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Abstract 

In this paper, we study the two-point boundary value problems for systems of nonlinear third-order dierential 

equations .Under some conditions, we show the existence and multiplicity of positive solutions of the above 

problem by applying the  fixed point theorems in cones. 
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1. Introduction 

Recently, there is much attention paid to the existence of positive solutions for third-order nonlinear 

boundary value problems(see [1-5] and references cited therein) 

In [6] Moustafa El-shahed discussed the existences of positive solutions for the following boundary value 

problem: 









.0)1('')1(',0)0(')0(

,0))(()()('''

uuuu

tuftatu




                                                                                              (1.1) 

By using a Krasnosel'skii' _xed-point theorem, the existence of solutions of the problem (1.1)is obtained in 

the case when, either f is superlinear, or f is sublinear. Zhi-Lin Yang [7] etal.considered the existence and 

multiplicity of positive solutions for boundary value problems 
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Motived by the works of [6] and [7], this paper is concerned with the existence of positivesolution for 

boundary value problem 
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where .0,0),,]1,0[,   RRCgf  

The arguments for establishing the existence of solutions of BVP (1.3) involve properties of Green's 

functions that play a key role in the de_nition of cones. A _xed point theorem due to krasnosel'skii [11] is 

applied to yield the existence of  posi-tive solutions of BVP (1.3). Another fixed point theorem about 

multiplicity is applied to obtain the multiplicity of positive sol-utions of BVP (1.3). 

This paper is organized as follows. In the next section, we present some notation and preliminaries. The main 

results, existence and multiplicity of positive solutions of BVP (1.3) 

are given in section 3. Some examples to illustrate our main results appear also in section 3. 

2. Preliminaries  

Obviously ]1,0[]1,0[),( 33 CCvu   is the solution of BVP (1.3) if and only if it satisfies  the system of 

integral equations 

                                                                                                                (2.1) 

where G(t; s) is the Green's function de_ned by 
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Integral equations (2.1) can be transferred to the nonlinear int-egral equation 



80 Multiple Positive Solutions of Two-Point Boundary Value Problems for Systems  

of Nonlinear Third-Order Differential Equations 

                                                                                               (2.2) 

Lemma 1. The Green's function G(t,s) satisfies. 
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so that  
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The result of (ii) is obvious. The proof is complete. 

Let E=C[0,1]. For Eu , define .)(max
10

tuu
t

  

Then  (E,  ) is a Banach space. Denote 

 ]1,0[,)()(,0)(  tutqtutuEuP  

It is obvious that P is a positive cone in E. Define 
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Lemma 2. If the operator A is defined in (2.3), the  A:P P is completely continuous. 

Proof.  From the continuity of f and g, we know EAu  for each Pu . It follows from Lemma 1 that for 
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Therefore A:PP. Since G(t,s), f(t,v) and g(t,u) are continuous, it is easy to show that A:P P is 

completely continuous. The proof is complete. 

Lemma 3. [11] Let (E,  ) be a Banach space, and P  E  a cone in E. Assume that 
1  and 

2  are open 

subset of E such that
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then A has a fixed point in )\( 12 P  

Lemma 4. [9,10] Let (E,  ) be a Banach space, and EP   a cone in E. Assume that 
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then A has at least two fixed point   xx ,  in )\( 13 P  and furthermore )\(),\( 2312    PxPx . 

3. Main results 

First we give the following assumptions:  
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are increasing functions with respect to u and there is a number N>0 such that  
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Theorem 1 If )( 1A and )( 2A  are satisfied, then BVP (1.3) has at least one positive solution 
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Thus, from (3.1), (3.2) and Lemma 3, we know that the operator A has a fixed point in  )\(P 12  . The 

proof is complete. 

Theorem 2  If )( 3A  and )( 4A  are satisfied, then BVP (1.3) has at least one positive solution 
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On the other hand, we know from )( 4A  that there exist three 
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From (3.3) and (3.4}) and Lemma 3, we know that the operator A has a fixed point in )\(P 12  . The proof 
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Theorem 3  If )( 2A , )( 3A  and )( 5A  are satisfied, then BVP (1.3) has at least two distinct positive solution 
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Thus 
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We can choose 
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Examples.  Some examples are given to illustrate our main results. 

(1) Let 323 ),(,),( uutgvvvtf  , then conditions of Theorem 1 are satisfied. From Theorem 1, BVP (1.3) 
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so conditions of Theorem 3 are satisfied. From Theorem 3, BVP (1.3) has at least two positive solution. 
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