
I. J. Computer Network and Information Security, 2017, 5, 21-30
Published Online May 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2017.05.03

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 5, 21-30

Enhancing Software Reliability against Soft-Error

using Minimum Redundancy on Critical Data

Saeid A. Keshtgar
Department of Computer Engineering, Tabriz Branch, Islamic Azad University,

Tabriz, Iran

E-mail: saultimate@gmail.com

Bahman B. Arasteh
Department of Computer Engineering, Tabriz Branch, Islamic Azad University,

Tabriz, Iran

E-mail: b_arasteh@iaut.ac.ir

Abstract—Nowadays, software systems play remarkable

roles in human life and software has become an

indispensable aspect of modern society. Hence, regarding

the high significance of software, establishing and

maintaining software reliability is considered to be an

essential issue so that error occurrence, failure and

disaster can be prevented. Thus, the magnitude of errors

in a program should be detected and identified and

software reliability should be measured and investigated

so as to prevent the spread of error. In line with this

purpose, different methods have been proposed in the

literature on software reliability; however, the majority of

the proposed methods are inefficient and undesirable due

to their high overhead, vulnerability, excessive

redundancy and high data replication. The method

introduced in this paper identifies vulnerable data of the

program and uses class diagram and the proposed

formula. Also, by applying minimum redundancy and

duplication on 70% of the critical data of the program, the

proposed method protects the program data. The

evaluation of the operation of the propose method on

program indicated that it can improve reliability, reduce

efficiency overhead, redundancy and complexity.

Index Terms—Reliability, redundancy, failure, fault,

error, performance overhead.

I. INTRODUCTION

Computer-based systems are ubiquitous in all different

areas of modern life from house appliances such as

microwave ovens and washing machines to complex

application programs like airplanes, trains, medical

control systems, etc. The costs and consequences of the

failure of these systems can be so disastrous and

catastrophic that serious injuries, harms and life losses

can result from them. Such failures can devastate

computer system, breach security, lead to the collapse of

business or the loss of opportunities. Indeed, such

misadventures and non-successes are related to defects

which interrupts systems and cause incompatibilities

among them. Your goal is to simulate the usual

appearance of papers in a Journal of the Academy

Publisher. We are requesting that you follow these

guidelines as closely as possible. One fault or defect can

cause an error or failure. It is sometimes referred to as a

bug. Indeed, a fault is an abnormal condition which

occurs in the software or hardware of a system [22]. One

of the important challenges in designing computer

systems is soft error. Also, soft errors which are due to

radiation are regarded as a key challenge in designing

computer systems [32].

As the complexity increases and the demand for the

required quality in the markets goes up, the need for

designing reliable digital systems has become

increasingly essential [26]. For achieving high reliability

and delivering it to customers, two major attempts should

be made. First, architects should figure out the impact of

soft errors in their designing. Second, they should make a

smart choice among the available methods for reducing

the impact of soft errors so that maximum reliability and

minimum overhead can be achieved [28].There are two

basic methods for establishing reliability; the first one is

to avoid error by using specifications and acknowledging

formal methods and the second method is a highly

meticulous and precise process for developing software.

Hence, the enhancement of software reliability by

reducing redundancy and performance overhead is

another notable issue in this research domain [21].

From a system point of view, two highly critical

features are software quality and reliability [19].

Reliability can be regarded as a remarkable criterion or

standard for measuring the quality of a system [14].Since

software can be examined and observed as an important

component of a system, system analysts investigate

software reliability as an indication and signal of the

entire system [4].Software reliability enables a program

to tolerate and resist against the probable errors which

might occur. Indeed, acceptable software reliability can

enable the program to properly function within a specific

period of time [10]. Furthermore, good reliability

guarantees that the software operate at a certain level in

spite of the presence of several faults and errors so that

22 Enhancing Software Reliability against Soft-Error using Minimum Redundancy on Critical Data

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 5, 21-30

the system does not fail. It should be noted that for

achieving high reliability for a software, the number of

errors should be reduced. For reducing the number of

errors, the three factors of error prevention, error

detection and error tolerance should be used [31].

