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Abstract—A variety of technologies in recent years have 

been developed in designing on-chip networks with the 

multicore system. In this endeavor, network interfaces 

mainly differ in the way a network physically connects to 

a multicore system along with the data path. Semantic 

substances of communication for a multicore system are 

transmitted as data packets. Thus, whenever a 

communication is made from a network, it is first 

segmented into sub-packets and then into fixed-length 

bits for flow control digits. To measure required space, 

energy & latency overheads for the implementation of 

various interconnection topologies we will be using 

multi2sim simulator tool that will act as research bed to 

experiment various tradeoffs between performance and 

power, and between performance and area requires 

analysis for further possible optimizations. 

 

Index Terms—Topology, Multicore Processor, 

Multi2sim Simulator, Super Scalar, Pipeline. 
 

I.  INTRODUCTION 

The topology of a network on chip determines how the 

cores are interconnected. We shall have to ponder over all 

possible paths where data can be traversed across the 

network. The routing algorithm selects the specific path a 

message will take from source to destination. Therein 

flow control protocols predict the actual path of data 

towards the designated route, including when & where 

should the data leaves a core. The micro architecture 

element recognizes the routing and flow control protocols 

and carefully maneuvers its circuit’s implementation. 

Expanding trend of multiple cores is a matter of grave 

concern, particularly on the die. Subtle & precise 

understanding is still lacking in the literature of the 

designing area of the interconnection framework. We 

know a very little about how it interacts with the rest of 

the multi-core architecture. A topology would be 

asserting the number of hops data must route as well as 

the interconnect lengths between hops. This would be 

influencing network latency significantly. As routing the 

data and links consumes energy, the effect of topology on 

hop count also directly affects network energy 

consumption. 

 

 

Fig.1. On Chip Interconnect Topologies in Multicore Processor for (a) 

Ring (b) Mesh (c) Torus Topology 

The impact on throughput a topology creates is 

affected by the total number of alternate paths between 

nodes. It determines the optimistic way in which a 

network can flood out its traffic. The fabrication 

complexity cost of a topology is controlled by two factors: 

the number of links at each node called node degree and 

the ease of laying out a topology on a chip wire length 

and the number of metal layers required. In this paper, we 

would be determining the best topology of 

interconnection network architecture by virtual 

implementation of given number of processing cores 

using Multi2Sim simulation framework. For CPU-GPU 
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heterogeneous computing, this framework is written in C 

language and includes templates for superscalar, 

multithreaded, and multicore CPUs, as well as GPU 

designs. Thus, the framework would act as perfect model 

and integration of the main microprocessor components, 

intended to cover incapability of existing simulators. 

 

II.  RELATED WORKS 

The term Core presupposes a processor unit that can 

scan instructions & accomplish specific tasks. Syntactic 

rules are arranged in a manner so as to execute them in 

real time & formulate into a computer we sense today. 

Samples from routine life of work require a processing 

core to open a folder, type into a word document, 

drawing the desktop environment etc. Gaming on 

graphics card contains cents of processing cores to 

promptly work on data in parallel along with some of the 

computer's processing core. Thus, requirements of 

designing of cores are extremely complex and cognitive 

which fluctuate between brands and even models. 

In 1965 Gordon Moore stated that the number of 

transistors on a chip wills approximately double each 

year (he later refined this, in 1975, to every two years). 

What is often quoted as Moore's Law is Dave Hour’s 

revision that computer performance wills double every 18 

months. In the early 1970s, Intel manufactured 4-bit 4004 

which was first ever microprocessor. It was simply a digit 

crunching machine. Shortly afterwards they made 

evolution & produced 8008 and 8080 chips, both 8-bit. 

Then after Motorola supplanted with its 6800-chip 

comparative to Intel's 8080. The competitive 

organizations further fabricated 16-bit microprocessors 

towards advancement. Motorola served as basis for 

introduction Intel's 8086 32-bit and later their popular 

Pentium lineup which were in the first consumer-based 

PCs [1]. 

All the generations of processors were constantly 

designed smaller in area with faster performance 

requirements it started dissipating more heat and 

exhausted with more power consumption. Starting from 

the development of Intel's 8086 through the Pentium 4, 

there was gradual increase in performance from one 

generation to another due to the increase in processor 

frequency. As in case of Pentium 4 the frequency ranged 

from 1.3 to 3.8 GHz in its 8 years of evolution. On the 

other hand, physical size of chips decreased while the 

number of transistors per chip increased. As the clock 

speeds also increases it aids the heating across the chip by 

raising temperature to a dangerous level. Speeding 

processor’s frequency had inspired many in industry 

throughout a decade’s time however chip designers were 

still in need for a better technology so as to improve the 

performance. Due to increasing demand, the idea of 

having additional processing cores to the same chip came 

into the mind of designers. Hypothetically it was 

expected that the performance will double and heat 

dissipation would be less.  

