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Abstract 

In order to represent complex graph drawing in the course of 3-dimensional dynamic simulating flexible 

objects such as fabric、garment、rope、netting yarn and rubber band, we designed a new mathematic model 

named operator cube. Any graph formed on the basis of the point information. In a word, if each point has 

enough geometry information, the graph can be drawn and rendered. Operator cube model came into being 

just because of that idea. The paper mainly discussed the theory of operator cube model. The model can 

transform a complex graph into a simple representation effectively and in real time, especially in the course of 

topology structure varying flexible object simulation. What’s more, the model can accurately express the 

simulation results. The model converted between the world coordinate system space and device coordinate 

system space. And the model and the conversion involved some profound mathematic theorems and our 

conclusions which were proved strictly. 
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1. Introduction 

Such as fabric and garment flexible materials simulation of pattern of deformation had attracted many 

researchers in the area of computer graphics from the middle to late eighties as computer technologies 

progressed, so all kinds of modelling technologies came into being[1]. The modelling method can be mainly 

classified into four categories which were the geometrical and the mechanical approach, their mixed approach 

and other methods [2-6]. Simulation of draping and buckling of a fabric which was mainly woven has 

received much attention in recent years in literature; the results have paved the way for development of a 

computer software which can model how the clothes made of fabric appear on, for instance, cloth draping on 

mannequins[7-11]. And there were also some simulation about large deformations occurring at any place in 

the cloth, such as folds and wrinkles [12-13]. However, these methods had given up to compromises among 

real-time performance、accuracy、robustness and stability. Little work of simulations of flexible objects like  
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fabric and so on has been concerned with negotiation of real-time performance、accuracy、robustness and 

stability in literature[14]. It is a more difficult task to do that. To solve that problem, we first constructed a 

mathematic model named operator cube to give the problem theoretical solution and experimental results. 

2. Preliminaries 

Definition 1. An n-tuple of numbers (x1, x2,…,xn) is called an n-dimensional vector, individual numbers 

x1,x2,…,xn are called the components of the vector. Vectors in geometry can be viewed as particular cases of 

n=2,3. When n>3 the n-dimensional vectors no longer have geometric senses. In the paper we take n=3. 

Definition 2.  The set of all real and n-dimensional vectors is denoted by R
n
. We call R

n
 an n-dimensional 

vector space or n-dimensional real linear space. That is to say, these vectors can be added and multiplied by 

numbers, and the following properties are satisfied: 

(a)       ; 

(b)              ; 

(c) 0   ; 

(d) Let  1, ,    n
 and let  1, ,       n

.Then   0    ; 

(e) 1  ; 

(f)  k k k      ; 

(g)  1 2 1 2k k k k     ; 

(h)    1 2 1 2k k k k  . 

Where , ,   are n-dimensional vectors, k1, k2, are numbers. 

Definition 3. Consider vectors
1 2, , , , m    , If there exist m numbers 

1 2, , m   ,such that 

1 1 2 2 m m        ,then the vector   is called a linear combination of the vectors 
1 2, , , m   .We say 

also the vector 

 can be linearly expressed by the vectors 

1 2, , , m   . 

Definition 4. Let 
1 2, , , m    be m vectors. We say that they are linearly dependent if there exist m 

numbers k1, k2 … km not all equal to 0 such that 
1 1 2 2 0m mk k k     . If such numbers do not exist, then we say 

that 
1 2, , , m    are linearly independent. 

Definition 5. Suppose V is the linear space defined on number field K, If there exist n linear independent 

vectors 
1 2, , , m   , such that 

1 1 2 2 m m        for V  , then  1 2, , , m   is a group of base of V, V is 

called m-dimension linear space, if m , V is called infinite dimensional linear space. 

Definition 6. A norm on a vector space X is a function  : : 0, ;X R x x     that satisfies, for all 

,x y X and F , 

(a) 
0x 
if and only if x=0; 

(b) x x  ; 

(c) 
x y x y  

 

A semi norm on X is a function :p X R that satisfies (b) and (c) above. 

Definition 7. Suppose  as real number field or complex number field, X and Y are linear spaces defined 

on field  , D is the subspace of X, T is a mapping from D to Y, for x D , the x image of mapping T denotes 

as Tx  or  T x , if for ,x y D  and number ,   , there is  T x y Tx Ty      , then T is a linear operator, D is 

the domain of T and denotes as D(T),  TD Tx x D 
 is the range of T and denotes as R(T). 
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3. Operator cube model 

3.1. Homogeneous Coordinates 

Homogeneous coordinates are ubiquitous in computer graphics because they solve the problem of 

representing a transformation such as translation、projection、 rotation、 scaling and shear as a matrix 

operation. Homogeneous coordinates allow all affine transformations to be represented by a matrix operation. 