Regarding software reliability, several research studies

have been conducted and many methods have been

proposed. However, some of the proposed methods have

not been effective yet. Software methods which are used

for tolerating soft errors and enhancing reliability may

result in a significant increase of volume and execution

time. Hence, it should be underscored that reducing

performance overhead in the available software methods

is number one priority. Performance overhead refers to

the slowing down of program execution and the

increasing of the volume of program instructions and

commands. Performance overhead in real-time systems

can lead to intolerable delay and finally system failure.

The notable issue regarding performance overhead is that

it increases system complexity. Consequently, system

complexity can cause irreparable and irrecoverable costs.

The reduction of each of the above-mentioned factors can

optimize and improve software reliability. Although

software cannot be seen or touched, it should be

necessarily used in computer systems so that they can

fulfill the intended functions and applications. Thus, it

can be maintained that computers have become a vital

component of the modern society [33].Hence, in general,

software-based systems are aimed at satisfying system

users ;for satisfying system users in this research study,

two main objectives were taken into consideration: the

first objective was to enhance software reliability via

applying minimum software redundancy on critical data

of the program and the second objective was to reduce

performance overhead caused by the imposed redundancy.

The paper is organized in this way: after the

introduction section which was discussed above, the

research method is described in the following section.

Then, the related works are briefly overviewed. Next, the

details on the experimental environment are given. After

that, the results and discussion of the results are

mentioned. Finally, the conclusion to the study and some

suggestions for further research are given.

II. RELATED WORKS

In general, it can be pointed out that the continuity of

services can result in reliability [8]. For achieving high

reliability, errors and mistakes should be reduced and

eliminated. Also, vulnerable data of programs should be

identified so that they should be made resistant against

probable errors. In the followings, some of the recent

research studies conducted in this filed are overviewed.

Recently, several studies with regard to embedding

strategic detectors in program code have been carried out.

Hiller et al [25] used error propagation analysis (EPA). It

is assumed that ideal coverage (100%) has been

investigated and signals are located in spots where the

probability of error detection is practically high. The

avalanche paradigm of Voas [17] is regarded as a

method for mentioning statements before faults in the

program propagate which has been proposed for the

critical modes. Goradia [7] examined the sensitivity of

the values of the erroneous data in terms of software

testing. DAIKON[24] used a dynamic analysis system for

the probable production of the features of the program for

software faults.

Narayanan et al, [29] used the features of the loops

produced by DAIKON for detecting soft errors in data

cache. DAIKON’s claims are about locations at the

beginning and end of loops and the recall methods.

However, providing error detection with little delay time

may not be sufficient. For example, systemic/application

programs might have long improper performances before

they reach the acknowledgement spot. Benso et al [23]

proposed a compiler method for detecting critical values

in a program. Indeed, the sensitivity of a variable is

measured based on its life span and the way in which

other variables influence it. This method can protect data

against errors which have been derived from a critical

variable and propagate to other variables. However, this

method cannot protect against errors which have been

propagated from other locations to the critical variable.

Pattabiraman et al [30] investigated detecting

placement in programs for fault detection and the cases

which are attributed to errors in data values. Their

objective was to detect low potential and prevent error

propagation. The criteria for strategic production from

ideal detectors in the locations of programs are

introduced based on the measured criteria. Measurements

were implemented in the form of a dynamic dependent

graph. Directional graph is non-rotational which produces

a train of dynamic dependencies among values which

have been created during a round of program execution.

The coverage of detectors is investigated by means of

injecting errors in real programs. The results indicated

that few number of the embedded strategic detectors can

achieve a high degree of coverage.

The majority of research studies show that, in

computer-based systems, a high percentage of errors lead

to silent data corruption [11] [12].That is to say, the

system might produce inaccurate results though it seems

that the program has finished properly. This behavior is

mainly produced by the faults of the pure data. For

example, faults and errors appear in spots of data storage

memory or in the microprocessor registers. Hence, such a

computer-based system is called to be silently corrupted

although the outputs have proper results, i.e. the system

does not produce inaccurate outputs.

In [13], the researchers found that for achieving a high

degree of soft corruption in average computers with error

detection mechanisms, a set of precise software methods

for error detection has been selected. These methods

include ABFT (algorithm-based fault tolerance),

expressions, time redundancy and checking flow control

[3] [15] [5] [6] [1]. ABFT is a highly effective method

but it lacks generality. It is useful for application

programs with regular structures. However, it can be used

for a limited number of problems [13].