In 2000, SPEC CINT2000 benchmark suite was rolled 

out which consisted over 5.9 trillion instructions when 

executed with reference inputs. Researchers substantially 

rely on simulators to analyze, debug and validate new 

designs before implementation. Modern hardware like a 

3.06GHz Pentium 4 [5] consumes about 31 minutes to 

conclude the benchmark task. If we were to compare the 

same hardware with one of the fastest and detailed single-

processor, the superscalar models can only simulate about 

million instructions per second. This would be taking 

over 72 days to finish one invocation of the SPEC 

CINT2000 suite. When additional features are infused 

such as cache-coherent memories and configuration 

information to boot the Linux kernel, simulation time 

becomes even more tedious. A fully configured system 

with cache-coherent simulator will run only 300,000 

instructions per second which would be translating it to 

228 days for the SPEC CINT2000 suite.  

It can be clearly understood by the slow down situation, 

there is a constant necessity for finding accurate ways and 

race up the simulation tasks. When power trend reached a 

barrier in year 2000 for microprocessors, it motivated the 

research & development of many university scientists 

aiming to explore scalable designs such as the MIT Raw 

microprocessor, the Stanford Smart Memories project, 

the Stanford Merrimac-Streaming Supercomputer, the 

MIT Scale project, the UW Wave Scalar, the UT Austin 

TRIPS, the UC Davis Synchro scalar etc. Power 

consumption and wire delays have limited the continued 

scaling of centralized systems while making multi core 

architectures increasingly popular. 

In 2007, A research on Migration from Electronics to 

Photonics in Multicore Processor by an engineer from 

National University of Singapore suggested that the 

resistive tendency of metals causes the bottleneck 

problem in interconnects. By replacing Aluminum with 

Copper, one is slightly able to improve the interconnect 

performance provisionally, however to achieve a 

complete sustainable solution so that ongoing pace of 

progress persists, it is fairly acceptable to have an idea of 

having an optical interconnect to metallic wires. Many-

core microprocessors are also likely to push performance 

per chip from the 10 giga flop to the 10tera flop range. 

[15]. Table 1 indicated the comparative studies.  
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Table 1. Comparative Analysis 

Author Techniques/ Parameters Advantages Disadvantages 

Doug Burger 

and Todd M. 

Austin (1997) 

High-performance simulation 

of modern microprocessors, 

Given finish portrayal of the apparatus set, 

including recovery and establishment 

directions and depiction of how to utilize the 

apparatuses, and depiction of the objective 

SimpleScalar design, and many insights about 

the internals of the instruments and how to 

modify them. 

The instrument set can be stretched out to 

reproduce ISAs other than SimpleScalar 

what's more, MIPS. 

Mayan 

Moudgill 

(1999) 

(RTL) processor models, 

Turandot 

Exhibited test information assembled in the 

alignment of one processor association 

displayed 

Turandot against a definite reference 

model. 

Dominik 

Madon (1999) 

Simultaneous Multithreaded 

processor, rapid 

communication system, 

efficiency of architecture 

Proposed an design which incorporates a 

product instrument to deal with settings, a fast 

correspondence framework, and in addition a 

locking framework to guarantee common 

avoidance. 

Different commitments have demonstrated 

that the successful yield of a SMT 

processor is more noteworthy than that of 

a standard superscalar processor, it can't 

be expressed with sureness that the 

outcome will be as great in homogeneous 

multitasking mode with code produced by 

a parallelizing-compiler 

Yingmin Li et. 

al (2005) 

Simultaneous multithreading 

(SMT) and chip 

multiprocessing 

(CMP) 

Utilized Turandot, Power Timer, and Hot Spot 

to investigate this outline space for a 

POWER4/POWER5-like center. 

Need to handle the testing issue of 

considering fundamentally bigger 

measures of string level parallelism and 

considering cross breeds amongst CMP 

and SMT centers. 

Benjamin Lee 

and David 

Brooks (2005) 

SMT and CMP architecture, 

voltage/frequency scaling, 

circuit re-tuning, power 

performance efficiency 

Directed power-execution reenactments of a 

few SMT and CMP models utilizing centers of 

changing many-sided quality. Our 

examinations distinguish effective pipeline 

measurements and layout the ramifications of 

utilizing a power execution proficiency metric 

for center many. 

Here power and execution are taken 

essential measurements however territory 

and interconnect impacts will move 

toward becoming noteworthy in CMP 

designs for a bigger number of cores. 

Joseph J. 

Sharkey 

(2005) 

multi-threaded 

microarchitectural simulation, 

Simultaneous Multithreading 

(SMT) model 

Given a review of M-Sim, including a point by 

point depiction of the recreated processor and 

in addition directions for the establishment and 

utilization of the M-Sim condition. 