A translation in R
2
:    , ,x y x a y b   can be represented as 

1 0

0 1

0 0 1 1 1

a x x a

b y y b

     
    

     
         

          (1) 

Where column vectors are the homogeneous coordinates of the two points. 

3.2. Common 3D transformations 

● Translation 

Going from point p to p’ is by displacing by a distance d; p and p’ are points in 3-dimension vector 

space, here  , , ,1p x y z ,  ' ', ', ',1p x y z ,  , , ,1x y zd     so we easily obtain the following formula 

' 'p p d p Tp    , T  is a translation matrix, and it can be written as: 

1 0 0

0 1 0

0 0 1

0 0 0 1

x

y

z

T







 
 
 
 
 
 

          (2) 

● Scaling 

Suppose , ,x y z   respectively as x-direction、y-direction and z-direction scaling factors relative to a 

fixed point of the origin. So there is p = Sp , here S  can be written as: 

0 0 0

0 0 0

0 0 0

0 0 0 1

x

y

z

S







 
 
 
 
 
 

           (3) 

● Rotation 

Suppose      , ,x y zR R R    respectively revolve   angle around x-axis、y-axis and z-axis rotation 

matrix with a fixed point at the origin. So there is ' xp R p and ' yp R p and ' zp R p , here 

     , ,x y zR R R    can be written as: 

 

1 0 0 0

0 cos sin 0

0 sin cos 0

0 0 0 1

xR
 


 

 
 


 
 
 
 

 
 

cos 0 sin 0

0 1 0 0

sin 0 cos 0

0 0 0 1

yR

 


 

 
 
 
 
 
 

   

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

zR

 

 


 
 
 
 
 
 

    (4) 
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● Shear 

 

Fig. 1 Shear in the x-axis direction 

As the diagram indicated above, we can conclude 

cotx x y

y y

z z

  

 

  

          (5) 

So we can express it in matrix form, that is to say, 
xp = S p , here 

xS  can be written as: 

1 cot 0 0

0 1 0 0

0 0 1 0

0 0 0 1

xH

 
 
 
 
 
 

          (6) 

If the shear happens in the y-axis or z-axis direction, we can obtain the following conclusions in the same 

reason. 

1 0 0 0

0 1 cot 0

0 0 1 0

0 0 0 1

yH


 
 
 
 
 
 

 

1 0 0 0

0 1 0 0

cot 0 1 0

0 0 0 1

zH


 
 
 
 
 
 

      (7) 

● Projection 

Suppose  , ,p x y z  is a point in the three-dimensional space,the  ' , ,0p x y and  '' ,0,0p x is the 

point p projection onto the xy-plane and x-axis, set ' xyp P p and '' xp P p , here 
xyP and 

xP  can be 

written as: 

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

x yP

 
 
 
 
 
 

  

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

xP

 
 
 
 
 
 

      (8) 
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3.3. Operator Cube 

 

Fig. 2. Operator cube 

To solve the problem of deformation in the simulation of flexible objects, we constructed a model named 

operator cube to represent the information of topological structure. Whether the topological structure varied or 

not, we use the model to convert the change of points on the object into operator on or inside the operator cube 

and we obtained sequence of operators. Then we added time perturbation to sequence of operator system and 

we inversely transformed the sequence of operator system to the simulation result. We can control the process 

of simulation to avoid the unexpected such as super-elasticity and misconvergence by using the model. 

Operator cube is 4-dimensional cube. And it is composed of time operator and a solid cube whose elements 

are consisted of operators. Operators on the surface and inside the operator cube have different properties. 

What’s more, the edge and vertex of the operator cube are made of different operators. The idea of operator 

cube model arose from three-dimensional orthogonality of flexible objects. The following is about the theory 

of operator cube. 

 

● Operators on the faces 

Each face of the operator cube is regarded as normalized operator space X. Each matrix is regarded as 

an operator, so the six faces are on the base of translation operator T、scaling operator SG、rotation 

operator R、shear operator S and projection operator P. Because these five operators are linearly 

independent, they are a group of base of X. thus each operator on the face can be linearly expressed 

by the group of base. Each operator O on the face is written as 

 

O=(x1T+x2SG+x3R+x4S+x5P)△T        (9) 

 

Here X=(x1, x2, x3, x4, x5) is the operator coefficient and is the time of physical parameters and mesh 

spatial relationship[15-16]. A flexible object may have many physical parameters, we made use of 

grey system and neural network to gain optimal parameters and mesh spatial relationship depended on 

what kind of flexible objects were simulated. △T is a time operator which controlled time step. when 

△T is unit operator, the modelling is based on geometrical approach. 