Using logical statements in different spots included in

 Enhancing Software Reliability against Soft-Error using Minimum Redundancy on Critical Data 23

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 5, 21-30

program for reversing the fixed relations among the

program variables can lead to different problems because

statements for the programmer and its efficacy on the

program and programmer skills are not clear. In contrast,

methods based on time redundancy focus on time

exploitation in idle times while executing program for

duplicating measurements and comparing error detection

[2] [9].

The initial idea is to check flow control and divide

application programs into general pieces, i.e. dividing it

into free cuts of a branch of the code. For each piece, a

definite signature has been calculated and errors can be

detected by comparing the execution time signature. In

many flow control methods, one major problem is setting

and adjusting the granularity test.

In [16], portable checkpoints of a compiler have been

proposed source by source which can automatically insert

instructions from the application program for storing and

retrieving from portable check points. Portable

checkpoints are capable of having a mode of calculations

in an independent form of the machine which is regarded

as a potential solution for an error-tolerant software for

developing networks of binary machines.

In [18], a systematic method was proposed for

introducing data and redundancy code to the available

source code which was written in C programming

language. Simple rules for changing code was proposed

in [18] which is effective for optimizing reliability.

However, it is not automatic and it proposes high

overhead in terms of memory and execution time.

Benso et al [27] proposed a novel method for

computing critical variables in application programs of

software. In this method, the analysis of execution time in

the behavior of variables was used instead of error

injection which is time consuming. For detecting critical

variables, the variables which were read more than other

variables were used or the variables with identical access

rate, i.e. all the variables read or written with the same

frequency were proposed. The chief advantages of the

model were formalization, high accuracy of the results

and also, low calculation time.

Benso et al [20] proposed a robust c/c++ source-by-

source compiler for enhancing the reliability of

application programs. Strategic detectors are based on

two main methods for re-ordering code and duplicate

variables. In this research, RECCO tool which has a fully

automatic process was used. According to code change,

RECCO allows user to exchange between the

optimization level of reliability and performance

degradation. The introduced changes by the tool are

completely obvious for programmers and they cannot

influence the main capabilities of the target program.

Furthermore, this tool allows users to select the

percentage and rate of duplicate variables so that

overhead can be maintained under the respective

limitations. The experimental results indicate the

effectiveness of the method and low overhead in the

reliable code in terms of memory occupation and

execution time.

III. PROPOSED METHOD

In this paper, critical data or data vulnerable to errors

were first identified. Then, a limited number of the

identified data were duplicated to protect them against

error. Figure 1 illustrates a conceptual model of the

proposed method.

Fig.1. Conceptual Model of the Proposed Method.

The first stage is static. Indeed, by analyzing the static

program and the designed model, we tried to identify data

vulnerable to errors. In the second stage, for each selected

data, the related instructions are duplicated. In fact, by

duplicating a limited number of instructions, the program

is protected against error. In this way, less performance

overhead is injected into the program.

For investigating the proposed method and evaluating

its effectiveness on error identification, experimental

method was used. Thus, the proposed method was

implemented on a number of programs written in the c#

programming language. These programs included: auto

telling system, elevator system, library robot system,

payroll system and artificial intelligence system. Next, by

conducting experiments on error injection and the

statistical analysis of it, the effectiveness of the proposed

method was investigated.

In this paper, a designed model was used for detecting

and identifying vulnerable data which was aimed at

illustrating the class diagram of the intended program.

Using the designed model of the class diagram, all the

classes, methods, variables and the relationships between

the program classes are specified. The following formula

can be used for determining the degree of vulnerability of

the classes:

))()()(

)()((

432

1

ASRCARCDRC

CRCILIMNNV mvi





(1)

In this formula, Vi indicates the intended class

vulnerability, Nv denotes the number of related class

variables, Nm refers to the number of related class

methods, IM indicates the number of variables and the

methods inheritable from the related class, IL denotes the

inheritable level from the intended class, CR refers to the

number of combined communication and relation to the

intended class, DR stands for the number of relations

dependent on the intended class, AR indicates the number

of relations accumulated in the intended class and also,

c1,c2,c3, c4 which respectively have the coefficients of

five, four, three and two indicate the communication or

relation coefficient of the intended class.

