example of Visual Cryptography.

Modern Concerns

Developments such as cloud computing have also

shown its potential in mobile world, and as mobile

devices have storage limitations, the concept of cloud

computing has also been attached to such devices. But

privacy of client’s data, stored on the cloud, often comes

under scrutiny. Research has been going on in this field

for developing new techniques and cryptosystems, as

well as enhancing and modifying the existing one, such

as encryption using a hybrid cryptosystem, comprising of

Advanced Encryption Standard (AES), Schnorr signature

and Blake2b before it can be stored in the cloud. [12]

Further, advancements such as quantum cryptography,

where the counter intuitive behaviour of particles such as

photons, known as “Uncertainty Principle”, is being

deployed to develop even more robust cryptosystems. [13]

III. THE PROPOSED SYSTEM

The system discussed here will have multiple features

to make things secure as much as possible. All the steps

have been outlined below in short, and from there on we

will go in some details:

1. Steps of Encryption

A) Get the required plaintext from a source.

B) Convert character by character to the respective

ASCII values, and then to corresponding HEX

values.

C) Convert each of these values to 8 bit binary digits.

D) Now we replace each of the 1s with a randomly

chosen one digit Odd integer and 0s with a single

digit randomly chosen Even integer.

E) We now calculate the final length of the morphed

plaintext, chose a random number less than the

length, add it up by 100 and make sure it ends up

as an odd value. Let us say the value has been put

in a variable named z.

44 Multi-layer Masking of Character Data with a Visual Image Key

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 41-49

F) After which we will continue the processing of

data- by reversing the string starting from

character number z to the end; let’s put the

reversed string in a variable named strRev.

G) We now concatenate strRev to the rest of the

original string, but bring the reversed portion

(strRev) before the remaining portion of the

original text. That remaining portion, starting from

character number 1 to z-1, is not reversed. Let us

assume we have put the processed string in a

variable named proStr.

H) We will now step into the final processing of the

ciphertext proStr, by inserting random single-digit

values within proStr in positions determined by

each of the digits from z. It will be repeated till the

end of proStr is reached. This completes series of

steps which will produce the final ciphertext.

2. Preparing the Image Key

The image key works like a symmetric key (shared

between the sender and receiver), except that there is no

avenue for manual entry of any code from keyboard,

rather, the receiver selects the obtained image, clicks

once on each of the colours, and initiates the decryption

process. The procedure will be illustrated further after we

unravel the algorithm behind the key and its advantage.

The algorithm works in the following way:

A) Once the encryption completes, the user will

supply two (2) sets of Red (R), Green (G), Blue (B)

values (RGB) and (R1G1B1), the values has to be

within the range of 1-255.

B) The corresponding CalculateRGB() function now

prepares Two separate integers from the chosen

colour values (by putting the values side by side

and choosing random values NOT in excess of the

given value for each of R, G and B) and keeps on

calculating the difference of these two values till

the difference equals z (from section III.1.E).

C) Once we have got our two desired values, the user

who encrypts the data, has the job of preparing a

Bitmap image, (can be easily done from Microsoft

Paint). The image will have two separate colours

in it, corresponding to the two values calculated in

the CalculateRGB() function, and it will supplied

to the receiver as the key to the data from

decryption. The image should NOT be converted

to JPEG or any other format as decolouring can

occur which will change the underlying RGB

values.

At this stage the encryption has been completed and

the required Image key will be generated by following

the procedure. One of the major reasons of using such a

form symmetric key is the fact that almost all the key’s

composed of numbers, letters or special characters, are

susceptible to Brute Force and Dictionary attack. These

two schemes, given enough time and computational

power, will eventually end up finding the key and will be

able to automatically check against the encrypted code.

In the proposed system, finding two appropriate numbers

having difference equal to z, manually creating an image

with those values for decryption and finally manual

clicking on each of the two different colours before the

decryption process can begin, is a series of tasks that is

quite a complicated job to come through in an automatic

manner for those attacks based on Dictionary and Brute

Force algorithms. We will see the whole process of both

encryption and decryption with images in a later section.

