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Abstract 

This paper is devoted to the numerical solution of projected generalized continuous-time Lyapunov equations 

with low-rank right-hand sides. Such equations arise in stability analysis and control problems for descriptor 

systems including model reduction based on balanced truncation. A parameter free iterative method is proposed. 

This method is based upon a combination of an approximate power method and a generalized ADI method. 

Numerical experiments presented in this paper show the effectiveness of the proposed method. 
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1. Introduction 

In this paper we consider the projected generalized continuous-time Lyapunov equation  
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Where ,n nA E R   ,n mB R   and 
n nX R   is the sought-after solution. Here, 

lP  and 
rP  are the 

spectral projectors onto the left and right deflating subspaces corresponding to the finite eigenvalues of the 

pencil E A  , respectively. It has been shown in [1] that if the pencil E A   is c-stable, i.e., all its finite 

eigenvalues have negative real part, then the projected generalized continuous-time Lyapunov equation (1) has a 

unique, symmetric and positive semidefinite solution X .  

We assume that the pencil E A   is regular, i.e., det( )E A   is not identically zero. Under this 

assumption, the pencil E A   has the Weierstrass canonical form [2]: there exist nonsingular n n  matrices 

W  and T  such that  
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                                                                                               (2) 

Where J  and N  are block diagonal matrices with each diagonal block being a Jordan block. The 

eigenvalues of J  are the finite eigenvalues of the pencil E A   and N  corresponds to the eigenvalue at 

infinity. Using (2), 
lP  and 

rP  can be expressed as  
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The projected generalized continuous-time Lyapunov equation (1) arises in stability analysis and control 

design problems for descriptor systems including the characterization of controllability and observability 

properties, balanced truncation model order reduction, determining the minimal and balanced realizations as 

well as computing 
2H  and Hankel norms; see [3,4] and the references therein.  

Several numerical methods have been proposed in the literature for solving the projected generalized 

Lyapunov equation (1). In [5], two direct methods, the generalized Bartels-Stewart method and the generalized 

Hammarling method, were proposed for the projected generalized Lyapunov equation of small or medium size. 

Iterative methods to solve large sparse projected generalized Lyapunov equations have also been proposed. 

Stykel [6] extended the ADI method and the Smith method to the projected equation. Moreover, low-rank 

versions of these methods were also presented, which could be used to compute low-rank approximations to the 

solution.  

The ADI method requires to select shift parameters. To obtain optimal shift parameters, we need to solve a 

rational min-max problem. This problem is only solved for standard Lyapunov equations with symmetric 

coefficient matrices. For the non-symmetric case, some heuristic shift selection procedures have been proposed 

to compute the suboptimal ADI shift parameters, see [7,8]. However, these shift selection procedures do not 

work well for some applications. If some poor shift parameters are provided by the shift selection procedure, it 

can lead to very slow convergence in the ADI method.  

Recently, a parameter free method was proposed in [9] for solving the large-scale standard Lyapunov 

equation in low-rank factored form. This method uses the approximate power iteration [10] to obtain a basis 

update instead of computing the shift parameters of the ADI iteration. It has been shown that when B  is a 

vector, the parameter free algorithm is equivalent to the ADI method if the shift parameters are identical to the 
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eigenvalues of the projected matrix. Therefore, the parameter free method is also an ADI method, and its shift 

parameters are automatically chosen via solving a standard Sylvester equation.  

The parameter free iterative method presented in this paper for solving the projected generalized Lyapunov 

equation (1) is an extension of the work in [9]. The algorithm is developed based upon a synthesis of the 

approximate power method and the generalized low-rank ADI method [6]. We show that when B  is a vector, 

the parameter free method for projected generalized Lyapunov equations generates the same updates as the 

generalized low-rank ADI method with shift parameters being the eigenvalues of a projected matrix. Moreover, 

the performance of the newly proposed method is compared to that of the generalized low-rank ADI method.  

Throughout this paper, we adopt the following notations. We denote by I  the identity matrix, and by 0  the 

zero vector or zero matrix. The dimensions of these vectors and matrices, if not specified, are deduced by the 

context. The Frobenius matrix norm is denoted by || ||F . The superscript 
T`` "  stands for the transpose only.  

