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Abstract—This paper revisits malicious object 

propagation in networks using epidemic theory in such a 

manner that it proposes the (Pre-quarantining) of nodes 

in networks. This is a concept that is known by 

experience to be a standard disease control procedure that 

involves screening and quarantining of immigrants to a 

population. As preliminary investigation we propose the 

Q-SEIRS model and the more advanced Q-SEIRS-V 

model for malicious objects’ spread in networks. This 

Pre-quarantine concept addresses and implements the 

“assume guilty till proven innocent” slogan of the cyber 

world by providing a mechanism for pre-screening, 

isolation and treatment for incoming infected nodes. The 

treated nodes from the pre-quarantine compartment are 

sent to the recovered compartment while the free nodes 

join the network population. The paper also derived the 

reproduction number, equilibria, as well as local stability 

of the proposed model. Numerical methods are employed 

to solve the system of equations and MATLAB is used to 

simulate the system so as to visualize the dynamical 

behavior of the models. It is seen that pre-screening/pre-

quarantining improves the recovery rate in relative terms. 

 

Index Terms—Pre-quarantine, Epidemic model, 

Wireless sensor network, Malicious objects. 

 

I.  INTRODUCTION 

With the advent of the era of cloud computing and the 

Internet of Things (IoTs), the threat from malicious codes 

have become increasingly serious [2]. This is due to the 

criticality of technological networks as a tool for daily 

life and the fast development of hardware/software 

technology viruses [1]. Since the emergence of virus in 

the 1980s as programs or complex codes, these malicious 

objects have been renowned to be able to disrupt the 

correct operation of a machine causing major damages 

and irreparable financial losses. In recent times viruses 

perform devastating operations such as modifying data, 

deleting files, encrypting files, and formatting disks [3] 

and even more once it breaks out in networks such as 

Peer-to-Peer (P2P), Wireless Sensor Networks (WSNs). 

WSNs are emerging as a rich domain of active 

research involving hardware and system design, 

networking, distributed algorithms, programming models, 

data management, security and social factors [36]. WSNs 

are large numbers of minimal capacity sensing, 

computing, and communicating devices which are 

random deployed without an engineered or 

predetermined positions for the sensor nodes [5, 6, 7]. 

The random nature of sensor nodes most times limits 

operations and activities of WSNs to complex and noisy 

real-time environments [4]. These sensors can be used for 

precision farming and environment monitoring. The 

susceptibility of WSN to attacks [8] from worms or 

viruses which result in disrupting the measures of 

confidentiality, integrity and availability of sensor nodes 

are due to its highly distributed nature. As [7] puts it, 

cyber attack by worm presents one of the most dangerous 

threats to the security and integrity of the computer and 

telecommunications networks. 

 

II.  RELATED WORKS 

The spread of malicious agents in the technological 

networks bore a strong semblance to the spread of 

epidemic in the biological world [9]. The SIR dynamic 

model proposed in [10, 11, and 12] for malicious objects 

propagation initiated the journey of developing 

mathematical models for worm/virus propagation. Later 

the works of [13,14] presented an extension of the 

kermack SIR model by developing the SIS model and  

[15] proposed an improved SEI model to simulate virus 

propagation in a peer to peer network. Much later Yan 

and Liu [16] proposed the SEIR model; therein they 

assumed that the recovered hosts have a permanent 

immunization period with a certain probability, which is 

not consistent with real situation. Newman [17] applied 

the Kermack and McKendrick classical SIR epidemic 

model to schemes of email virus spread. Mishra and Jha 

[18] formulated the SEIRS epidemic transmission model 

of malicious objects in computer networks. Their 

assumptions involved a certain death rate other than the 

attack of malicious object which is constant and an 

excess death rate constant for infective nodes. Yuan and 

Chen [19] proposed the new e-SIER network virus 
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epidemic that considers multi-state antivirus, latent 

periods before the infected hosts become infectious and 

point to group information propagation mode.  

