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Abstract 

The graphical approach is applied to the autoregressive conditional heteroskedasticity time series models. 

After transformation, it is shown that the coefficients of GARCH model are the conditional correlation 

coefficients conditioned on the other components of the time series, then a new method is proposed to test the 

significance of the coefficients of GARCH model. 
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1. Introduction 

Financial economists are concerned with modelling dependence in asset returns. Observations in return 

series of financial assets observed at daily are uncorrelated or nearly uncorrelated, the series contain higher-

order dependence. The models of autoregressive conditional heteroskedasticity (ARCH)[1]  form the most 

popular way of parameterizing this dependence. Its generalization, the Generalized ARCH (GARCH) model[2]  

is a more parsimonious model of the conditional variance than a high-order ARCH model, most users prefer 

it to the simpler ARCH alternative. 

Graphical models have become an important method for the analyzing multivariate data[3-6]. Recently 

they have been introduced to model dependence structures among multivariate time series[7-11]. Graphs to 

describe multivariate time series can be classified basically into the time series chain graph, partial correlation 

graph and Granger causality graph. 

In this paper, we express the autoregressive conditional heteroskedasticity models as time chain graphical 

models. In time series chain models, each vertex in a graph represents a separate variable at fixed time, and an  
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edge between two vertices denotes that the two variables have causal relations or dependence. The direction 

of an edge between two vertices is determined by both time and partial correlation. We show that the 

coefficient of GARCH model deformation is the partial correlation coefficient after removing the linear 

effects of the other components of the time series. A new procedure with graphical approach is proposed to 

test the coefficients of GARCH model. 

2. Time  series chain graph and garch model 

We introduce a time series chain graph (TSC-graph) by firstly giving the definition of a graph over a finite 

and nonempty set  V . Let ( , )G V E , elements in V  are called vertices, and E  is a set of directed or 

undirected edges denoted as , .a b a b  a b  is called directed edges, while a b  is called the 

undirected edge.  

Suppose that 1 2( ( ), ( ), , ( ))dX X t X t X t  is a d-dimensional stationary time series. The TSC-graph 

of the stationary process X  is the graph ( , )TS TS TSG V E  where TSV V Z   with {1,2, , }V d and  

Z being an integer set, and the edge set TSE  satisfies 

1) ( , ) ( , ) 0TSa t u b t E u     or ( ) ( ) | ( ) \{ ( )}a b aX t u X t X t X t u    

2) ( , ) ( , ) 0TSa t u b t E u      or \{ , }( ) ( ) | ( ) { ( )}a b V V a bX t X t X t X t   

where ( ) { ( ), }A AX t X s s t  denotes the past of the subprocess { ( )}A AX X t  at time t . Here it 

involves conditional orthogonality. For random vectors X ,Y and Z , we call X and Y  to  be conditionally 

orthogonal given Z , denoted by |X Y Z , if X and Y  are uncorrelated after the linear effects of  

Z have been removed. 

For stationary ARCH(q) model 
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where  { }t  is i.i.d. Normal random with mean zero and variance 1 and 0 0, 0( 1, , ).i i q     

Simple transformation is given as follows: 
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where 
2 2( 1)t t t     is uncorrelated time series with mean zero and variance 1 . 

Let 
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In order to verify the auto-regressive conditional  heteroskedasticity, we need to test 

0 : 0( 1, , )iH i q    via 1 : 0iH   . So we test the significance of the coefficients for AR(q) model. 
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Since we only deal with univariate time series, TSV   in TSC-graph ( , )TS TS TSG V E is  

{ , 1,0,1, }Z   , each   vertex represents one component of tY at some time. As an illustration, Fig. 1 

presents a TSC graph TSG for ARCH(2) time series tY ,where 2t t  denotes that 2tY  is causal for tY   

and an absent edge between 1t  and t  implies that there does not exist a causal relation between 1tY   and 

tY . The test of coefficients based on graphical approach for AR model has been discussed in detail[12]. 