The remainder of the paper is organized as follows. In Section II, we propose a parameter free iterative 

method for solving the projected Lyapunov equation. Section III is devoted to some numerical tests. 

Conclusions are given in the last section.  

2. A parameter free iterative method 

We always assume that the pencil E A   is c-stable, i.e., all their finite eigenvalues have negative real 

part. Thus, the projected generalized continuous-time Lyapunov equation (1) has a unique, symmetric and 

positive semidefinite solution. It follows from the assumption that A  is nonsingular, hence the projected 

generalized Lyapunov equation (1) is equivalent to the projected standard Lyapunov equation  
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                                                                            (3) 

In [9], Nong and Sorensen proposed a parameter free method for solving the large-scale Lyapunov equation 

in low-rank factored form. The algorithm is based upon a synthesis of the approximate power method and the 

alternating direction implicit method. In this section, we will generalize this method for solving Equation (3). 

The algorithm is described as follows.  

Algorithm 1.  A parameter free iterative method  

Input: 
n nA E R    and 

n mB R   with E A   being c-stable.  

Output: jZ  such that 
T

j j jX Z Z  is an approximate solution of Equation (3).  

1. Let 
1A A E , 

1

1 rB P A B  and 1 0Z  . Compute 1 1( )U orth B .  

2. For 1 2j      

 Set 
T

j j jH U AU  and 
T

j jj
U BB  .  

 Solve the following low-dimensional Lyapunov equation for jR   
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 Solve the projected Sylvester equation for jY   
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 Compute 
1 2

j jj
Y RY

  . The matrix 
T

j jY Y  is an approximate solution of the updated equation  
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 Compute the short singular value decomposition of the matrix [ ]j j
Z Y   

[ ] svd([ ] 0)j j
U V Z Y      

where the diagonal entries of   are ordered decreasingly.  

 Let 1jZ U    and 1 ( 1 )j jU U k     If the approximate solution 1 1 1

T

j j jX Z Z    is accurate 

enough, then stop.  

Set 
1

1 ( )T

j j j j jB I Y R U B

   .  

About Algorithm 1, some remarks of implementation details are in order:  

The product of 
1A

 with some matrix should be implemented by solving the linear systems of equations with 

the coefficient matrix A  and multiple right-hand sides. To do it, the LU  factorization [11] of A  is employed 

for medium-size matrices, and the Cholesky factorization of A  should be used for A  symmetric positive 

definite. For large-scale matrices, a preconditioning iterative method could be employed to solve systems with 

A , where the preconditioner could be generated once for all. Iterative methods that are used nowadays are 

Krylov subspace methods such as GMRES [12].   

The function 
1( )orth B  stands for the modified Gram-Schmidt process [11] for generating an orthonormal 

basis for the range of 1B .  

Note that jR  is obtained from the Lyapunov equation 0
TT

j j j j j j
H kR R H B B   . We assume that 

1A A E  is dissipative on its projection subspace corresponding to its non-zero eigenvalues. Thus, 

T

j j jH U AU  is stable and this Lyapunov equation admits a unique solution jR . In the following discussion, 

it is assumed that jR  is always positive definite.  
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At each iterative step, we need to solve the projected Sylvester equation (4) for jY . This special Sylvester 

equation can be solved efficiently by the method proposed in [13].  

The following theorem shows that if B  is a vector, the parameter free iterative method is an ADI-type 

method.  

Theorem 1.  Let 
1A A E  and j j j

H B B   be defined as in Algorithm 1. Assume that B  is a vector, the 

pencil E A   is c-stable, jH  is stable, and ( )j j
H B  is controllable. Then the update 

1 T

j j jY R Y
 at Step j  

in Algorithm 1 is precisely the same as the approximate solution obtained by applying the generalized low-rank 

ADI method with shift parameters 
1{ }k

i i 
 being the eigenvalues of the matrix jH  to  
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Proof. Let 
1{ }k

i i 
 being the eigenvalues of the matrix jH . For 1 2i k    , define  
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Applying the generalized low-rank ADI method with shift parameters 1{ }k

i i   to the updated equation (5), 

we obtain an approximate solution j jL L  of (5), where  
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which together with j r jB P B  shows 
( ) ( )i i

rB P B . Then we immediately get 
T

j j r j j rL L P L L P  , i.e., 

the second equation in (5) is satisfied exactly by j jL L .  