Now we will have an overview of the decryption process

step by step.

3. Steps of Decryption

A) Manually select the image key into the image box.

B) Click once on each of the two different colours.

With each of the clicks the value required to

calculate the difference equal to z (from section

III.1.E) is automatically gleaned from the

underlying RGB values; these are stored in two

different variables, let us say L1 and L2.

C) Now select the encrypted data source and start the

decryption process. Let us consider we put the

data in a variable called cryptoData.

D) Next difference of L1 and L2 is calculated, for the

accurate decryption, this must equal z. Let us say

we put this difference in a variable called x.

E) Now previously inserted random single-digit

values within this encrypted data in positions

determined by each of the digits from x will be

removed. It will be repeated till the end of

cryptoData is reached. Note that if the value of x

is not that of z, wrong data bits will be removed

the decrypted text will just be a set of random

gibberish.

F) Following these steps, we will have to reverse

back the portion of data (to bring it into original

orientation) that have been reversed during

encryption.

G) The portion of data that have been reversed back

in previous step is now concatenated with the rest

of the non-reversed portion and position of both

these segment are swapped to address the

processing in section III.1.G).

H) Going forward, all the even digits will be replaced

by a ‘1’ and off digits by a ‘0’.

I) Finally, decimal values are determined from this

stream of 1’s and 0’s, and ASCII values are

mapped from the decimal outputs, revealing the

bona-fide information that had been encrypted.

This completes the decryption process.

As we can see, an accurate decryption can only be

possible if an image with the correct RGB values are

supplied as the key.

IV. ANALYSIS OF THE PROTOTYPE DEVELOPED

As mentioned previously, a prototype has been

 Multi-layer Masking of Character Data with a Visual Image Key 45

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 41-49

developed in Visual Basic 6.0 for the demonstration of

the algorithm and the general flow of the complete

system. Here we will analyse and benchmark the

performance and algorithm of each of the core segments

mentioned in previous section.

Sample VB code for Encryption and Performance

Evaluation

A) The algorithm mentioned in section III.1.B to

III.1.E can be achieved using the following

function:

Each of the Hex values are first extended to 8 bits from

their 4-bit dimension and then usual processing is carried

through, the colouring of the line indicates the following

summary:

B) The algorithm mentioned in section III.1.B to

III.1.E can be achieved using the following

function:

The function BintoDec() runs through a set of data

having 7,953 characters. The variable z has a global

scope and the function also uses another function called

RandomInteger(), depicted as follows:

 For bit = 3 To 0 Step -1
 If digit_value And factor Then
 nibble_string = "1" & nibble_string
 Else
 nibble_string = "0" & nibble_string
 End If
 factor = factor * 2
 Next bit
 result_string = nibble_string & result_string

 Next digit_num

 LongToBinary = result_string

End Function

Private Function LongToBinary$(ByVal long_value&)

Dim hex_string$, _
 digit_num%, _
 digit_value%, _
 nibble_string$, _
 result_string$, _
 factor%, _
 bit%

 hex_string = Hex$(long_value)

 hex_string = Right$(String$(8, "0") & hex_string, 8)

 For digit_num = 8 To 1 Step -1

 digit_value = CLng("&H" & Mid$(hex_string,
digit_num, 1))
 factor = 1
 nibble_string = ""

Private Function BintoDec$(bin$)

 Dim s() As String, _
 I&, _
 numstr$, _
 numstr1$, _
 numstr2$, _
 sString$

 ReDim s(1 To Len(bin))

 For I = 1 To UBound(s)
 s(I) = Mid$(bin, I, 1)
 If s(I) = "1" Then
 s(I) = CStr(RandomInteger(True))
 Else
 s(I) = CStr(RandomInteger(False))
 End If
 Next

 For I = 1 To UBound(s)
 numstr = numstr + s(I)
 Next
 Randomize

 z = Int(((Len(numstr)) * Rnd) + 100)
 z = IIf(z Mod 2 <> 0, z, z + 1)

 numstr1 = StrReverse(Mid(numstr, z))

numstr1 = numstr1 & Mid(numstr, 1, Len(numstr) -

Len(numstr1))