Just the Alpha AXP parallels are bolstered 

by M-Sim. While the first Simplescalar 

likewise underpins the PISA doubles, M-

Sim does not. 

Kenneth C. 

Barr (2006) 

Memory Timestamp Record 

(MTR), Branch Predictor-

based Compression 

(BPC), 

Researches programming structures and 

methods for rapidly mimicking current store 

intelligent multiprocessors by amortizing the 

time spent to mimic the memory framework 

and branch indicators. 

Expanded checkpoint measure and the 

need to know ahead of time the small 

scale compositional subtle elements that 

must be warmed. 

R. Ubal (2007) 
Microprocessor, 

interconnection networks 

Displayed the Multi2Sim reproduction 

structure, which models the real segments of 

approaching frameworks, and is proposed to 

cover the impediments of existing test systems. 

Very complex 

Bryan Schauer 

(2008) 

Coherence protocols, 

efficiency of multicore 

processors 

Multicore processors are architected to hold 

fast to sensible power utilization, warm 

scattering, and store soundness conventions. 

Need to short out the best trouble of 

showing parallel programming methods 

(since most developers are so versed in 

consecutive programming) and in 

upgrading current applications to run 

ideally on a multicore framework. 

Zhoujia Xu 

(2008) 

Microprocessor performance, 

bandwidth performance, 

performance, 

Presentation of copper set up of aluminum has 

incidentally enhanced the interconnect  

execution, however a more problematic 

arrangement will be required with a specific 

end goal to keep the current pace of advance, 

optical interconnect is a fascinating other 

option to metallic wires. 

So as to take the optical jump, be that as it 

may, the capacity of proficient treatment 

of optical flag at low cast is required. 

Yaser 

Ahangari 

Nanehkaran 

(2013) 

Chip multiprocessor, Hyper 

Transport, printed circuit 

board, front side bus, 

multithread, DRAM memory, 

and cache. 

Portrayed a portion of the imperative 

difficulties of multi-center its essential idea, 

focal points, and an example of Dual-center 

Processors in Intel and AMD. 

Memory frameworks and interconnection 

organizes needs change 

Zaki A. Khan 

(2015) 

Interconnection Network, 

Diameter, Parallel System, 

Scalability, Load Imbalance, 

Dynamic Scheduling. 

Proposed and investigated another adaptable 

interconnection arrange topology named as 

Linear Crossed Cube (LCQ). 

Can outline more productive planning 

plan reasonable for the purposed LCQ 

arrange. 

A. J. 

Umbarkar 

(2015) 

Metaheuristic, Open 

Multiprocessing 

(Open MP), Teaching-

Learning-Based Optimization 

(TLBO), 

Unconstrained Function 

Optimization, Multi core. 

Usage of TLBO on a multi-center framework 

utilizing Open MP API's with C/C++ is 

proposed 

Can explore the proposed Open MP 

TLBO on CEC 2013 capacity bed. 

Additionally, obliged streamlining 

proving ground could be moreover tested. 
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Fatemeh. 

Dehghani 

(2016) 

Code Division Multiple 

Access technique, Network on 

Chip, Adaptive traffic 

controls, routing. 

Transmit information all the while on the 

system and advancement of the venture in a 

various leveled organize, will make a system 

as versatile. 

Increment unwavering quality and better 

utilize, blame tolerant strategies can be 

utilized to serve about nature of 

administration in this structure. 

Additionally, utilizing productive steering 

calculations as indicated by introduced 

structure and its elements in programming 

calculation to locate the ideal course will 

have the capacity to diminish the deferral 

between the transmitter and beneficiary 

notwithstanding having a consistent 

esteem. 

Liyaqat Nazir 

(2016) 

Network-on-chip, virtual 

channels, buffers. 

Introduced the execution examination of 

different flexible buffering strategies expected 

to outline miniaturized scale design switches 

for NoC 

Execution with other buffering 

approaches, elective full throughput 

flexible supports full nonexclusive 

versatile cushion and assess them for 

credit based stream control convention 

utilized as a part of NoC switch 

correspondence with neighboring 

switches. 

Swati Rustogi 

(2017) 

Multi-core, data mining, 

parallelism, Apriori. 

An enhanced Apriori method for multi-center 

condition is proposed. 

It can be investigated from the perspective 

of load on the centers. 

 

III.  SIMULATION FRAMEWORK 

In past years the use of Simple Scalar simulators 

became very common [8]. It acted as base designs of 

some of the Multi2Sim modules too. It also shapes an 

out-of-order superscalar processor. A number of add-ons 

have been extended in Simple Scalar to design in a more 

precise way the certain aspects of superscalar processors 

keeps demanding. However, it is not always easy that a 

Simple Scalar model can be made to implement latest 

parallel micro architectures without doing any 

modifications in the underlying morphology. Still two 

Simple Scalar Siddons were developed to adapt 

multithreading in the SSMT [9] and M-Sim [10] 

simulators. These tools are suitable to fabricate designs 

stationed on simultaneous multithreaded processors, with 

the constraint of implementing a set of workloads 

progressively. The strategy of fixed resource sharing 

among threads also proves to be a limitation in the case. 

