
I. J. Computer Network and Information Security, 2017, 12, 11-17
Published Online December 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2017.12.02

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 12, 11-17

A Programmable and Managed Software Defined

Network

Priyesh Kumar
1
, Rajnarayan Dutta

2
, Rakesh Dagdi

3
, Dr Kavitha Sooda

4
, Archana Naik

5

1Student, Department of CSE, Nitte Meenakshi Institute of Technology, Bengaluru, Karnataka, India
2Student, Department of CSE, Nitte Meenakshi Institute of Technology, Bengaluru, Karnataka, India
3Student, Department of CSE, Nitte Meenakshi Institute of Technology, Bengaluru, Karnataka, India

4Associate Professor, Department of CSE, BMSCE, Bengaluru, Karnataka, India
5Associate Professor, Department of CSE, NMIT, Bengaluru, Karnataka, India

E-mail: 1 priyesh9875@gmail.com, 2 rxdsrex@gmail.com, 3 rdagdi2@gmail.com, 4 kavithasooda@gmail.com,
5 archananaik05@gmail.com

Received: 21 June 2017; Accepted: 13 October 2017; Published: 08 December 2017

Abstract—Software Defined Networking is a paradigm-

shifting technology in the field of computer networking.

It empowers network administrators by giving them the

ability to manage the network services through

abstraction of the low-level network functionalities. This

technology simplifies networking and makes it

programmable. This paper presents an implementation of

this new paradigm of networking, which can replace the

currently existing legacy networking infrastructure to

provide more control over the network, perform a better

analysis of the network operation and hence program the

network according to the needs of the network

administrator. This implementation also empowers the

network administrators to provide Quality of Service to

its users that are connected to the network and uses the

services of the network. Therefore, it benefits both the

network administrator and the users. Also, the ping

latency in the network is reduced by 5-10%, and the

number of packets in is reduced by 60-70% in the

solution developed depending on the size of the network.

Index Terms—Network management, OpenFlow,

Quality of Service (QoS), RYU SDN Controller, SDN.

I. INTRODUCTION

The conventional architecture of computer networks

that facilitate the current day operation of the internet and

is prevalent in most of the implementations use switches

and routers that are autonomous in their working. Each

switch has its control plane and data-forwarding plane

embedded into one, which autonomously makes the

forwarding decisions and forwards the packets to its

destination. When switches or routers gets connected to a

computer network, it performs actions like the

construction of a spanning tree to avoid the formation of

cycles in the network and to determine its neighbouring

nodes in that network. Messages are exchanged to pass

information of their neighbours and resulting topologies

to the other nodes. Therefore, each node has some idea of

the topology of which it is a part.

However, the legacy approach has certain drawbacks,

which are as follows:

i. To setup topology, the networking devices need

determining the neighbouring nodes, and

construction of spanning tree, which leads to

routers requiring a lot of processing capability. It

results in expensive routers and switches. A

certain amount of time is also required to identify

loop-free topology and the neighbouring nodes [1].

ii. Since a conventional switch or router can have the

information of only a part of the network, it can

lead to poor routeing decisions and hence can be a

bottleneck in the performance of the network.

iii. Due to advancements in processor technology

every year, which offers higher computational

capabilities at lower costs, makes the existing

infrastructure obsolete. Legacy hardware is unable

to provision the Packet Flow, and Throughput

needed to meet the ever-increasing bandwidth

requirements, compared to new hardware. At

present, replacing the entire router or switch is the

only option for network operators, which is not

feasible from the Operating expense [2] and

Capital expenditure [3] point of view.

iv. Devices such as routers and switches are

compliant with industry standards only to a certain

level, and beyond that, these products are

developed by different vendors to meet the

requirements in a non-standard way. This practice

leaves little room for development and leads to

vendor locked networks.

Software Defined Networks (SDN) got introduced to

overcome the drawbacks of legacy networks. This new

paradigm in computer networks promises to overcome

the barriers, to make the network more programmable,

efficient, and secure.

The idea behind SDN is to separate the control and

data forwarding plane. In other words, decoupling the

two planes. Now if the functioning of the two planes is

12 A Programmable and Managed Software Defined Network

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 12, 11-17

kept independent, then each plane can be optimised

independently, resulting in an increased efficiency.

SDN incorporates concepts for network and network

topology virtualization and enables customised control

planes. Decoupling the two planes involves leaving the

data plane with network hardware and moving the control

plane into a software layer. By doing this, there is no

need for execution of policies on hardware. Hence, SDN

control software functions as the control plane and makes

the network virtualization possible.