 Dim a() As String
 sString = CStr(z)

 Dim v%
 v = 1
 For I = 1 To Len(numstr1)
 If (I = CInt(Mid(sString, v, 1))) Then
 Randomize
 numstr2 = numstr2 & Mid(numstr1, I, 1) &
CStr(Int((9) * Rnd))
 Else
 numstr2 = numstr2 & Mid(numstr1, I, 1)
 End If
 If v = Len(sString) - 1 Then
 v = 1
 Else
 v = v + 1
 End If
 Next I

 BintoDec = numstr2

End Function

46 Multi-layer Masking of Character Data with a Visual Image Key

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 41-49

C) The algorithm mentioned to devise the two

numbers for the preparation of the Image Key in

section III.2.A and III.2.B can be attained using

the following procedure:

The procedure shown above works by accepting two

sets of RGB values from the user, and then looping

through the possible combinations.

Suppose z equals 28050, therefore possible RGB sets

could be {(2 54 32), (53 4 82)} because (25432 – 53482)

Absolute = 28050; or we may have {(34 90 83), (37 7 133)}

because (349083 – 377133) Absolute = 28050 as well. The

algorithm will keep on evaluating possible combinations

of RGB that satisfies the above condition and will show

the values soon it finds one.

Now we can just use a simple software such as MS

paint to create the Image Key with these sets of values as

shown below:

Fig.7. First Pair of Colours (34, 90 and 83)

Fig.8. Second Pair of Colours (37, 7 and 133)

And the final Image Key is an image that has both of

these colours and is sent with the encrypted code as an

uncompressed Bitmap file.

Private Function RandomInteger%(sign As Boolean)

 Randomize
 Dim z%

 If sign = True Then
 Do
 z = Int((10) * Rnd)
 Loop While (z Mod 2) <> 0
 RandomInteger = z
 Else
 Do
 z = Int((10) * Rnd)
 Loop While (z Mod 2) = 0
 RandomInteger = z
 End If
End Function

 s = InputBox("Enter RGB Values, each of the values
must be between 0-255", _
 "", "R=13 G=130 B=130 R1=130 G1=30 B1=130")

 Do Until Abs(t) = z
 Randomize
 r = CStr(Int(Trim(Mid(s, InStr(1, s, "R=") + 2, 3)) _
 * Rnd))
 g = CStr(Int(Trim(Mid(s, InStr(1, s, "G=") + 2, 3)) _
 * Rnd))
 b = CStr(Int(Trim(Mid(s, InStr(1, s, "B=") + 2, 3)) _
 * Rnd))

 r1 = CStr(Int(Trim(Mid(s, InStr(1, s, "R1=") + 3,
3)) _
 * Rnd))
 g1 = CStr(Int(Trim(Mid(s, InStr(1, s, "G1=") + 3,
3)) _
 * Rnd))
 b1 = CStr(Int(Trim(Mid(s, InStr(1, s, "B1=") + 3,
3)) _
 * Rnd))

 t = CLng((r & g & b)) - CLng((r1 & g1 & b1))

 Loop

MsgBox r & " " & g & " " & b & " - AND - " & r1 & " " & g1
& " " & b1, , "RGB Sets"
End Sub

Private Sub CalculateRGB()

 Dim s$, r$, g$, b$, r1$, g1$, b1$
 Dim t As Long

 Multi-layer Masking of Character Data with a Visual Image Key 47

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 41-49

Fig.9. The Final Multi-Colour Image Key

Sample VB code for Decryption and Performance

Evaluation

A) Now before anything, the user has to load the

Image Key in an appropriate Picture Box, and

must click once on each of the colours. With each

Click, the following routine calculates the

underlying RGB values and saves the combination

in global variables named L1 and L2; c is also

global.

B) The following function takes care of the actual

decryption process and it is assumed that L1 and

L2 already has the numeric values to begin

decryption. Note that wrong values in either of L1

or L2 will render incorrect decryption of the

encrypted data. The algorithm has been stated in

section III.3.B to III.3.H.