An endeavor Turandot simulator [11,12] is further 

inventive effort which simulates a PowerPC architecture. 

Along with the aid of simultaneous multithread SMT the 

project was extended for multicore. This effort is made 

available by the Power-Timer tool [13] as a practical 

implementation. Tornado addons for parallel micro 

architectures are ranked under highly researched topics 

(e.g., [14]), are not available as open source. Both Simple 

Scalar and Turandot are application-only tools. This 

means that the simulators would be straightly running the 

application and simulates its interaction with an 

underlying virtual operating system. The tool is not 

prepared to meet the requirements of architecture-specific 

privileged instruction set as applications cannot be 

allowed to implement it. The only merit to offer is 

isolation of the execution instances so that statistics are 

not affected by a simulation of a real operating system. 

Multi2Sim is to be categorized as an application-only 

simulator here. 

A key hallmark of chip simulators is “timing-first 

approach”. It was initiated by GEMS and replicated in 

Multi2Sim as an addon feature. This approach where 

timing module is supposed to discover the state of the 

processor pipeline, instructions helps in spanning over it 

in an analytical manner. Next functional module is 

executed along with the instructions dynamically till it 

attains the commit stage. Thus, legitimate execution paths 

are perpetually guaranteed by a formerly developed 

robust simulator. Multi2Sim can be downloaded as a 

compressed tar file, and has been tested on 32 bit and 64 

bit machine architectures, with Ubuntu (Linux OS). The 

simulator compilation requires the library libbfd, not 

preset in some Linux distributions by default. All the 

executables are required to be compiled statically as 

dynamic linking is not supported. A command line to 

compile a program composed by a single source file, 

executables usually have an approximate minimum size 

of 4MB, since all libraries are linked with it [17, 25].  

The following commands are supposed to do us favor 

in a command terminal to compile it: 

 
 
tar xzf multi2sim.tar.gz 
cd multi2sim 
./configure 
make 

 

On simulation bench, booting an application is the 

operation where an executable file is selectively aligned 

into different virtual memory regions. In physical system, 

the operating system is responsible for these operations. 

In comparison to other simulators (e.g. SimpleScalar), 

Multi2Sim keeps its orientation away from supporting the 

simulation of an entire Operating System and is confined 

for running compiled applications only. Thus, loading 

process must be proactively organized by the simulator at 

the time of initialization.  

The gcc bundle that dissipates executable files as 

output are intended to adapt the ELF (Executable and 

Linkable Format) specification. The format design is 

earmarked to comply with shared libraries, core dumps 

and object code. An ELF file is made up of an ELF 

header, a set of segments and a set of sections. Typically, 

one or more sections are enclosed in a segment. ELF 
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sections are identified by a name and contain useful data 

for program loading or debugging. They are labeled with 

a set of flags that indicate its type and the way they have 

to be handled during the program loading[3]. 

When cited, “libbfd” library equips the analysis of 

the ELF file. It manifests the required operation to query 

the executable file sections and access its data. The loader 

module probes the entire set and derives out their 

characteristic information like starting address, size, flags, 

and data. When flags stipulate the loadability of a section, 

its data is replicated into memory with a respective 

starting address. Loading stage is further followed by the 

operation of initializing the process stack. With a 

tendency of growing towards lower region, stack posse’s 

dynamically variable length memory. The virtual address 

of its initial address is ought to be “0x7fffffff”. 

Local variables & parameters are stored in this program 

stack & while any application is executed the stack 

pointer (register $sp) gets managed by the own 

application code. In contrast, when the program starts, it 

expects some data in it. This loading operation of ELF 

into virtual memory and analyzing the simulator 

configuration, is mainly divided into two phases: 

 

 Functional Simulation: The engine which supports 

the machine design here is MIPS32. It is developed 

as an autonomous library and supplies interface to 

the simulator. This simulator kernel is responsible 

for incurring the functions to create/destroy software 

contexts, initiate application loading, enumerate 

existing contexts, consult their status, execute a new 

instruction and handle speculative execution.  

 Detailed Simulation: In Multi2Sim, “Execution-

Driven” simulation is performed by the detailed 

simulator using former functional engine contained 

in Libkernel. In each cycle, context state is 

revised by sequence of calls to the kernel on 

periodic basis. The latest execution of machine 

instructions invokes analysis process in detailed 

simulator about its operational nature and records 

the function latencies consumed by physical entities. 