The similarities between epidemics in both the 

biological and technological networks are evident in 

these works that employed the epidemic theory (or 

models) in their analyses. For the study of epidemics in 

biological networks we have the following. Reference 

[20] evaluated the impact of variations in periods on 

contagious dynamics using the SEIRS mathematical 

model in other to prevent communicable disease spread 

by setting apart infected hosts. Employing the novel 

expression by [39] for saturating contact rate, [21] 

showed the existence of two equilibria in the SEIR model. 

Taking into account treated and untreated states which 

form several pathways of infections in SIR and SIER 

models [22] analyzed attributes for the global dynamics 

for infectious diseases. By assuming that the entire 

population of hosts has an invariable density and a 

bilinear kind of mass action [23] performed analysis on 

the SEIR model for direct/indirect contact and eggs/seeds 

transmissions. Li et al. [24] analyzed the global 

properties for the disease persistent equilibrium in a 

condition where Exposed and Immune states were 

infective. In view of the benefits of counseling services in 

lifestyle habit modification [25] particularly directed 

analysis to the asymptotic stability (global) of the 

existent equilibria in the proposed SEIR model using the 

Holling Type II incidence function for the counseled and 

the uneducated infective states.  

Lending credibility to the definition of the word 

―quarantine‖ which means the forced isolation or 

stoppage of interaction with others, [28] posits that one 

way to control the spread of worms for the nodes which 

are highly infected is to be kept in isolation for some time. 

Furthermore transmission of infection to susceptible 

nodes may be minimized. However, several authors have 

applied the quarantine strategies to disease propagation 

models. In a SIQR model for childhood disease, Wu and 

Feng [26] showed that some perturbation of the original 

model might have a homoclinic bifurcation in addition to 

an epidemic approximation observed near R0 = 1. Feng 

[27] examined the impact of isolation i.e. quarantining 

infected hosts in the recurrent outbreaks of childhood 

diseases. SEIQR models with arbitrary distributed 

periods of infection including quarantine were posited by 

[28, 29]. With emphasis on infectious diseases [30] 

studied the effect of quarantine in six endemic models 

with different form of incidence. 

On the application of quarantine using worm/virus 

propagation models; Zou [31] proposed the dynamic 

quarantining of hosts and performed analysis on three 

worm spread models by halting the movement of signals 

and messages through the suspicious port so as to show 

an increased epidemic threshold. Toutonji [32] 

established worm propagation models on the basis of 

constant quarantine strategy (using a benevolent passive 

worm); though the stability analyses of their systems 

were not taken into account in their works. To abate the 

spread of internet worms [33] conceived a combination 

of dynamic quarantine and vaccination strategy to obtain 

the reproductive ratio and to study the significance of 

several parameters. The effect of isolating a virus-

infected file and the use of anti-malicious software was 

considered by [35]. They proposed an SEIRQ model for 

the transmission of virtual threats in a network. Pursing a 

different perspective to isolation of infected/infective 

hosts [34] proposed the pulse quarantine strategy 

(adjudged as better than the constant quarantine strategy). 

In a conscious bid to ensure security in sensor networks 

[6] extended the classic model to include the Vaccinated 

compartment by formulating the SEIRQV mathematical 

model. The SEI model in [15] was improved by Haldar et 

al. [48] so as to study the effect of trust, selfishness and 

collaborative behavior during a wireless network 

epidemic. 

The ―Pre-Quarantine‖ concept proposed in this study 

is non-existent in the available literature in the sense that 

most researchers [7, 40-47] in this area do not check the 

status of immigrant nodes. They assume that nodes 

entering a network are susceptible to attack; this is partly 

true. The implication is that to a large extent the nodes 

entering the network are free from the modeled 

infection/threat type; and this is not always true in the 

real world. Or more appropriately, the disease status of 

the incoming nodes is not known. Specifically, we 

explore the concept of pre-quarantining of incoming 

sensor nodes to provide a screening mechanism that 

would isolate and treat infected nodes from the 

population that enters the susceptible compartment. 