OpenFlow is a standard-based protocol, which allows a

centralised controller to monitor and manage the network.

OpenFlow provisions the controller to be able to

communicate with multiple vendor devices, various types

of hardware (routers, switches, load balancers and others),

using a standard interface. It also enables the control

logic to decide on how to perform packet forwarding and

packet rules to be put down into a hardware abstraction,

where the individual network device can follow them [4].

Fig.1. The SDN System Architecture [5]

The above figure (Fig. 1) contains a graphical

representation of the SDN architecture as envisioned by

the Open Networking Foundation (ONF). The following

section explains the figure.

SDN architectures have three components or groups of

functionality [5]:

i. Application Layer: Application layer consists of

programs that communicate behaviours and needed

resources with the SDN Controller via application

programming interface (APIs). Also, the

applications can build an abstracted view of the

network by collecting information from the

controller for decision-making purposes. Example

for SDN applications would be an application built

to recognise suspicious network activity for security

reasons.

ii. Control Layer: It consists of the SDN Controller

that is a program, which acts as an intermediary

between the SDN applications and networking

components. Its functions involve relaying the

instructions received from the application layer to

the networking components and extracting

information about the network from the hardware

devices and communicating it back to the SDN

Applications which includes statistics and events

that take place in the networking devices.

iii. Infrastructure Layer: It consists of the SDN

networking devices that are the devices, which have

forwarding and data processing capabilities for the

network to operate. It includes switches with only

the forwarding plane like OpenFlow switches.

II. ADVANTAGES OF SDN APPROACH

SDN centralises the functionality of network

management and makes network administration effortless

by providing efficient network management with proper

analytics. A centralised controller can accomplish

programming of the network, load balancing and

prioritisation of packets and hence be saving time and

resources. It has a great scope in upcoming technologies

like enterprise cloud, and distributed computing, as better

networks lead to its efficient use.

SDN offers the following advantages over the

conventional networking approach:

i. Since the control plane gets decoupled from the

data plane, the switches/routers become very

simple in functionality. They need to forward a

packet to a port based on the flow installed in the

forwarding table by the controller.

ii. The switches/routers only need a multiplexing

circuit to carry out the packet forwarding. There is

no requirement for significant computation power

as in conventional networks.

iii. Since only the controller needs to know the

topology, it saves a considerable amount of time,

as the nodes in the network do not need to

discover all the other nodes in the network except

their neighbours.

iv. Optimisation of both planes is possible

independently.

v. Paths need not be pruned between two nodes to

avoid cycles. In fact, they can be used to increase

the throughput of the network or in the case of link

failures.

vi. This approach is easy to scale, and no complicated

configuration is needed.

vii. Most importantly, a centralised control plane

allows us to make forwarding decisions centrally

across the domain of the SDN rather than at each

hop in the network.

III. RELATED WORK

Some of the key ideas of SDN are the introduction of

dynamic programmability in forwarding devices through

open southbound interfaces, the decoupling of the control

and data plane, and the global view of the network by

 A Programmable and Managed Software Defined Network 13

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 12, 11-17

logical centralization of the “network brain”. While data

plane elements became dumb but on the other hand, they

have become highly efficient and programmable packet

forwarding devices. The controller, a single entity, now

represents the control plane elements. Applications

implementing the network logic run on top of the

controller and are much easier to develop and deploy

when compared to traditional networks [3].

H. Kim and N. Feamster in [6] shows that SDN is an

emerging networking paradigm that gives hope to change

the limitations of current network infrastructures. First, it

breaks the vertical integration by separating the network’s

control logic (the control plane) from the underlying

routers and switches that forward the traffic (the data

plane). Second, the disaggregation of the control and data

plane makes the network switches only a simple

forwarding device, and the control logic is moved to a

logically centralised controller, simplifying policy

enforcement and network configuration [6].

SDN has successfully created an innovative research

and development environment, promoting the advances in

several areas. These can pertain to design of switches and

controller platforms, development in scalability and

performance of various devices and architectures, and

improvement in security of networks. Emerging topics

that require further research are extending SDN towards

carrier transport networks, the realisation of the network-

as-a-service cloud-computing paradigm, or software-

defined environments (SDE).

IV. IMPLEMENTATION

In this implementation of SDN for better and

programmable networks, the developed Web-based

Network Management System enables network engineers

and administrators to centrally manage and control the

network from anywhere in the scope of the network.