 

IV.  MULTI-PROCESSING & PIPELINING DURING 

SIMULATION 

The pipeline process is basically classified into five 

stages. First fetch stage inputs the instructions from cache 

and dispatches them into an IFQ (Instruction Fetch 

Queue). Next to decode these instructions, decode/ 

rename stage inputs these instructions from an IFQ, 

renames its registers and allocate them a block in the 

ROB (Reorder Buffer). When the input operands are 

signaled as available, the decoded instructions are placed 

into a RQ (Ready Queue). Further in issue stage, 

instructions from the RQ are processed and transmitted to 

a respective functional unit. In Ex (Execute Stage) the 

functional units process the task and store its result back 

into a record file. Finally, the commit stage retires 

instructions from the ROB in program order [20-24].  

This processing flowchart is comparative to the one 

designed by the SimpleScalar tool set [8]. In additional 

this uses a ROB, an IQ (Instruction Queue) and a 

physical record file in place of integrated RUU (Register 

Update Unit). The sharing strategy of each stage can be 

varied in a multithreaded pipeline [16] with the Ex stage 

being the only exception. This scheme aids in achieving 

superior overall throughput by making use of 

multithreading. It takes advantage of the sharing of 

functional units, located in the Ex stage. Thus, utilization 

is subsequently increased for increasing performance [17-

19].  

Fig.2 depicts two of the pipeline flow model classified 

on the basis of stages. Fig.2(a) Stages are shared here 

among various threads, whereas in Fig.2(b) Except “Ex” 

stages are looped as many times as endured by hardware 

threads. The application of Multi2Sim aids in accounting 

variable stage sharing strategies. The multithread design 

can be classified as fine-grain (FGMT), coarse-grain 

(CGMT) or simultaneous multithread (SMT), depending 

on the stages sharing and thread selection protocols. 

 

 

Fig.2. Chain of Instruction’s Processing in Pipelining 

V.  EXPERIMENT ON SIMULATOR & RESULTS 

Factors like performance, power/area budget, 

bandwidth, technology, system software etc. gets affected 

while inventing out for the best possible design of chip in 

multiprocessing environments. Latest researches try to 

orient towards comprehensive analysis of the 

implementation issues for a design class of chip 

multiprocessor interconnection network.  

Our work does a comparative study of three 

interconnect network i.e. ring, mesh and torus. 

Experiments were performed using simulation to find out 

the best possible combination of core and network for 

better performance. 

A.  Experimental Setup for Ring Topology Interconnect: 

Experiment was performed for Ring Topology 

Interconnect where number of cores were varied as 2, 4, 8, 

and 16. The simulation benchmark has to be configured 

as follows.  

The configuration file for 8 cores are shown here: 
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CPU configuration 
[General] 
Cores = 8 
Threads = 1 
 

Context Configuration 
[ Context 0 ] 

Exe = radix.x86 
args = -p1 -r128 -n262 -m524 
Stdout = context-0.out 

[ Context 1 ] 
Exe = specrand_base.x86 
Args = 55 99 
Stdout = context-1.out 

[ Context 2 ] 
Exe = sort.x86 
StdOut = context-2.out 

[ Context 3 ] 
Exe = lu.x86 args = -p1 -n8 -b2 
StdOut = context-3.out 
Network Configuration  

[Network.net0] 
DefaultInputBu_erSize = 1024 
DefaultOutputBu_erSize = 1024 
DefaultBandwidth = 256 

 
; 6 switches 

[Network.net0.Node.sw0] 
Type = Switch 
[Network.net0.Node.sw1] 
Type = Switch 
[Network.net0.Node.sw2] 
Type = Switch 
[Network.net0.Node.sw3] 
Type = Switch 
[Network.net0.Node.sw4] 
Type = Switch 
[Network.net0.Node.sw5] 
Type = Switch 
[Network.net0.Node.n0] 
Type = EndNode 
[Network.net0.Node.n1] 
Type = EndNode 
[Network.net0.Node.n6] 
Type = EndNode 
[Network.net0.Node.n7] 
Type = EndNode 
[Network.net0.Node.n2] 
Type = EndNode 
[Network.net0.Node.n3] 
Type = EndNode 
[Network.net0.Node.n4] 
Type = EndNode 
[Network.net0.Node.n5] 
Type = EndNode 
[Network.net0.Node.n8] 
Type = EndNode 
[Network.net0.Node.n9] 
Type = EndNode 
 

; Making a Ring with 6 switches 
[Network.net0.Link.sw0-sw1] 
Source = sw0 
Dest = sw1 
Type = Bidirectional 
[Network.net0.Link.sw1-sw2] 
Source = sw1 
Dest = sw2 
Type = Bidirectional 
[Network.net0.Link.sw2-sw3] 
Source = sw2 

Dest = sw3 
Type = Bidirectional 
[Network.net0.Link.sw3-sw4] 
Source = sw3 
Dest = sw4 
Type = Bidirectional 
[Network.net0.Link.sw4-sw5] 
Source = sw4 
Dest = sw5 
Type = Bidirectional 
[Network.net0.Link.sw5-sw0] 
Source = sw5 
Dest = sw0 
Type = Bidirectional 
 