Let  
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can be expressed as 
T

j j j
Y L L , and the solution jR  of the equation  

0
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can be formulated as 
T

j j j
R L L .  

Since B  is a vector and ( )j j
H B  is controllable, 

jL  is invertible. Hence  
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3. Numerical experiments 

In this section, we present two numerical examples to illustrate the performance of the parameter free 

iterative method (Algorithm 1) for the projected generalized Lyapunov equation (1). Algorithm 1 is denoted by 

PFIM. For the purpose of comparison, we also present the test results obtained by the generalized low-rank 

alternating direction implicit method (denoted by LR-ADI) proposed in [6]. In the following examples, we 

compare the numerical behavior of the two methods with respect to the number of iterations (ITs), CPU time (in 

seconds) and the relative residuals (RES). Here the relative residuals are defined by  

|| ||

|| ||

T T T T
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where jX  denotes the j th iterate of PFIM or LR-ADI. The stopping criterion for both methods is 

1210RES     
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All numerical experiments are performed on an Intel Pentium Dual E2160 with CPU 1.80GHz and RAM 

1GB under the Window XP operating system and the usual double precision, where the floating point relative 

accuracy 
162 22 10  .  

3.1. Example 1 

For the first experiment, we consider the 2D instationary Stokes equation that describes the flow of an 

incompressible fluid in a domain. The spatial discretization of this equation by the finite difference method on a 

uniform staggered grid leads to the descriptor system  

( ) ( ) ( )

( ) ( )

Ex t Ax t Bu t

y t Cx t

  
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                                                                                                                          (6) 

This example for the projected generalized Lyapunov equations was presented by Stykel, see [6] and the 

references therein. The matrix coefficients in (6) are given by  
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If 
11E  and 

1

21 11 12A E A
 are nonsingular, then the pencil E A   is of index 2 . These matrices are sparse 

and have special block structure. Using this structure, the projectors 
lP  and 

rP  onto the left and right deflating 

subspaces of the pencil E A   can be computed as  
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where 
1 1 1

12 21 11 12 21 11( )l I A A E A A E      is a projector onto the kernel of 
1

21 11A E
 along the image of 

12A  and 
1 1 1 1

11 12 21 11 12 21 11 11( )r lI E A A E A A E E        . In this example, the state space dimensions of the 

problem are 1280n   and 1m  .  

The results in Table I show that the PFIM method needs 8 steps of iterations and 0.58 seconds for reaching 

the relative residual 2.8e-014 while the LR-ADI method 18 iterations and 4.38 seconds for convergence. It 

clearly indicates that the PFIM method is more efficient than the LR-ADI method for this example.  
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Table 1. 

 ITs CPU RES 

LR-ADI 18 4.38 131.7 10  

PFIM 8 0.58 142.8 10  

 

Here and in the following, the LR-ADI method uses the heuristic algorithm proposed by Penzl [7] to compute 

the suboptimal shift parameters. This algorithm is based on Arnoldi iterations [13] applied to the matrices 
1A E

 and PA  with 
1( )r r rP P EP AQ   , see [6] for the details.  

3.2. Example 2 

We now do the same experiment as in the previous example except that n  is 3007 instead of 1280.  

From Table II, we can see that for 3007n  , the number of iterations is almost the same as that for 

1280n  . The PFIM method costs 1.57 seconds for convergence while the LR-ADI method needs 13.8 

seconds. 

Table 2. 

 ITs CPU RES 

LR-ADI 20 13.8 134.3 10  

PFIM 8 1.57 149.2 10  

4. Conclusions 

In this paper, we have proposed a parameter free iterative method to solve the projected continuous-time 

generalized Lyapunov equation. The new method is developed based upon a combination of an approximate 

power method and a low-rank ADI method. Numerical experiments are presented for the performance 

comparison between the parameter free iterative method and the generalized low-rank ADI method. It shows that 

the method proposed in this paper outperforms the low-rank ADI method.  
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