However, the study considers the disease status of the 

nodes entering the network population. To ensure a 

worm/virus-free cyberspace it is overly expedient that 

research efforts are directed to provide countermeasures 

for malicious objects/cyber threats propagation in 

networks from all avenues possible. It is our hope that the 

proposed models would add to the extant epidemiological 

literature of networks. 

 

III.  PRE-QUARANTINING Q-SEIRS MODEL WITHOUT 

VACCINATION 

To describe the dynamics of the pre-quarantine 

concept for virus propagation with respect to time in a 

wireless sensor network we propose the Quarantine-

Susceptible – Exposed – Infectious – Recovered – 

Susceptible model. Our assumptions include the 

addition/inclusion of new nodes and the death/crashing of 

nodes either due to hardware/software failure or due to 

infection. Initially we assume that the new nodes go 

through a screening process and treatment (pre-

quarantine) in the Quarantine compartment. However, the 

infected nodes in the pre-screening process are treated 

with anti-malicious software and sent to the Recovered 

compartment while the nodes that have been proven free 

of infection enter the network field i.e. becoming 

susceptible (in the Susceptible compartment) again to 

infections. The Exposed compartment here signifies the 

latent phase before the nodes get fully infectious. 

Infectious nodes carry the infection and can transmit it to 
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neighboring nodes. Infectious nodes are sent to the 

Recovered compartment where they are temporarily 

immune by treatment with an anti-malicious software. 

They subsequently enter the susceptible compartment and 

are vulnerable to possible attack of malicious objects 

because there is no permanent immunity in the 

cyberspace. 

 

 

Fig.1. Schematic Diagram for the Flow of Malicious Object in a 

Wireless Sensor Network 

The population size N (t) is compartmentalized into 

subclasses of nodes which are Q (t), S (t), E (t), I (t), R (t) 

respectively. Our assumptions on the dynamical transfer 

of the population are depicted in the Fig 1. It is seen from 

the loop that the dynamics of the pre-quarantining (pre-

screening) compartment is governed by the first order 

differential equation: 

 

 ̇                                  (1) 

 

Where    is the initial population, the solution of this 

equation is derived from the convolution integral as: 
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The system of differential equation in view of our 

assumptions is: 

 

 ̇                 

 ̇             

 ̇                                     (3) 

 ̇                
 

Let Q (t), S (t), E (t), I (t), R (t) denote the number of 

Quarantine, Susceptible, Exposed, Infectious and 

Recovered nodes at time t respectively. Assume N (t) = Q 

(t) + S (t) + E (t) + I (t) + R (t) for all t, where  ̇   
  

  
.   

is the inclusion rate of nodes into the network population, 

  is the Infectivity contact rate, d is the mortality or the 

death rate of nodes due to hardware or software failure, 

   death rate of infected immigrant nodes,     = is the 

crashing rate due to attack of malicious objects,   = rate 

of transmission from Infectious to Recovered class,   is 

the rate of transmission from Recovered to Susceptible 

class,   is the rate of transmission from Quarantined to 

Susceptible class,   is the rate of transmission from 

Exposed to Infectious class,     rate of transmission 

from Quarantine class to Recovered class. 

A. Existence of Equilibrium Points 
 

The equilibrium points of (3) are the solution of the 

system of ordinary differential equation. Therefore, we 

have; 

 
  

  
    

  

  
    

  

  
    

  

  
    

 

The solution of the system of differential equation is a 

closed set i.e. it enters or remains in the epidemiological 

meaningful subset; 

 

D = {(S, E, I, R)  :  S + E + I + R   }. 

 

The solution is considered in region D. Since the 

solution remain bounded in the positively invariant 

region D, the maximal interval is (0,   ) [38] hence 

posing the initial value problem both epidemiologically 

and mathematically. 