; Links from Switches to Main Memory 
[Network.net0.Link.sw0-n2] 
Source = sw0 
Dest = n2 
Type = Bidirectional 
[Network.net0.Link.sw1-n3] 
Source = sw1 
Dest = n3 
Type = Bidirectional 
[Network.net0.Link.sw2-n4] 
Source = sw2 
Dest = n4 
Type = Bidirectional 
[Network.net0.Link.sw3-n5] 
Source = sw3 
Dest = n5 
Type = Bidirectional 
[Network.net0.Link.sw4-n8] 
Source = sw4 
Dest = n8 
Type = Bidirectional 
[Network.net0.Link.sw5-n9] 
Source = sw5 
Dest = n9 
Type = Bidirectional 
 

; Links from Switches to L2 caches 
[Network.net0.Link.sw1-n0] 
Source = sw1 
Dest = n0 
Type = Bidirectional 
[Network.net0.Link.sw2-n1] 
Source = sw2 
Dest = n1 
Type = Bidirectional 
[Network.net0.Link.sw3-n6] 
Source = sw3 
Dest = n6 
Type = Bidirectional 
[Network.net0.Link.sw4-n7] 
Source = sw4 
Dest = n7 
Type = Bidirectional 

 

Simulation results for Ring Topology Interconnect 

shows that there is significant improvement in “Dispatch 

IPC” with number of cores. It is to be noted here that, 

initially the “Dispatch IPC” increases but after 4 cores it 

remains constant. The “Issue IPC” also increases up to 4 

cores and after 4 cores it comes to steady state. There is 

significant improvement in “Commit IPC” for Ring 

Topology with number of cores as 2 and 4. After 4 cores, 

no significant improvement in commit IPC is seen. The 

average latency increases for 2 and 4 cores. For 8 and 16 
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cores, it remains constant. Therefore, it can be concluded 

the 4 cores is acting as optimal number for Ring 

Topology Interconnect. 

B.  Experimental Setup for Mesh Topology Interconnect: 

Experiments performed for Mesh Topology 

Interconnect had the variation for number of cores as 2, 4, 

8, and 16. The simulation was setup by various 

configuration files.  

The configuration file for 8 cores are shown here: 
 
CPU Configuration  

[General] 
Cores = 8 
Threads = 1 
 

Context Configuration  
[ Context 0 ] 

Exe = radix.x86 
args = -p1 -r128 -n262 -m524 
Stdout = context-0.out 

[ Context 1 ] 
Exe = specrand_base.x86 
Args = 55 99 
Stdout = context-1.out 

[ Context 2 ] 
Exe = sort.x86 
StdOut = context-2.out 

[ Context 3 ] 
Exe = lu.x86 args = -p1 -n8 -b2 
StdOut = context-3.out 
Network Configuration s 
[Network.net0] 
DefaultInputBu_erSize = 1024 
DefaultOutputBu_erSize = 1024 
DefaultBandwidth = 256 
 

; 6 switches 
[Network.net0.Node.sw0] 
Type = Switch 
[Network.net0.Node.sw1] 
Type = Switch 
[Network.net0.Node.sw2] 
Type = Switch 
[Network.net0.Node.sw3] 
Type = Switch 
[Network.net0.Node.sw4] 
Type = Switch 
[Network.net0.Node.sw5] 
Type = Switch 
[Network.net0.Node.n0] 
Type = EndNode 
[Network.net0.Node.n1] 
Type = EndNode 
[Network.net0.Node.n6] 
Type = EndNode 
[Network.net0.Node.n7] 
Type = EndNode 
[Network.net0.Node.n2] 
Type = EndNode 
[Network.net0.Node.n3] 
Type = EndNode 
[Network.net0.Node.n4] 
Type = EndNode 
[Network.net0.Node.n5] 
Type = EndNode 
[Network.net0.Node.n8] 
Type = EndNode 
[Network.net0.Node.n9] 

Type = EndNode 
 

; Making a Mesh with 6 switches 
[Network.net0.Link.sw0-sw1] 
Source = sw0 
Dest = sw1 
Type = Bidirectional 
[Network.net0.Link.sw1-sw2] 
Source = sw1 
Dest = sw2 
Type = Bidirectional 
[Network.net0.Link.sw2-sw3] 
Source = sw2 
Dest = sw3 
Type = Bidirectional 
[Network.net0.Link.sw3-sw4] 
Source = sw3 
Dest = sw4 
Type = Bidirectional 
[Network.net0.Link.sw4-sw5] 
Source = sw4 
Dest = sw5 
Type = Bidirectional 
[Network.net0.Link.sw5-sw0] 
Source = sw5 
Dest = sw0 
Type = Bidirectional 
[Network.net0.Link.sw1-sw4] 
Source = sw1 
Dest = sw4 
Type = Bidirectional 
 