The cube has six faces which locate in the left、in the right、in the front、in the back、on top、on 

bottom. These faces correspond to real flexible cubic object’s faces, so each of T、SG、R、S、P 

needed to be expressed as six operators which were Tleft、Tright、Tfront、Tback、Ttop、Tbottom, SGleft、

SGright、SGfront、SGback、SGtop、SGbottom、Rleft、Rright、Rfront、Rback、Rtop、Rbottom、Sleft、Sright、

Sfront、Sback、Stop、Sbottom、Pleft、Pright、Pfront、Pback、Ptop、Pbottom. 
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● Operators on the edges 

Suppose O1and O2 are operators on the different faces of the cube, because real flexible objects are 

isotropic materials, the cube was symmetric. And an edge is the intersection of the two different faces, 

and then the operator O on an edge was calculated by 

 

O=(O1+O2)/2                     (10) 

 

● Operators on the vertices 

Suppose O1、O2 and O3 are operators on the different edges of the cube; because real flexible objects 

are isotropic materials, the cube was symmetric. And a vertex is the intersection of the three different 

edges, and then the operator O on an edge was calculated by 

 

O=(O1+O2+O3)/3                      (11) 

 

● Operators inside the cube 

Because our operator cube was regarded as micro-unit cube on the Euclidean Space, each operator 

inside the cube was similar to a point inside the unit cube on the Euclidean Space. We could make an 

operator inside the cube project to three different edges sharing the same vertex, thus we could get an 

operator’s orthogonal decomposition. Considered an O operator inside the cube, and suppose O1、

O2、O3 were O operator’s projections on the edges sharing the same vertex, then the operator O could 

be written as 

 

O=O1+O2+O3                                            (12) 

 

● Time operator 

Different time step has great influence on simulation when taken in a mechanical approach, so it was 

a big problem to take optimal time step. We used to have different tests to find suitable time step, and 

we adopted a self-adaptive way to control simulation through time operator. Thus we could use 

absolute error to control simulation. Time operator was related to numerical method, and different 

numerical methods were endowed with different time operators. 

 

4. Example and experiment 

When the flexible objects deformed in the course of simulation, if the object topological structure didn’t 

change, we can represent deformation by deformation gradient. And deformation gradient is generally matrix 

of a linear transformation, what’ more, it contains geometric information in the process of deformation. It is 

obvious that we can decompose deformation gradient into operators inside or on the operator cube; in other 

words, operator cube can describe the information which the deformation gradient contains. If the object 

topological structure changed in the course of simulation, for example fracture, we can represent deformation 

by generalized deformation gradient and operator cube can describe the information which the generalized 

deformation gradient by using the theory of operator decomposition and operator approximation. To test our 

model, we translated our ideas into computer code and gained the following experiment result as shown in the 

picture below. 
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Fig. 3. Fabric drape 

 

Fig. 4. Fabric suspension 

5. Conclussion and discussion 

This paper described a new mathematic model named cube operator. And this model was a good 

approximation of simulation method. The model successfully represented uniform theory of geometrical and 

mechanical approach and also mixed approach. Actually we could gain expected simulation results through 

this model only if we could find appropriate operator sequence and physical parameters. But our model is not 

perfect, because this model could only characterize the isotropic material simulation. How to characterize the 

anisotropic material and multilayer structure simulation is a big problem, and how to blend texture and other 

information into cube operator model also is a problem, we will aim to solve these work in the future. 

Acknowledgements 

The author wished to thank Professor Hai-Ru Long for suggesting this problem and for discussing various 

ideas relating to this work. I would also like to acknowledge the useful suggestions made by the referee. 



40 New Method Simulating Flexible object-operator Cube Model 

References 

[1] [Nadia Magnenat Thalmann, Pascal Volino. From erly draping to haute couture models: 20 years of 

research[J].Visual Computer, 2005, 21:506-519. 

[2] David E Breen, Donald H House. A Particle-Based Model for Simulating the Draping Behaviour of 

Woven Cloth[J].Textile Research Journal, 1994, 64(11):663-685. 

[3] D M Stump, W B Fraser. A Simplified Model of Fabric Drape Based on Ring Theory[J].Textile Research 

Journal, 1996, 66(8):506-514. 