The system of equations has two possible equilibria in 

D; the disease free equilibrium (DFE) and the endemic 

equilibrium (EE). On simple calculations the disease free 

equilibrium (E
T
) has the following states: 
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Where    is the value of   at equilibrium such that 
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B. The Basic Reproduction Number (Ro) 
 

 

The basic reproduction number is the spectral radius of 

FV
-1 

where the F is the transition matrix (or the rate of 

appearance of new infections in the Infectious 

compartment) and V is the Infection matrix (rate of 

transfer of nodes into and out of the Infectious 

compartment). V and F are given as;  
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Here, we employ the Jacobian stability approach [37] 

to prove the stability of the disease free equilibrium state. 

 

Theorem 1: The system of ordinary differential equation 

i.e. (3) is locally asymptotically stable at the disease free 

equilibrium if its eigenvalues have negative real parts. 

Proof: The Jacobian of system (3) is taken as 
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The diagonals of the Jacobian matrix are–       
                   while the eigenvalues are: 
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The eigenvalues of the Jacobian matrix all have 

negative real parts when  
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hence the system is locally asymptotically stable at the 

Disease Free equilibrium point   . 

 

IV.  PRE-QUARANTINING Q-SEIRS-V MODEL WITH 

VACCINATION 

To describe the dynamics of the pre-quarantine 

concept for malicious object propagation with respect to 

time in WSN we propose the Quarantine -Susceptible – 

Exposed – Infectious – Recovered – Susceptible with the 

Vaccination class. The case without the vaccination class 

is studied in subsection 2 in a bid to form a foundation 

for the study in this subsection. Initially we assume that 

the new nodes go through a screening process (pre-

quarantine) that allows the infected nodes to be treated 

and sent to the Recovered compartment. The nodes that 

have been proven free of infection enter the sensor field 

i.e. becoming susceptible (in the Susceptible 

compartment) again to malicious object infections. The 

other assumptions for this subsection are the same as the 

assumptions in section 2. Vaccination of the susceptible 

nodes provides further an immunization capability 

toward infections as well as enabling procedures for the 

control of malicious objects. The proposed model is 

expected to provide more insight into the understanding 

of the epidemiological behavior of a population of nodes. 

Note that quarantine and vaccination are the most 

commonly known countermeasures for disease 

propagation in the epidemiological literature. 

 

 

Fig.2. Schematic Diagram for the Flow of Malicious Object in a Sensor 
Network 

It is seen that the dynamics of the proposed pre-

quarantining compartment is the same as the earlier 

studied case without vaccination. The system of 

differential equation in view of our assumptions is given 

as: 
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   rate of transmission from Infectious to the 

Recovered class.   = rate of transmission from 

Vaccinating class to Susceptible class,   is the 

vaccinating rate coefficient for the susceptible nodes. The 

other rate symbols retain the same meaning as in section 

III. 

A. Existence of Equilibrium Points 

The equilibrium points of (5) are the solution of the 

system of ordinary differential equation when the rate of 

change vanishes; 
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Two possible equilibria exist in D; the Disease Free 

equilibrium and the endemic equilibrium. On simple 

calculations the Disease Free equilibrium (E
T
) has the 

following states: 
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However, if       then D contains a unique positive 

endemic equilibrium (E
N
) that has the following states:  

 

S* 
            

  
,     

                         

                         
 

    
                              

             
 , 

* *
*

*

( ) (( )( Ω) )

( )(Ψ )
R

d d Q d Q
Q

d

d

     


  



      


  






 Pre-quarantine Approach for Defense against Propagation of Malicious Objects in Networks 47 

Copyright © 2017 MECS                                                I.J. Computer Network and Information Security, 2017, 2, 43-52 

V*  
             

       
 

Where   
                         

       
  

  
                   

       
  =

                 

 
 

 

B. The Basic Reproduction Number (Ro) 
 

The basic reproduction number can be obtained by 

calculating V and F, where V and F are given as; 

 

V =[
      

         
], F = *
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Where V is the rate of transfer of nodes into and out of 

the Infectious compartment and F is the rate of 

appearance of new infections in the Infectious 

compartment. The basic reproduction number is defined 

as the dominant eigenvalue of FV 
-1

, which is R0 = 
  

            
. 