; Links from Switches to Main Memory 
[Network.net0.Link.sw0-n2] 
Source = sw0 
Dest = n2 
Type = Bidirectional 
[Network.net0.Link.sw1-n3] 
Source = sw1 
Dest = n3 
Type = Bidirectional 
[Network.net0.Link.sw2-n4] 
Source = sw2 
Dest = n4 
Type = Bidirectional 
[Network.net0.Link.sw3-n5] 
Source = sw3 
Dest = n5 
Type = Bidirectional 
[Network.net0.Link.sw4-n8] 
Source = sw4 
Dest = n8 
Type = Bidirectional 
[Network.net0.Link.sw5-n9] 
Source = sw5 
Dest = n9 
Type = Bidirectional 
 

; Links from Switches to L2 caches 
[Network.net0.Link.sw1-n0] 
Source = sw1 
Dest = n0 
Type = Bidirectional 
[Network.net0.Link.sw2-n1] 
Source = sw2 
Dest = n1 
Type = Bidirectional 
[Network.net0.Link.sw3-n6] 
Source = sw3 
Dest = n6 
Type = Bidirectional 
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[Network.net0.Link.sw4-n7] 
Source = sw4 
Dest = n7 
Type = Bidirectional 

 

For this topology too, initially the “Dispatch IPC” was 

noted to be increased till 4 cores & remains constant 

afterwards. The “Issue IPC” was showing the same tends 

as “Dispatch IPC” i.e. increases up to 4 cores and after 

that there was no remarkable variation. From 2 to 4 cores, 

the “Commit IPC” showed improvement and after 4 cores 

no significant improvement was observed on simulation 

bench. As the number of core is increased from 2 to 4, the 

average latency increases. After 4 cores i.e. for core 8 and 

16, average latency is seen as constant. Therefore, it can 

be concluded the 4 cores is acting as optimal number for 

Mesh Topology Interconnect too. 

C.  Experimental Setup for Torus Topology Interconnect: 

Experiments performed for Torus Topology 

Interconnect consisted the variation for number of cores 

as 2, 4,8, and 16. The simulation was setup by various 

configuration files.  

The configuration file for 8 cores are shown here: 

 
CPU configuration  

[General] 
Cores = 8 
Threads = 1 
 

Context Configuration  
[ Context 0 ] 

Exe = radix.x86 
args = -p1 -r128 -n262 -m524 
Stdout = context-0.out 

[ Context 1 ] 
Exe = specrand_base.x86 
Args = 55 99 
Stdout = context-1.out 

[ Context 2 ] 
Exe = sort.x86 
StdOut = context-2.out 

[ Context 3 ] 
Exe = lu.x86 
args = -p1 -n8 -b2 
StdOut = context-3.out 
 

Network Configurations 
[Network.net0] 
DefaultInputBu_erSize = 1024 
DefaultOutputBu_erSize = 1024 
DefaultBandwidth = 256 
 

; 6 switches 
[Network.net0.Node.sw0] 
Type = Switch 
[Network.net0.Node.sw1] 
Type = Switch 
[Network.net0.Node.sw2] 
Type = Switch 
[Network.net0.Node.sw3] 
Type = Switch 
[Network.net0.Node.sw4] 
Type = Switch 
[Network.net0.Node.sw5] 
Type = Switch 

 
; 2 L2s 

[Network.net0.Node.n0] 
Type = EndNode 
[Network.net0.Node.n1] 
Type = EndNode 
[Network.net0.Node.n6] 
Type = EndNode 
[Network.net0.Node.n7] 
Type = EndNode 
 

; 4 Main Memory access points 
[Network.net0.Node.n2] 
Type = EndNode 
[Network.net0.Node.n3] 
Type = EndNode 
[Network.net0.Node.n4] 
Type = EndNode 
[Network.net0.Node.n5] 
Type = EndNode 
[Network.net0.Node.n8] 
Type = EndNode 
[Network.net0.Node.n9] 
Type = EndNode 
 