This implementation uses RYU SDN controller [7] as

the network operating system, which in collaboration

with modern and sophisticated web technologies creates a

user-friendly Network Management System.

The system monitors network devices, nodes,

connectivity, traffic and many more events as well as

basic configurations of devices.

The system is a collaboration of three layers as

envisioned by ONF:

i. Control layer:

- RYU SDN controller is used as the control software

in the implementation.

- When there is any activity in the infrastructure layer,

the controller generates an event corresponding to it,

and these events can be consumed by the

applications built upon it.

ii. Applications layer:

- Control applications to monitor and manage

network elements and provide interfacing services

(APIs).

- Web application (Dashboard, based on react-

material-admin-template [8]) to interact with a

controller in the browser.

iii. Infrastructure layer:

- It consists of the all the physical elements like hosts

and OpenFlow switches.

4.1. Web Console (Dashboard):

The figure below (Fig. 2) illustrates the architecture of

the developed web console and an explanation afterwards.

Fig.2. Block diagram of RYU web console

This front-end implementation is a web app developed

to manage and control the network through a web-based

interface consisting of various applications. The figure

(Fig. 2) illustrates the architecture of the application and

the interaction between all components.

Explanation of the implementation:

 Web applications are developed to interact with the

controller.

 API and web server acts as a bridge between

controller, network elements and web apps.

 It consists of three main components:

- Topology viewer: It shows whole network topology

as an interactive graph.

- QoS Editor: Allows administrators to add or remove

QoS users and view QoS switches.

- Network manager: It shows all connected network

elements like flows, port statistics of switches and

allows administrators to add or remove flows as

needed.

 Grafana: Displays network traffic, packet flow and

errors in a switch in the form of graphs [9].

4.2. Complete Implementation:

The implementation shows how all the components

developed for separate purposes are combined to interact

with each other, to offer various services and demonstrate

an SDN.

14 A Programmable and Managed Software Defined Network

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 12, 11-17

The following figure (Fig. 3) illustrates the complete

architecture of the implementation and an explanation

subsequently.

Fig.3. Complete Architecture of Our Implementation

Explanation of the implementation:

Two RYU SDN controllers (similar to Faucet [10]) are

used in the implementation. One controller is for

managing the network operations, and the other controller

is for monitoring the network.

First controller: In this controller, there are four

applications along with their dependencies.

 Switch:

- It is the in-memory implementation of OpenFlow

switch based on OpenFlow protocol 1.3.

- It is an extended version of RYU simple_switch_13

application.

- Its main job is to configure new switch, which

enters the network and configure their multiple

tables.

- Each switch has four tables:

 Table 0: ACL table. This table has flow entries

for access control, logging and firewall and load

balancing.

 Table 1: L2 Filtering table. This table has flow

entries to separate traffic, redirect.

 Table 2: Forwarding table. This table has

forwarding rules for non-QoS uses.

 Table 3: QoS table. This table has forwarding

rules for QoS users.

- It handles forwarding of packets for normal users.

 Graph:

- Build an in-memory graph of network elements in

the network.

- It handles the discovery of switches, host links and

ports.

- It calculates best effort path between a given source

and destination.

 QoS(Quality of Service):

- It configures each switch as QoS switch

- It handles packet forwarding of prioritised/QoS

users.

 DpConfig: Maintains switch specific configurations

[10].

Second controller: This controller monitors the

network using following components:

 Gauge [10] application:

- Polls statistics of each configured switch and puts it

in the respective database.

 Web Console:

- Provides interface to interact with a controller.

- Displays hosts, switches, and their details.

- Manage QoS users and network parameters.

 Grafana: Data visualization & monitoring dashboard

for network statistics [8].

 RethinkDB and InfluxDB are NoSQL databases for

storing user and network statistics respectively.

API Services: Provides APIs for interactions with

OpenFlow switches.

V. PERFORMANCE EVALUATION

Ping is used for testing the reachability of a host on an

Internet Protocol (IP) network. It measures the round-trip

time for messages sent from the originating host to a

destination computer that is echoed back to the source. A

fast ping means a more responsive connection. Ping time

may get affected due to various reasons including

congestion in the network, the bandwidth of the network,

and the load on the server. Lesser is the ping time; better

is the network performance. Also, when a switch gets a

packet with a new address, it sends the packet to the

controller to define a path for the packet. The controller

determines the path and makes an entry in the forwarding

table of the switch for handling future packets with the

same origin and destination. This process is called

Packet-In. So, the performance of this implementation is

checked by comparing Ping time and the number of

packet-in of the developed implementation with the

default implementation of the RYU SDN framework.