The proposed method was used to obtain the

vulnerability of each intended class and the class which

was planned to be worked on was determined in advance.

24 Enhancing Software Reliability against Soft-Error using Minimum Redundancy on Critical Data

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 5, 21-30

Table 1 shows a sample of the vulnerability values of the

classes related to the Automated Teller Machine.

Table 1. Vulnerability of the ATM’s Classes

Vulnerability Classes

20 BankCustomer

20 Account

18 ATM

10 ATMCard

9 Transaction

6 CardScanner

5 CashDispenser

4 DisplayScreen

2 CurrentAccount

2 SavingsAccount

As the vulnerability of each program class was

determined based on the proposed method, the

redundancy and duplication on critical data were applied.

This operation helped to identify probable changes of the

critical data of the program. In the proposed method,

redundancy was applied on variables and operators.

Figure 2 depicts a way in which redundancy was applied

on critical data. Based on the proposed method, about

70% of the program classes including high vulnerability

were selected and the redundancy was applied on the

critical data of those classes. Using the proposed method,

the minimum redundancy was implemented on the

critical data of the program.

Fig.2. The Way of Applying Redundancy on Vulnerable Data.

After the implementation of redundancy on the

vulnerable data of the related classes, the reliability of the

program should be guaranteed. Hence, program reliability

was evaluated. By evaluating the reliability of the main

program, the redundancies of the vulnerable data of the

programs were compared with one another in terms of

memory consumption and the execution time of the

program. The comparison of the program with 70%

redundancy and duplication of the critical data and the

one with 100% redundancy and duplication indicated that

the proposed method had better performance in terms of

memory consumption and the execution time. Further

explanations are given later in the results section.

IV. EXPERIMENTS

The present study was based on experiment. For

evaluating the proposed method, an extensive set of

experiments were carried out. In the conducted

experiments, a number of trial programs written in c#

program were used. The programs used in this paper

included: automatic telling machine, elevator system,

library robot system, payroll system and digital

intelligence system.

After considering each of the intended programs, the

first thing that was done was to draw class diagram for

each of them. Having obtained the intended class diagram

of the program, all the communications, classes and

program data are illustrated. As shown in figure 3, the

class diagram of the Automated Teller Machine was an

instance of the respective example. As the classes of the

Automated Teller Machine were determined and the

variables and methods of each class in the intended

program were specified, the relations between each class

with the other classes can be determined now.

All the measures including the specification of

variables and the methods of each class and the relations

of classes with one another were taken for obtaining the

class diagram of the intended program in the c#

programming language. This language was regarded as

the intended experimental environment for achieving the

results of the study.

By obtaining the class diagram in the c# experimental

environment, a table with several classes was considered

for gaining the vulnerability of the program classes. It

was produced in the Word 2007 software and the

vulnerability values of each of the program classes were

determined in the table. Table 1 shows a sample of this

table.

The codes of each of the considered applications were

written based on their class diagram in c# program. As

mentioned before, by writing the code of each of the

respective programs and obtaining the class diagram for

each of them, the vulnerability value of each class can be

obtained based on the proposed method. After specifying

the vulnerability of the classes, the type of class having

critical data is identified and duplicated on the operation

data. Critical data was duplicated on 70% of the related

class. Then, redundancy was carried out on the critical

data of each of the intended programs.

Each of the three programs was evaluated. In

evaluating each main program which, in turn, has a 70%-

redundancy program and a 100%-redundancy program,

the memory values and execution times of each

respective program were obtained in the c# program.

Then, the Excel 2007 was used for illustrating the

evaluation diagram of each program.

 Enhancing Software Reliability against Soft-Error using Minimum Redundancy on Critical Data 25

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 5, 21-30

Fig.3. Class Diagram of the Automatic Telling Machine (ATM)

V. RESULTS AND DISCUSSION

By obtaining class diagram, the programmer is able to

observe the program which will be written in the form of

code. More importantly, critical data of the program will

be obvious and noticeable via class diagram for the

programmer using proposed method. Then, the

programmer can consider more reliability for the program

data which are more critical and critical and have a

greater impact on other classes.