 

C. Stability of the Disease Free Equilibrium 
 

To obtain the stability of the equilibrium state the 

resulting eigenvalues of the jacobian of the system are 

derived as follows: 
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The diagonal elements are –                  
           ,        while the eigenvalues are 
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The eigenvalues of the Jacobian matrix all have 

negative real parts when 

|
√                                            

√     √      
      

     ; hence the system is locally asymptotically 

stable at the Disease Free equilibrium point   . 

 

V.  RESULTS AND DISCUSSION 

In most models [6-7, 35, 40, 43-44] in the available 

literature it is observably clear that the recovered 

compartment evaluate to zero at the disease free 

equilibrium unlike the models of this study. Here the 

recovered compartment is not equal to zero i.e.   
   and this is as a result of the transfer of some immigrant 

infected nodes which were successfully treated (during 

the pre-quarantine process) and transfered to the 

Recovered compartment as well as the re-infection (due 

to temporary immunity) of nodes and death from 

software and hardware failure. The resulting solution of 

the recovered compartment at disease free equilibrium is 

           ⁄ . This result is rational because at 

disease free equilibrium some of the nodes in the 

originally diseased network may have recovered from an 

earlier infection. A striking feature noted in this study is 

the exhibition of same value for the Susceptible 

compartment at endemic equilibrium states for both (Q-

SEIR and Q-SEIRV) models and the model in [7]; and 

almost similar value for Vaccination compartment in the 

Q-SEIRV model of this study and that of [6]. These are 

so because the proposed pre-quarantining in this study 

did not affect the differential equations for the Exposed 

and the Infectious compartment. Since the reproduction 

number (found using the next generation matrix method) 

and value for the susceptible compartment at the endemic 

equilibrium are determined using the Exposed and 

Infectious compartment they remained the same in the 

models of this study as well as in [7].  

Another feature is the fact that the reproduction 

number (  ) is similar in these models. In addition, since 

the Vaccination compartment has transmissions to and 

from the Susceptible compartment and the value of    is 

used to determine the value for    at endemic 

equilibrium; it gives that the Q-SEIRV model and [6] 

would have similar values for     For the same values in 

reproduction number, the implication is that pre-

quarantining of nodes does not affect the reproduction 

number of models derived using similar equations of 

Exposed and Infectious compartment in [6-7]; otherwise 

the    changes as noted in [43]. Aside the noted 

similarities in this paragraph, the current study presents 

radically different values in both equilibrium states when 

compared to [6, 7, and 35] etc. 

The basic difference in assumptions between the 

current study and the work [7] is that it is presumed here 

that immigrant nodes that enter the network could be 

infected while the work [7] implicitly presumed that 

immigrant nodes to the network are free of infections. 

However, it is rational to suppose that the assumptions of 

the current study are more realistic in real world 

applications. The proposed pre-quarantining concept 

intercepts immigrant infections and checks the potential 

for enhancement of the internal infectivity contact rate 

through importation of external infections. The 

intercepted infected immigrant nodes are treated in the 

pre-screening process leading to some assuming 

temporary immunity in the recovered compartment. For 

these reasons the rate of recovery is expected to be 

enhanced in the proposed model as evident in Fig 3. and 

Fig 7.; in which the Recovered compartment is seen to 

have higher peak values than the Infectious compartment 
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unlike the result in the equivalent model in [7] without 

prescreening given in Fig.13; in which the peak value of 

the Recovered compartment is less than that of the 

Infectious compartment. 

A. Numerical Results for the Q-SEIR 
 

We present the numerical results using Runge-Kutta 

Fehlberg method of order 4 and 5 for the Q-SEIR model. 