; Making a Torus with 6 switches 
[Network.net0.Link.sw0-sw1] 
Source = sw0 
Dest = sw1 
Type = Bidirectional 
[Network.net0.Link.sw1-sw2] 
Source = sw1 
Dest = sw2 
Type = Bidirectional 
[Network.net0.Link.sw2-sw3] 
Source = sw2 
Dest = sw3 
Type = Bidirectional 
[Network.net0.Link.sw3-sw4] 
Source = sw3 
Dest = sw4 
Type = Bidirectional 
[Network.net0.Link.sw4-sw5] 
Source = sw4 
Dest = sw5 
Type = Bidirectional 
[Network.net0.Link.sw5-sw0] 
Source = sw5 
Dest = sw0 
Type = Bidirectional 
[Network.net0.Link.sw0-sw2] 
Source = sw0 
Dest = sw2 
Type = Bidirectional 
[Network.net0.Link.sw0-sw3] 
Source = sw0 
Dest = sw3 
Type = Bidirectional 
[Network.net0.Link.sw0-sw4] 
Source = sw0 
Dest = sw4 
Type = Bidirectional 
[Network.net0.Link.sw1-sw3] 
Source = sw1 
Dest = sw3 
Type = Bidirectional 
[Network.net0.Link.sw1-sw4] 
Source = sw1 
Dest = sw4 
Type = Bidirectional 
[Network.net0.Link.sw1-sw5] 
Source = sw1 
Dest = sw5 
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Type = Bidirectional 
[Network.net0.Link.sw2-sw4] 
Source = sw2 
Dest = sw4 
Type = Bidirectional 
[Network.net0.Link.sw2-sw5] 
Source = sw2 
Dest = sw5 
Type = Bidirectional 
[Network.net0.Link.sw3-sw5] 
Source = sw3 
Dest = sw5 
Type = Bidirectional 
 

;Links from Switches to Main Memory 
[Network.net0.Link.sw0-n2] 
Source = sw0 
Dest = n2 
Type = Bidirectional 
[Network.net0.Link.sw1-n3] 
Source = sw1 
Dest = n3 
Type = Bidirectional 
[Network.net0.Link.sw2-n4] 
Source = sw2 
Dest = n4 
Type = Bidirectional 
[Network.net0.Link.sw3-n5] 
Source = sw3 
Dest = n5 
Type = Bidirectional 
[Network.net0.Link.sw4-n8] 
Source = sw4 
Dest = n8 
Type = Bidirectional 
[Network.net0.Link.sw5-n9] 
Source = sw5 
Dest = n9 
Type = Bidirectional 
 

; Links from Switches to L2 caches 
[Network.net0.Link.sw1-n0] 
Source = sw1 
Dest = n0 
Type = Bidirectional 
[Network.net0.Link.sw2-n1] 
Source = sw2 
Dest = n1 
Type = Bidirectional 
[Network.net0.Link.sw3-n6] 
Source = sw3 
Dest = n6 
Type = Bidirectional 
[Network.net0.Link.sw4-n7] 
Source = sw4 
Dest = n7 
Type = Bidirectional 

 

The simulation results for Torus Topology 

Interconnect again showed that there is no significant 

improvement in “Dispatch IPC” after 4 cores. Initially 

the “Dispatch IPC” increases till 4 cores & remains same 

afterwards. As we increase cores from 2 to 4, the “Issue 

IPC” increases proportionally. After 4 cores, it remains 

almost constant. The “Commit IPC” was seen to be 

rapidly changing from 2 to 4 cores. After that i.e. for 8 

and 16 cores, no significant improvement in “Commit 

IPC” was seen. The average latency increases for 2 and 4 

cores. After that i.e. for 8 and 16 cores it too remains 

constant. Hence it can be concluded that number of cores 

which is giving best result for Torus Topology 

Interconnect is 4 cores. The combined performance of the 

three topologies for interconnect network at their best 

suitable core i.e. 4 cores for various parameters like 

“Dispatch IPC”, “Issue IPC”, “Commit IPC” and 

“Average Latency”. 

 

 

Fig.3. Simulation Result’s Comparison 

 

Fig.4. Torus Topology Simulation Result 

 

VI.  CONCLUSIONS 

On simulation environment, various scenarios of 

multicore processing were observed & optimal number of 

cores requirement was found to be 4. Hence, combined 

performance for various parameters like dispatch IPC, 

issue IPC, commit IPC and average latency of Ring, 

Mesh & Torus interconnect network topologies for 4 

cores was observed & compared. Since this work is 

devoted to find the best interconnect network topology, 

the average latency is considered to compare the 

networks. The average latency is observed to be 

minimum for Torus Topology and also all IPCs are 

observed to be minimum. It is to be concluded that the 

Torus with 4 cores is the best suitable interconnect 

network topology for designing. The “timing-first” 

scheme supported by Multi2Sim framework helps in 

taking account of efficiency & robustness in as 

customized manner. It also provides opportunity of 

experimenting simulations on a variety of deep levels. 

The uniqueness in this context is the execution of 
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“timing-first” simulation along with functional units. 

Hence there is no requirement to simulate a whole 

operating system. Executing parallel workloads with 

dynamic threads creation would be sufficient. The 

simulation framework which we have used has been 

developed for adapting the key attributes of popular 

simulators like partitioning functional and timing 

simulation, SMT and multiprocessor support and cache 

coherence. The module of the simulator also supports 

application of execution-driven simulation like 

SimpleScalar. This design facilitates the unitization of the 

functional kernel as an independent library plus allows 

the definition of the instruction set to be mapped into a 

central file (machine.def). 
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