2t                          t  

     1t   

Fig. 1 The graph for ARCH(2) 

For stationary GARCH(p,q) model 
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where  { }t  is i.i.d. Normal random with mean zero, variance 1 and 

0 0, , 0( 1, , , 1, , )i j i q j p      . 
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Simple transformation is given as follows: 
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where max( , )m p q , 
2 2( 1)t t t    is uncorrelated time series with mean zero and variance 2 . The 

most popular GARCH model in applications has been the GARCH(1,1) model. For stationary GARCH(1,1) 
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Simple transformation is given as follows: 

0 1 1 1 1t t t tY Y                           (2.7) 

where 1 1 1    . 

Let 1,t ty Y , 2,t ty  ,Fig. 2 presents a TSC graph  TSG  for model(2.7),Vertex i   in V  represents time 

series ,i ty , while vertex ( , )i t u  in TSC-graph TSV V Z   denotes the component ,i t uy  .We know from 

the definition of the TSC-graph that (1, 1) (1, )t t  denotes that 1tY  is causal for tY  and an absent edge 

between (2, 1)t   and (1, )t  implies that 1t   is noncausal for tY . 
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(1, 1)t                         (1, )t  

(2, 1)t   

Fig. 2 The graph for GARCH(1,1) 

To verify the conditional  heteroskedasticity, we need to test 
0 : 0iH    for GARCH(p,q) model. So we 

need to test the significance of the coefficients for model (2.5). 

3. III. parametric tests by graphical models 

Let { | , , }U V R           be a linear subspace spanned by random variables U and  V . 

The best linear predictor, denoted by Proj X , of  X  on U and V  is defined as 

2 2

, ,
( ) min ( )E X Proj X E X U V

  
                     (3.1) 

Proj X  is called the linear projector of X  on  .The linear property holds for Proj X . 

Proposition 3.1 

( )Proj aX bY aProj X bProj Y                       (3.2) 

The definition of the linear projector Proj X  can be generalized to a general linear subspace   spanned 

by random variables 1 2, , , nX X X . With Proj X , we readily define the partial covariance as follows: 

( , | ) ( )( )LCov X Y E X Proj X Y Proj Y      

Theorem 3.1 For model (2.5) 
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2) (2, ) (1, ) {1, , } 0.TS kt k t E k p and                        (3.4) 
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Then  (3.3) follows from (3.5) directly. 

2) Proof. We know from the definition of the TSC-graph that 
(2, )(2, ) (1, ) | k
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Then  (3.4) follows from (3.6) directly. 

Theorem 3.1 shows us that  t lY   is noncausal for tY , if and only if 0l  .Therefore if we want to test 

0l  , we need only test if there exists a directed edge (1, ) (1, )t l t  , based on which a parametric test 

is proposed. We know t l   is causal for tY , if and only if 0l  .Therefore if we want to test 0l  , we 

need only test if there exists a directed edge  (2, ) (1, )t l t  . 

Based on sample 1 2, , , nY Y Y from model (2.5), we only take into account the observed part of the past. 

Then the estimates of (1, )| kk 
   and  (2, )| kk 

  is given as follows: 
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  and 
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u


is a subspace spanned respectively by { ( 1), , ( 1)} { }u kZ m Z u Y     and  

{ ( 1), , ( 1)} { }u kZ m Z u       for some fixed u . 

Discussion of asymptotic properties and computation of  (1, )| kk 
  and (2, )| kk 

  for a general GARCH(p,q) 

model are complicated. Next, as an illustration, we consider stationary GARCH(1,1) model. We need to test 

0 1 1: 0H     via 1 1: 0H     and 0 1: 0H    via 1 1: 0H   . 

For some fixed 2u  , we first compute 
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where ,( , ), ( , ), 0,1y y
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Theorem 3.2 can be directly proved by Shao[13] and Liu[14]. So we omit it here. Denote 
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4. Conclusion 

The new test method based on the graphical approach for the conditional heteroskedasticity model is 

proposed in the paper. For an illustration, GARCH(1,1) is expressed the time series chain graphs and the test 

of the significance of the coefficients is given. Compared to the traditional test method, our methods are 

intuitive and very simple in computations. The new method will have important implication in the financial 

market. 
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