The network is assumed to have initial values:   = 5; 

S=100; E=3; I=1; R=0. 

 

 
Fig.3. Dynamical Behaviour of the System for Different Classes When 

 =0.33;  =0.3;  =0.01;  =0.001;  =0.3;  =0.1;  =0.25;  =0.4; 

d=0.003;  =0.07. 

 
Fig.4. Dynamical Behaviour of the Recovered Class With Respect To 

Time: (1)  =0.33;  =0.3;  =0.01;  =0.001;  =0.3;  =0.1;  =0.25; 

 =0.4; d=0.003;  =0.07; (2)  =0.33;  =0.3;  =0.03;  =0.001;  =0.33; 

 =0.1;  =0.28;  =0.43; d=0.003;  =0.07. (3)  =0.33;  =0.3;  =0.05; 

 =0.001;  =0.39;  =0.1;  =0.31;  =0.46; d=0.003;  =0.07 

 

Fig.5. Dynamical Behaviour of the Recovered Class Versus Infectious 

class: (1)  =0.33;  =0.3;  =0.01;  =0.001;  =0.3;  =0.1;  =0.25; 

 =0.4; d=0.003;  =0.07. (2)  =0.33;  =0.3;  =0.01;  =0.001;  =0.33; 

 =0.3;  =0.27;  =0.42; d=0.003;  =0.07. (3)  =0.33;  =0.3;  =0.01; 

 =0.001;  =0.35;  =0.5;  =0.29;  =0.44; d=0.003;  =0.07. (4)  =0.33; 

 =0.3;  =0.01;  =0.001;  =0.37;  =0.7;  =0.31;  =0.46; d=0.003; 

 =0.07. (5)  =0.33;  =0.3;  =0.01;  =0.001;  =0.39;  =0.9;  =0.34; 

 =0.48; d=0.003;  =0.07. 

 
Fig.6. Dynamical Behaviour of the Recovered Class Versus Susceptible 

class: (1)  =0.33;  =0.3;  =0.01;  =0.001;  =0.3;  =0.1;  =0.25; 

 =0.4; d=0.003;  =0.07. (2)  =0.33;  =0.5;  =0.01;  =0.001;  =0.5; 

 =0.1;  =0.27;  =0.42; d=0.003;  =0.07. (3)  =0.33;  =0.7;  =0.01; 

 =0.001;  =0.8;  =0.1;  =0.30;  =0.45; d=0.003;  =0.07. (4)  =0.33; 

 =0.9;  =0.01;  =0.001;  =0.8;  =0.1;  =0.70;  =0.47; d=0.003; 

 =0.07 

B. Numerical Results for the Q-SEIRV 

We present the numerical results using Runge-Kutta 

Fehlberg method of order 4 and 5 for the Q-SEIRV 

model. The network is assumed to have initial values: 

  = 5; S=100; E=3; I=1; R=0; V=0. 

 

 
Fig.7. Dynamical Behaviour of the System for Different Classes When 

 =0.33;  =0.3;  =0.01;  =0.001;  =0.06;  =0.3;  =0.1;  =0.25;  =0.4; 

d=0.003;  =0.07;  =0.3 

 
Fig.8. Dynamical Behaviour of the Vaccinated Class with Respect to 

Time: (1)  =0.33;  =0.3;  =0.01;  =0.001;  =0.06;   =0.3;   =0.1;   

=0.25;   =0.4; d=0.003;   =0.07;   =0.3 (2)   =0.33;   =0.3;   =0.01; 

 =0.001;  =0.05;   =0.3;  =0.1;   =0.25;   =0.4; d=0.003;   =0.07;   

=0.2 (3)  =0.33;   =0.3;   =0.01;  =0.001;  =0.04;   =0.3;  =0.1;   

=0.25;   =0.4; d=0.003;   =0.07;   =0.15
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Fig.9. Dynamical Behaviour of the Recovered Class with Respect to 

Time: (1)  =0.33;  =0.3;  =0.01;  =0.001;  =0.06;  =0.3;  =0.1; 

 =0.25;  =0.4; d=0.003;  =0.07;  =0.3. (2)  =0.33;  =0.3;  =0.01; 

 =0.001;  =0.06;  =0.33;  =0.1;  =0.28;  =0.43; d=0.003;  =0.07; 

 =0.3. (3)  =0.33;  =0.3;  =0.01;  =0.001;  =0.06;  =0.39;  =0.1; 

 =0.31;  =0.46; d=0.003;  =0.07;  =0.3. 