As mentioned earlier, for establishing reliability for the

program, the vulnerability of each of the related classes

should be gained through the proposed formula. In the

proposed formula according to the previous related

studies, the relations having more significance among the

program classes were taken into consideration. Grading

was considered among the assumed relations and a

coefficient was specified for each one. This proposed

formula helps user to better notice a high-significance

class relation. Altering obtaining the vulnerability of each

class and applying only 70% of the classes with high

vulnerability, it should be proved that there are classes

within the 30% of all cases for which it is not necessary

to apply redundancy. Thus, the proposed method includes

70% of the classes for redundancy or data duplication.

Indeed, redundancy has a remarkable impact on

performance overhead which can reduce 30% of the

memory consumption and the execution-time of the

program.
In the present study, for strengthening the critical data

of the program against transient faults, data redundancy

was used. In applying redundancy or data duplication on

the critical data of the program, in fact, the operation was

focused on the variables and operators. Since critical data

are so critical and important and, in many cases, they are

probably prone to failure and faults, the study zoomed in

on those data. Another significant issue which should

pointed out here is that, regarding redundancy of critical

data, the proposed method considered 70% of redundancy

on them in order to protect them.

Since class diagram was used in the proposed method

for detecting critical data, it can be maintained that the

proposed method significantly enjoys high detection ease

and speed. Inasmuch as execution code was used in most

related studies for detecting critical data, identifying

critical data was very challenging for the programmer and

in some cases, it was so difficult to reach an accurate

conclusion and proper decision about them. Hence, in

general, it should be noted that there is useful information

in the design model of software architecture which is not

readily and easily extractable and recognizable at the

code level. Such information which is used for detecting

classes and vulnerable parts of the program is given

below:

26 Enhancing Software Reliability against Soft-Error using Minimum Redundancy on Critical Data

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 5, 21-30

 Displaying modes of execution time.

 Displaying the type and degree of relations.

 Displaying data aspect, control aspect and the

structural aspect.

 Displaying the complexity of different parts of the

program.

 Displaying the relations between variables and

different models of the program and their degree.

 Displaying variables and different classes of the

program without unnecessary details.

The designed model for the proposed method is class

diagram. The vulnerability cases of a class include the

followings:

 The class from which other class inherit has is

assumed to have more critical data.

 The class with more variables and methods.

 The class having more relations with higher relation

coefficient.

After obtaining the values of consumption memory and

execution time for each of the three modes of the

program, i.e. fully duplicated program, 70%-duplicated

and the main program, the diagrams of the memory

consumption and the execution time of the three modes of

the respective program were compared with one another.

The followings are the diagrams of the consumption

memory and execution time for each of the five programs

with three modes. Figures 4 to 11 show the memory

overhead (consumption) introduced by proposed method

in different programs.

Fig.4. Memory Consumption of the Digital Intelligence System

Fig.5. Memory Consumption of the payroll system

Fig.6. Memory Consumption of the library robot system

Fig.7. Memory Consumption of the elevator system

Fig.8. Memory Consumption of the automatic telling machine (mode1)

Fig.9. Memory Consumption of the automatic telling machine (mode2)

 Enhancing Software Reliability against Soft-Error using Minimum Redundancy on Critical Data 27

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 5, 21-30

Fig.10. Memory Consumption of the automatic telling machine (mode3)

Fig.11.Memory Consumption of the automatic telling machine (mode3)

In the proposed method, 70% of classes (data and

instructions) of a program (as the critical classes) are

protected against soft-errors; and about 30% of the

memory consumption is reduced with regard to the full

duplication method. Figures 12 to 19 show the execution

time introduced by proposed method in different

programs.

Fig.12. Execution times of the Digital Intelligence System

Fig.13. Execution times of Payroll System

Fig.14. Execution times of the Library Robot System

Fig.15. Execution times of the Elevator System

Fig.16. Execution times of the Automatic Telling Machine (mode1)

28 Enhancing Software Reliability against Soft-Error using Minimum Redundancy on Critical Data

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 5, 21-30

Fig.17. Execution times of the Automatic Telling Machine (mode2)

Fig.18. Execution times of the Automatic Telling Machine (mode3)

Fig.19. Execution times of the Automatic Telling Machine (mode3)

In the proposed method, the program is protected but

30% of the program execution time is reduced with

regard to the full duplication method.