The following tables and figures (Table 1 & Fig. 4, 5)

contrast the comparison between the implementation

developed with the default implementation for a linear

topology.

 Linear topology

 A Programmable and Managed Software Defined Network 15

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 12, 11-17

Table 1. Ping time and Packet-in Variation between Developed System

and Default System in Linear Topology.

Fig.4. Ping Variation between Developed and Default Implementation

in Linear Topology

Fig.5. Packet-In Variation between Developed and Default

Implementation in Linear Topology

As evident from the comparisons above between the

default and the developed implementation in a linear

network topology, the both parameters (ping & packet-in)

shows a considerable improvement in the developed

implementation. Ping latency got reduced in the

developed implementation compared to the default

implementation in the same topology. Moreover, there is

a considerably reduced and stable packet-in in the

developed implementation when compared to the default

implementation.

The following tables and figures (Table 2 & Fig. 6, 7)

contrast the comparison between the implementation

developed with the default implementation for a tree

topology.

 Tree topology

Table 2. Ping time and Packet-in variation between Developed System

and Default System in Tree Topology

Fig.6. Ping Variation between Developed and Default Implementation

in Tree Topology

Fig.7. Packet-In Variation between Developed and Default

Implementation in Tree Topology

As evident from the comparisons above between the

default and the developed implementation in a tree

network topology, the both parameters (ping & packet-in)

shows a considerable improvement in the developed

implementation. Ping latency got reduced in the

developed implementation compared to the default

implementation in the same topology Moreover, here is a

much reduced and stable packet-in seen in the developed

implementation when compared to the default

implementation. Here in the tree topology, the difference

is far more significantly known.

16 A Programmable and Managed Software Defined Network

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 12, 11-17

Both the tests show that ping latency got reduced by 5-

10% and 60-70% reduction in the number of packet-in in

the solution developed, as the implementation calculates

the best effort path from the origin of the packet

completely through the network fabric to the destination

and puts the appropriate flows in the switches.

VI. QUALITY OF SERVICE (QOS)

QoS implementation defines three Service Level

Agreements (SLA) that enables transfer of the data

according to the network performance, bandwidth, and

the prioritisation of users to reserves network bandwidth

and communicate with a constant communication

bandwidth on the network. It is done by creating different

pools of queues with required performance settings like

defining a max rate and min rate of bandwidth. The

network admin can associate an IP or group or network

with any of the SLAs in real-time, and IP or group or

network will adapt accordingly.

The following figures (Figure 8, 9 & 10) demonstrates

the execution of three differentiated levels of QoS in the

implementation.

Fig.8. UDP Traffic from 10.0.0.1 to 10.0.0.2 sent at 2Mbps. Bandwidth

is shaped to ~1Mbps for Normal Users

Fig.9. UDP Traffic from 10.0.0.1 to 10.0.0.2 sent at 5Mbps. Bandwidth

is shaped to ~4Mbps for level 1 Users

Fig.10. UDP Traffic from 10.0.0.1 to 10.0.0.2 sent at 40Mbps. Level 2

will get Minimun 3Mbps and max all Available Bandwidth

The above figures (Fig. 8, 9, & 10) captures the traffic

activity between the server (IP: 10.0.0.2) and a host (IP:

10.0.0.1). Initially, the host has the lowest priority (Level

0 SLA). So, when the server sends traffic at 2Mbps, it is

shaped to approximately 970 Kbps or ~1Mbps, according

to the SLA defined by the network administrator for any

ordinary user. However, when the same host gets

elevated to medium priority (Level 1 SLA), and the

server sends traffic at a rate of 5Mbps, it gets shaped to

approximately 3.8Mbps or ~4 Mbps. Again, when the

host gets elevated to the highest priority (Level 2 SLA) in

our implementation, the host gets a minimum bandwidth

of ~3Mbps, and a maximum of all the available that the

network can provide or the server can provide. Also, it is

important to note that there is no data loss in the process

of shaping of traffic.

VII. CONCLUSION & FUTURE SCOPE

SDN has generated its whole ecosystem since the

inception of this idea. As evident in the paper, SDN is a

way to configure the network using the software. SDN

makes basic operations of a network like routeing,

switching and network optimisations like load balancing

and firewall a software challenge.

Normally a Network Management System will provide

limited places to monitor the system. However, this

limitation got broken because of our implementation. The

administrator can monitor their network from anywhere

in the scope of the network.