To finalize the process, as mentioned in section III.3.I,

decimal values are derived from the binary stream

returned by the above function, and subsequently ASCII

values are determined from the decimal outputs,

unveiling the desired information that had been encrypted.

Private Sub Picturebox_MouseDown(Button As
Integer, _
Shift As Integer, X As Single, Y As Single)

 Dim PixelColor As Long
 Dim ColorRed As Byte, ColorGreen As Byte,
ColorBlue As Byte

 PixelColor = Picturebox.Point(X, Y)
 ColorRed = PixelColor And 255
 ColorGreen = (PixelColor \ 256) And 255
 ColorBlue = (PixelColor \ 65536) And 255

 c = c + 1
 If c = 1 Then
 L1 = CLng(ColorRed & ColorGreen &
ColorBlue)
 Else
 L2 = CLng(ColorRed & ColorGreen &
ColorBlue)
 End If

 If c = 2 Then
 c = 0
 End If

End Sub

Public Function Decrypt$()
Dim txt3$
Dim txt$
Dim txt1$
Dim sString$

Open lbl.Caption For Input As #1
 txt3 = Input(LOF(1), 1)
 Close #1
 txt3 = Replace(txt3, vbCrLf, "")

 Dim s() As String, _
 I&, _
 numstr$

 Dim txt2$

 sString = CStr(Abs(L1 - L2))

 Dim v%
 v = 1
 For I = 1 To Len(txt3)
 If (I = CInt(Mid(sString, v, 1)) + 1) Then
 Else
 txt = txt & Mid(txt3, I, 1)
 End If
 If v = Len(sString) - 1 Then
 v = 1
 Else
 v = v + 1
 End If
 Next I

 txt = Trim$(txt)

 txt1 = StrReverse(Mid(txt, 1, (Len(txt) -
CLng(sString))))

 txt2 = Mid(txt, (Len(txt1)) + 2) & "0" & txt1

ReDim s(1 To Len(txt2))
 For I = 1 To UBound(s)
 If Val((Mid$(txt2, I, 1))) Mod 2 = 0 Then
 s(I) = "1"
 Else
 s(I) = "0"
 End If
 Next

 numstr = vbNullString
 For I = 1 To UBound(s)

 numstr = numstr + s(I)
 Next
 Decrypt = numstr

End Function

48 Multi-layer Masking of Character Data with a Visual Image Key

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 41-49

V. CONCLUSION AND FUTURE ASPIRATIONS

The paper proposed a system where the encryption has

been achieved after multiple treatment of the data and a

different but effective kind of Key is used encrypt the

data. This Image Key and the overall process have been

designed in such a way so that the traditional code-

breaking systems are either render useless or at least face

considerable obstacle in breaking the proposed system in

any automatic manner. The algorithms used have all been

tested and measured; but needless to say that a lot of

performance improvements can be achieved if we can

take the code closer to the machine. The system takes

some elements out of different cipher systems discussed

in Section II, but also adorns and enhances it with

completely novel way of taking things forward. One of

the cardinal issue that we hope will be address in coming

days is the length of the numbers used to generate the

Image Key. The lengths of each of the keys should be

embedded into the ciphertext itself while encrypting so

that the attacker cannot just keep one of the variables (L1

or L2) constant and manipulate the others in some

automatic way. These lengths will be checked while

decryption and will in fact be used within the decryption

logic itself. We can also put more additional logic in the

selection of these numbers to make things even more

rigorous. It is aspired that more complete and effective

systems will be devised in days forward taking the core

logic and idea from this paper.

VI. TESTING AND RESULT

The Testing section will include encryption and

decryption of reasonable large block of characters and the

results have been shown using images for an easy and

intuitive demonstration. Note the RGB values shown will

keep on altering with every run.

Screenshots of Encryption Module of the Developed

Prototype

A) The initial screen for encryption is shown below,

with required data source, having 7,953 characters,

has been selected. Pressing Encrypt button

initiates the encryption.

Fig.10. Encryption Screen with Loaded Data Source

B) Encryption has been completed as shown in the

following screen, with encrypted data available in

the Rich Text Box.