For demonstrating the degree of the efficacy of the

proposed method in terms of reliability, each of the

respective programs was investigated and analyzed.

Hence, at first, in the critical data of all the three modes,

i.e. the main program, program with 70% redundancy and

the program with 100% redundancy, some errors were

injected in the variable values or their operators. Error

injection was realized in this way that variable value or

the operator sign was changed. The operation of changing

critical data is, indeed, similar to errors which have been

imposed from outside into the program and lead to failure

or fault in the critical data of the program. Also, it results

in the failure in the system and program. Then, by

executing all the three modes of the intended program,

namely the main program, the program with 70%

redundancy and the program with 100% redundancy, for

which error injection has been applied, the outputs of the

programs were compared with one another. The

comparison of each of the three modes of the program is

given in table 2. It shows that, due to injecting errors,

these different modes of the program suffer from certain

degree of fault or failure.

Table 2. Evaluation of Program Failure after Injecting Error

Program name Main program

70% -

redundancy
program

100% -

redundancy
program

Auto telling

machine (mode 1)
70% to 100% 48% to 57% 25% to 35%

Auto telling

machine (mode 2)
85% to 100% 67% to 72% 38% to 42%

Auto telling
machine (mode 3)

78% to 100% 52% to 65% 45% to 55%

Auto telling
machine (mode 4)

60% to 100% 35% to 45% 15% to 20%

Digital

intelligence
system

83% to 100% 37% to 53% 17% to 25%

Elevator system 75% to 100% 45% to 55% 12% to 20%

Payroll system 80% to 100% 43% to 57% 15% to 35%

Library robot
system

100% (infinite
loop)

48% to 52% 25% to 35%

By injecting 10 to 100% errors in the critical data of

the intended programs, the results of evaluating program

failure were obtained which are given in table 2.

VI. CONCLUSION

The study reported in this paper was aimed at

enhancing program reliability. The method proposed in

this paper was intended to secure the critical data of the

program such as variables and operators against errors

and faults. Class diagram model was used in the method

introduced in this study. As discussed earlier, class

diagram plays a significant role in obtaining program

vulnerability. In the class diagram model, the overall

structure without unnecessary details can be illustrated

which was efficiently used in line with the purpose of this

study. In the designed model of software architecture,

there are useful information which cannot be easily

extracted and understood at the code level. If we compare

class diagram with program code in terms of obtaining

program vulnerability, we will find that class diagram

which has the merits of observing all the program content,

high detection speed and lack of complexity is

significantly more efficient and desirable than program

code.

The formula proposed in this paper was aimed at

obtaining the vulnerability of the class of a program. It

was highly beneficial and useful in selecting critical and

efficient data and relations. It obviated the need for

examining and dealing with unnecessary issues. By

obtaining consumption memory and execution time for

 Enhancing Software Reliability against Soft-Error using Minimum Redundancy on Critical Data 29

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 5, 21-30

the three modes, i.e. 70% redundancy program, 100%-

redundancy program and the main program, we found

that the main program is more prone to failure and fault

due to the lack of redundancy in its critical data.

consequently, it has less reliability, consumption memory

and execution time. Regarding 100% redundancy

program, it was noticed that all the critical data are more

reliable against fault and error and resistant to failure.

However, it should be pointed out that it has higher

consumption memory and execution time. In the

proposed method, i.e. 70% redundancy, not only the

critical data of the program are protected but also 30% of

the consumption memory and the program execution time

were reduced. Hence, the performance overhead was

consequently reduced. The lack of 30% redundancy in the

proposed method was related to the class which was less

vulnerable than the other classes.

For evaluating the failure of each of the three modes,

errors were injected. The results of the error injection

experiments indicated that the main program had less

reliability; nevertheless, the 70% redundancy program

had 70% reliability and the 100%-redundancy program

had 100% reliability. The factors of execution time,

consumption memory and program failure analysis via

error injection were investigated and compared for the

three modes of the program. The results of the

comparisons revealed that the program with 70%

redundancy based on the proposed method had less

execution time and memory consumption and more

reliability. Also, the performance was optimized.
In this paper, the experiments were carried out on five

different programs by injecting 10 to 100% errors in the

three different modes of the program. As mentioned

before, execution time, memory consumption and the

degree of the failure for each program mode was

specified.