 

Fig.10. Dynamical Behaviour of the Recovered Class Versus Infectious 
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 =0.001;  =0.06;  =0.33;  =0.1;  =0.27;  =0.42; d=0.003;  =0.07; 
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 =0.29;  =0.44; d=0.003;  =0.07;  =0.3. (4)  =0.33;  =0.3;  =0.01; 

 =0.001;  =0.06;  =0.37;  =0.1;  =0.31;  =0.46; d=0.003;  =0.07; 

 =0.3. (5)  =0.33;  =0.3;  =0.01;  =0.001;  =0.06;  =0.39;  =0.1; 

 =0.34;  =0.48; d=0.003;  =0.07;  =0.3. 

 

Fig.11. Dynamical Behaviour of the Recovered Class Versus 

Susceptible class: (1)  =0.33;  =0.3;  =0.01;  =0.001;  =0.06;  =0.3; 

 =0.1;  =0.25;  =0.4; d=0.003;  =0.07;  =0.3. (2)  =0.33;  =0.3; 

 =0.01;  =0.001;  =0.06;  =0.5;  =0.1;  =0.27;  =0.42; d=0.003; 

 =0.07;  =0.3. (3)  =0.33;  =0.3;  =0.01;  =0.001;  =0.06;  =0.8; 

 =0.1;  =0.30;  =0.45; d=0.003;  =0.07;  =0.3. (4)  =0.33;  =0.3; 

 =0.01;  =0.001;  =0.06;  =0.8;  =0.1;  =0.70;  =0.47; d=0.003; 

 =0.07;  =0.3. 

 
Fig.12. Dynamical Behaviour of the Susceptible Class Versus 

Vaccinated class when (1)  =0.33;  =0.3;  =0.01;  =0.001;  =0.06; 

 =0.3;  =0.1;  =0.25;  =0.4; d=0.003;  =0.07;  =0.32. (2)  =0.33; 
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Fig.13. Dynamical Behaviour of the System for Different Classes of the 

Equivalent Model as Adapted From [7] 

 

VI.  CONCLUSION 

Motivated by the epidemic theory, we propose the Q-
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asymptotically stable. Runge-Kutta-Fehlberg method of 

order 4 and 5 is used to solve and simulate the proposed 

systems of equation. With the help of MATLAB, an 
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with respect to time. Fig. 5 shows the dynamical 
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represents the dynamical behaviour of the Recovered 

class versus the Infectious class. The transfer of the 

recovered nodes to the Susceptible class is depicted in 

Fig. 11 while Fig. 12 represents the dynamical behaviour 

of the Susceptible class versus Vaccinated class, showing 

the strong impact of Vaccination on the nodes when 

compared to [7]. The impact of the Pre-quarantine 

compartment in the proposed models is very strong on 

the recovery nodes as shown in Fig. 5 (for Q-SEIR) and 

Fig. 10 (for Q-SEIRV). When compared to the model 

proposed by [7] it is seen that the recovery rate of the 

models of this study is higher relative to the infectious 

compartment. It is our hope that this study would add to 

virtual epidemiology and help software organizations in 

developing highly efficient plan for anti-malicious 

software to minimize the attack in wireless sensor 

networks. In future works, analysis would include the 

proof of local asymptotic stability for the endemic 

equilibrium and the proof of global asymptotic stability 

for both the disease free and endemic equilibrium.  
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