This implementation can help network administrators

to monitor their network using various graphs and tables

formed from the network statistics and control the

network accordingly. They can get insights to the

network state and take actions like adding or removing

any network components as needed. It can also help

administrators in providing differentiated quality of

service to the users in the network.

The paper aimed at providing better control on the

network for network administrators and a better

experience for the users in the network.

The future scope of technology like SDN is great. Here

in this implementation, though we could test the solution

for any number of virtually simulated switches and hosts,

we could not verify the solution in a larger physical

network; we can check the solution for large physical

networks of switches and hosts. Also, Network Functions

 A Programmable and Managed Software Defined Network 17

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 12, 11-17

Virtualization solutions like load balancers and firewalls

can be built to make the networks of future more robust,

secure [11] and functional.

REFERENCES

[1] "Application of Software Defined Networks in Campus

Network," [Online]. Available:

http:/www.cse.iitd.ac.in/~cs5100295/reports/sdn.pdf.

[Accessed 10 April 2017].

[2] "Operating expense," [Online]. Available:

http://www.investopedia.com/terms/o/operating_expense.

asp. [Accessed 10 April 2017].

[3] "Capital expenditure," [Online]. Available:

http://www.investopedia.com/terms/c/capitalexpenditure.a

sp. [Accessed 10 April 2017].

[4] D. Kreutz and Fernando M. V. Ramos, "Software-Defined

Networking: A Comprehensive Survey," Proceedings of

the IEEE, pp. 11-17, Oct 2107.

[5] "Understanding the SDN Architecture,"

[Online].Available:https://www.sdxcentral.com/sdn/defini

tions/inside-sdn-architecture/. [Accessed 10 April 2017].

[6] H. Kim and N. Feamster, "Improving network

management with software defined networking," IEEE

Communications Magazine, vol. 51, no. 2, pp. 114-119,

Feb 2013.

[7] "RYU," [Online]. Available: https://osrg.github.io/ryu/.

[Accessed 10 April 2017].

[8] Rafaelhz, "react-material-admin-template,"

[Online].Available: https://github.com/rafaelhz/react-

material-admin-template. [Accessed 21 Dec 2016].

[9] "Getting started with Grafana," [Online]. Available:

http://docs.grafana.org/guides/getting_started/. [Accessed

2017 Feb 2017].

[10] "REANNZ/faucet," [Online]. Available:

https://github.com/REANNZ/faucet.[Accessed 10 Feb

2017].

[11] Bassey Isong, Tebogo Kgogo, Francis Lugayizi,"Trust

Establishment in SDN: Controller and Applications",

International Journal of Computer Network and

Information Security(IJCNIS), Vol.9, No.7, pp.20-28,

2017.DOI: 10.5815/ijcnis.2017.07.03

Authors’ Profiles

Priyesh Kumar: Pursued Bachelor of

Engineering in Computer Science at Nitte

Meenakshi Institute Of Technology,

Bengaluru. Interested in Web Development

and Network Management.

Rajnarayan Dutta: Pursued Bachelor of

Engineering in Computer Science at Nitte

Meenakshi Institute Of Technology,

Bengaluru. Interested in SDN and Network

Security.

Rakesh Dagdi: Pursued Bachelor of

Engineering in Computer Science at Nitte

Meenakshi Institute Of Technology,

Bengaluru. Interested in Network

Management and Graphics Designing.

Kavitha Sooda: Holds PhD in Computer

Science and Engineering. She has fourteen

years of teaching experience and pursuing

her Post-Doctoral work on higher education

from IISc, Bangalore. Her interest includes

routeing techniques, QoS application,

cognitive networks, evolutionary algorithms and higher

education. Currently, she works as Associate Professor at BMS

College of Engineering, Bangalore.

Archana Naik: Holds MTech degree in

Computer Science and Engineering. She has

twelve years of teaching experience and

pursuing PhD under VTU, Belgavi. Her area

of interest is Data Analytics, Cloud

Computing, Computer Network and

Architecture. She has published papers in well-known journals

in the area of her interest. She is working as Associate Professor

in, NMIT, Bangalore, India.

How to cite this paper: Priyesh Kumar, Rajnarayan Dutta, Rakesh Dagdi, Kavitha Sooda, Archana Naik,"A

Programmable and Managed Software Defined Network", International Journal of Computer Network and Information

Security(IJCNIS), Vol.9, No.12, pp.11-17, 2017.DOI: 10.5815/ijcnis.2017.12.02