As a direction for further research, it is recommended

that the critical instructions of a program in addition to

the variables and operators should be taken into

consideration for enhancing its reliability. Reliability

enhancement will be a combination of program codes and

software architecture so that the critical data of the

program can be accurately covered and be secure and

resistant against faults and errors.

REFERENCES

[1] D. J. Lu, ―Watchdog Processor and Structural Integrity

Checking‖ , IEEE Transaction on Computers, vol. C-31,

No. 7, pp. 681-685, July 1982..

[2] J. H. Patel et al., ―Concurrent Error Detection in ALUs

by Recomputing with Shifted Operands‖, IEEE

Transaction on Computers, vol. C-31, No. 7, pp. 589-

595, July 1982.

[3] K. H. Huang, J. A. Abraham, Algorithm-Based Fault

Tolerance for Matrix Operations, IEEE Trans.

Computers, vol. 33, pp. 518-528, Dec 1984.

[4] David L.Parnas, A. John van Schouwen, and Shu Po

Kwan, Evaluation of safety-Critical Software

Communications of the ACM, Vol. 33, No. 6, pp. 636 –

648 , June 1990.

[5] K. Wilken, J.P. Shen, ―Continuous Signature

Monitoring: Low-Cost Concurrent-Detection of

Processor Control errors”, IEEE Transaction on

Computer Aided Design, vol. 9, NO. 6, pp. 629-641,

June 1990.

[6] H. Madeira, J. G. Silva, ―On-line Signature Leraning

and Checking”, Dependable Computing for Critical

Applications 2, Springer-Verlag, pp. 395-420, 1992.

[7] T. Goradia, Dynamic Impact Analysis: A Cost-Effective

Technique to Enforce Error-Propagation, ISSTA 1993.

[8] Jean-Claude Laprie, Dependability of Computer

Systems: Concepts, Limits, Improvements, pp 3,4, 1995.

[9] Y. M. Hsu et al., ―Time redundancy for error detecting

neural networks‖, Proc. IEEE Int. Conf. on Wafer Scale

Integration, pp. 111-121, Jan. 1995.

[10] Barry W. Johnson, An Introduction to the Design and

Analysis of Fault-TolerantSystems, in Fault-Tolerant

Computer System Design, Dhiraj K. Pradhan,Prentice

Hall, Inc., pp. 1 – 87, 1996.

[11] A. M. Amendola, A. Benso, F. Corno, L. Impagliazzo, P.

Marmo, P. Prinetto, M. Rebaudengo, M. SonzaReorda,

Fault Behavior Observation of a Microprocessor

System through a VHDL Simulation-Based Faukt

Injection Experiment, EURO-VHDL’96, Geneva(CH),

pp. 536-541, September 1996.

[12] J. G. Silva, J. Carreira, H. Madeira, D. Costa, F. Mreira,

Experimental Assessment of Parallel System, Proc.

FTCS-26, Sendaj(J), pp. 415-424, 1996.

[13] M. ZenhaRela, H. Madeira, J. G. Silva, Experimental

Evalution of the Fail-Silent Behavior in Programs with

Consistency Checks, Proc. FTCS-26, Sendaj(J), pp. 394-

403, 1996.

[14] Roger S. Pressman, Software Engineering: A

Practitioner,s Approach, The McGraw-Hill Companies,

Inc., 1997.

[15] V. Strumpen, Portableand Fault-Tolerant Software

System, IEEE Micro, pp. 22-32, September-October

1998.

[16] V. Strumpen, Portable and Fault-Tolerant Software

Systems, IEEE Micro, pp. 22-32, September-October

1998.

[17] J. Voas and K. Miller, The Avalanche Paradigm: An

Experimental Software Programming Technique for

Improving Fault Tolerance, Proc. of ECBS, 1999.

[18] M. Rebaudengo, M. Sonza Reoda, M. Torchiano, M.