[4] Pascal Volino, Nadia Magnenat-Thalmann. Stop-and-go cloth draping[J].Visual computer, 2007, 23:669-

677. 

[5] Ming-xiang Chen, Qing-ping Sun, Ming-fai Yuen. Simulation of Fabric Drape Using A Thin Plate 

Element with Finite Rotation[J].Acta Mechanica Sinica, 1998, 14(3):239-247. 

[6] Bijian Chen, Muthu Govindaraj. A Physically Based Model of Fabric Drape Using Flexible Shell 

Theory[J].Textile Research Journal, 1995, 65(6):324-330. 

[7] L Dong, C Lekakou, M G Bader. Solid-mechanics finite element simulations of the draping of fabrics: a 

sensitivity analysis[J]. composites: Part A, 2000, 31:639-652. 

[8] S F Chen, J L Hu, J G Teng. A finite-volume method for contact drape simulation of woven fabrics and 

garments[J].Finite Elements in Analysis and Design, 2001, 37:513-531. 

[9] K Y Sze, X H Liu. Fabric drape simulation by solid-shell finite element method [J]. Finite Elements in 

Analysis and Design, 2007, 43:819-838. 

[10] Jacqueline R Postle, Ron Postle. The Dynamics of Fabric Drape[J].Textile Research Journal, 1999, 

69(9):623-629. 

[11] W M Lo, J L Hu, L K Li. Modeling a Fabric Drape Profile[J].Textile Research Journal, 2002,72(5):454-

463. 

[12] Feng Ji, Ru-qin Li, Yi-ping Qiu. Simulate the Dynamic Draping Behaviour of Woven and Knitted 

Fabrics[J].Journal of Industrial Textiles, 2006, 35(3):201-215. 

[13] Jose Miguel S Dias, Manuel N Gamito. A Discretized Linear Model for Cloth Buckling and 

Drape[J].Textile Research Journal, 2000, 70(4):285-297. 

[14] Moon Koo Kang, Jeongjin Lee. A real-time cloth draping simulation algorithm using conjugate harmonic 

functions[J].Computers & Graphics, 2007, 31:271-279. 

[15]Bijian Chen, Muthu Govindaraj. A Parametric Study of Fabric Drape[J].Textile Research Journal, 1996, 

66(1):17-24. 

[16] In Hwan Sul, Tae Jin Kang. Simulation of Cusick Drapemeter Using Particle-based Modeling:Stability 

Analysis of Explicit Integration Methods[J].Textile Research Journal, 2006, 76(9):712-719. 

[17] Kunii T. singularity theoretical modeling and animation of garment wrinkle formation process[J].visual 

computer,1990,6(6):326-336. 

[18] Jonathan M K,Dong L J.simulating knitted cloth at the yarn level [J]. ACM transactions on 

graphics,2008,27(1):1-9. 

[19] Hidefumi W,Shinichi H.static modeling of linear object deformation based on differential 

geometry[J].the international journal of robotics research,2004,23(3):293-311. 

[20] Yitong Z,Cuiyu L.a micro-mechanical model of knitted fabric and its application to the analysis of 

buckling under tension in wale direction:micro-mechanical model[J].acta mechanica sinica,2004,20(6):623-

631. 

[21] Frederic C,Nadia M T.a data-driven approach for real-time cltohes simulation[J].computer graphics 

forum,2005,24(2):173-183. 

[22] [204]Georgii J, Westermam R. a multigrid frame work for real-time simulation of deformable 

bodies[J].computer & graphics, 2006,30:408-415. 

[23] Jansson J. a discrete mechanics model for deformable bodies[J].computer aided design,2002,34:913-928. 

[24] Gregire M, Schomer E. interactive simulation of one-dimensional flexible parts[J].computer aided 



 New Method Simulating Flexible object-operator Cube Model 41 

design,2007,39:694-707. 

[25] Rony G,David H.efficient simulation of inextensible cloth[J].ACM transactions on 

graphics,2007,26(3):1-7. 

[26] Liang M,Jinlian H.generating seams and wrinkles for virtual clothing [C].proceedings of 2006 ACM 

interational conference on virtual reality continuum and its applications,2006,205-211. 

[27] Chou K, Sun H. deformable simulation using force propagation model with finite element 

optimization[J].computer & graphics,2004, 28:559-568. 

[28] Elliot E,Robert B.animating developble surfaces using nonconfoming elements[J].ACM transactions on 

graphics,2008,27(3):1-5. 

 