Fig.11. Encrypted Data

C) Now Two (2) sets of RGB values are derived as

shown below to prepare. … the Image Key.

Fig.12. RGB Sets

Screenshots of Decryption Module of the Developed

Prototype

A) Screen below showing an appropriate Image Key

is loaded and the data source is selected. Now by

pressing the Decrypt button (after decryption the

caption has changed to “Select File”), decryption

has been completed.

Fig.13. Decrypted Information

The prototype has been developed in a Windows 10

machine with Visual Basic 6.0. The rapid nature of the

 Multi-layer Masking of Character Data with a Visual Image Key 49

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 10, 41-49

development environment has been the key factor for its

selection as the development platform. The performance

analysis have been carried out using VB Watch 2.

REFERENCES

[1] Caeser, Kennedy (2008). Security Engineering: A Guide

to Building Dependable Distributed Systems, Second

Edition, Wiley, pp. 74.

[2] Kahn, David (1996). The Codebreakers, Rev. Edition,

Scribner, pp. 90-107.

[3] A Brief History of Cryptography. Cypher Research

Laboratories, Retrieved: 18 March 2017.

[4] Schneier, Bruce (1996). Applied Cryptography: Protocols,

Algorithms, and Source Code in C, Second Edition,

Wiley, pp. 461-466.

[5] Voborník, Petr. Migration of the Perfect Cipher to the

Current Computing Environment. In: WSEAS

Transactions on Information Science and Applications,

2014.

[6] Bauer, Friedrich (1998). Decrypted Secrets: Methods and

Maxims of Cryptology, Fourth Edition, Springer, pp. 25-

26.

[7] Robshaw, Knudsen (2011). The Block Cipher Companion,

Springer, pp. 3-67.

[8] Wu, Hongjun. Cryptanalysis and Design of Stream

Ciphers. Thesis Paper, Katholieke Universiteit Leuven,

2008.

[9] Schneier, Ferguson (2003). Practical Cryptography, First

Edition, Wiley, pp. 83-95.

[10] Devi, Kiran. A Review on Visual Cryptography Schemes.

In: Journal of Global Research in Computer Science, V: 3,

N: 6, 2012.

[11] Mani. K, Viswambari. M,"Enhancing the Security in

Cryptosystems Based on Magic Rectangle", International

Journal of Computer Network and Information

Security(IJCNIS), Vol.9, No.4, pp. 37-47, 2017.DOI:

10.5815/ijcnis.2017.04.05

[12] Oladeji P. Akomolafe, Matthew O. Abodunrin,"A Hybrid

Cryptographic Model for Data Storage in Mobile Cloud

Computing", International Journal of Computer Network

and Information Security(IJCNIS), Vol.9, No.6, pp. 53-60,

2017.DOI: 10.5815/ijcnis.2017.06.06

[13] Assche, Gilles Van (2006). Quantum Cryptography and

Secret-Key Distillation, First Edition, Cambridge

University Press, pp. 01-03.

[14] Kahn, David (1996). The Cryptography for Image

Processing and Security (Theory, Methods and

Application), 2014, Springer, pp. 23-25.

[15] M.I.Khalil,"Real-Time Encryption/Decryption of Audio

Signal", International Journal of Computer Network and

Information Security(IJCNIS), Vol.8, No.2, pp.25-31,

2016.DOI: 10.5815/ijcnis.2016.02.03

[16] Figure 1-6 have been sourced from the World Wide Web.

Author’s Profiles

Asif Karim holds BSc. (Hons.) from

University of East London, UK, and is

currently pursuing his MSc. in Charles

Darwin University, Australia. He worked in

IT industry for nearly 6 years and in academia

over 1 year. His research interest lies in the

fields of Cryptography and Predictive

Modelling. Asif loves to visit and see new places as well as

sharing ideas with like-minded peers, groups and individuals.

How to cite this paper: Asif Karim,"Multi-layer Masking of Character Data with a Visual Image Key", International

Journal of Computer Network and Information Security(IJCNIS), Vol.9, No.10, pp.41-49, 2017.DOI:

10.5815/ijcnis.2017.10.05