Violante, Soft-error Detection through Software Fault-

Tolerance techniques, DFT’99: IEEE International

Symposium on Defect and Fault Tolerance in VLSI

Systems, November 1-3, New Mexico, USA, pp. 210-

218, Albuquerque- 1999.

[19] W Torres-Pomales, Software Fault Tolerance: A

tutorial, pp6, 2000.

[20] A.Benso, S.Chiusano, L.Tagliaferri, A C/C++ Source-

to-Source Compiler for Dependable Applications,

Politecnico di Torino, Dipartimento di Automatica e

informatica, pp71-78, 2000.

[21] Lui Sha, Using Simplicity to Control Complexity,

University of Illinois at Urbana-Champaign, pp 20,

2001.

[22] Laura, L.P.Software Fault Tolerance Techniques and

Implementation. Boston London: Artech House, pp

1,3,9-12 , 2001.

[23] A. Benso, S. Carlo, G. Natale, L. Tagliaferri, and P.

Prinetto, Validation of a Software Dependability Tool

via Fault Injection Experiments, 7th Intl. On-Line

Testing Workshop, 2001.

[24] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin,

Dynamically Discovering Likely Program Invariants to

30 Enhancing Software Reliability against Soft-Error using Minimum Redundancy on Critical Data

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 5, 21-30

Support Program Evolution, IEEE Trans. on Software

Engineering, 27(2), 2001.

[25] M. Hiller, A. Jhumka, and N. Suri, On the Placement of

Software Mechanisms for Detection of Data Errors,

Proc. Intl. Conference on Dependable Systems and

Networks (DSN), 2002.

[26] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, L.

Tagliaferri, Data Criticality Estimation in Software

Applications, Politecnico di Torino, Dipartimento di

Automatica e Informatica, Corso DucaDegli Abruzzi 24,

I-10129, Torino, Italy, pp 802-810,2003.

[27] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, L.

Tagliaferri, Data Criticality Estimation in Software

Applications, Politecnico di Torino, Dipartimento di

Automatica e Informatica, Corso Duca Degli Abruzzi

24, I-10129, Torino, Italy, pp 802-810, 2003.

[28] Shubhendu S. Mukherjee, Joel Emer, Steven K.

Reinhardt, The Soft Error Problem: An Architectural

Perspective, pp 1-5, 2005.

[29] S. Narayanan, S. Son, M. Kandemir, and F. Li, Using

Loop Invariants to Fight Soft Errors in Data Caches,

Proc. Asia and South Pacific Design Automation

Conference (ASP-DAC'05), 2005.

[30] KarthikPattabiraman, ZbigniewKalbarczyk, and

Ravishankar K. Iyer, Application Based Metrics for

Strategic Placement of Detectors, Center for Reliable

and High-Performance Computing, Coordinated

Sciences Laboratory, University of Illinois at Urbana-

Champaign, pp 1-8, 2005.

[31] Eduardo Valido-Cabrera, Software reliability methods,

Technical University of Madrid, 2006, pp 1-2, 12.

[32] S. Pontarelli, M. Ottavi, A. Salsano, Error Detection

and Correction in Content Addressable Memories,

Rome, ITALY, pp 423, 2010.

[33] Gurpreet Kaur, Kailash Bahl, Software Reliability,

Metrics, Reliability Improvement Using Agile Process,

2014, pp 143-146.

Authors’ Profiles

Saeid A. Keshtgar received master degree

in computer engineering from Islamic Azad

University of Tabriz. His research interests

include Fault Tolerance and reliability of

software systems.

Bahman Arasteh received his master

degree from IAU of Arak, Iran, in 2006 and

the PhD degree in Software Engineering

from IAU University, in 2014. Currently, he

is an assistant professor in the department of

computer engineering at the IAU of Tabriz.

His research interests include Dependability

and fault tolerance of software systems,

Software architecture of dependable systems, Software-based

Fault-Injection, Software Testing and validation methods.

How to cite this paper: Saeid A. Keshtgar, Bahman B. Arasteh,"Enhancing Software Reliability against Soft-Error

using Minimum Redundancy on Critical Data", International Journal of Computer Network and Information

Security(IJCNIS), Vol.9, No.5, pp. 21-30, 2017.DOI: 10.5815/ijcnis.2017.05.03

