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Abstract 

In the situation that unit failure probability is imprecise when calculation the failure probability of system, 

classical probability method is not applicable, and the analysis result of interval method is coarse. To calculate 

the reliability of series and parallel systems in above situation, D-S evidence theory was used to represent the 

unit failure probability. Multi-sources information was fused, and belief and plausibility function were used to 

calculate the reliability of series and parallel systems by evidential reasoning. By this mean, lower and upper 

bounds of probability distribution of system failure probability were obtained. Simulation result shows that 

the proposed method is preferable to deal with the imprecise probability in reliability calculation, and can get 

additional information when compare with interval analysis method. 
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1. Introduction 

In reliability estimation of complex system, it is always in the situation that experimental data is limited, or 

information is not completed. As sample size is small, and experiment is not enough, there are a variety of 

uncertainties in the system. In this case, it is hard to calculate the reliability of series-parallel connection units. 

Traditional methods of uncertainty representation are probability theory and fuzzy theory. Both of them need 

the probability distributions or membership functions of the unit failure probability. In reality, it is much more 

easer to get the intervals of unit failure probability than to get their probability distributions. When 

performance and reliability of system are evaluated in this situation, if the unit failure probability is supposed 

to follow certain distributions artificially, the results of evaluation are always not objective, and may lead to 

large analysis errors [1]. 

Except for probability theory and fuzzy theory, there are a lot of methods to deal with above uncertainty 

information, such as convex model, info-gap model, interval analysis, and D-S evidence theory. 
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Convex model is a non-probability method, which represent the uncertainty of parameters with convex 

model, and translate the uncertainty of input parameters to the system response quality and the problem target 

quality by performance optimization and robust optimization [2][3]. Info-gap model is developed based on 

convex model. It is better than other methods in treating with small samples and representing epistemic 

uncertainty. Info-gap model is consistent with convex model on uncertainty quality representation, but its 

decision-making approach is better [4-6]. 

Interval analysis represents the uncertainty by the distribution intervals of parameters, and is very suitable 

to the situation that the boundaries of parameters are the only valuable information [7-8]. The solutions of 

interval equations include direct method, combined method, and interval-truncation method. But sometimes 

their solutions are too pessimistic [9]. In some sense, interval analysis is a part of convex model, because the 

interval representation of unit failure probability is a special example of convex sets [10]. 

In D-S evidence theory, belief function is used to represent the precise belief degree of evidence or 

proposition, and plausibility is used to represent the maximum amount of likelihood that the evidence is true. 

As D-S evidence theory generalize spot-value function to set function, and its basic research object is set or 

interval number, it has great advantages in representing and treating with uncertainty information [11-12]. 

As discussed previous, probability theory and fuzzy theory need the distributions information of unit 

failure probability, which is hard to obtain in reality. Convex model and info-gap model is available in the 

situation that the boundaries of parameters are the only useful information, and can draw a relatively valuable 

conclusion with limited information. But when the boundaries of unit failure probability are known, and 

multiple information sources about the probability of unit failure probability in there sub-intervals are given 

as well, these two methods are not available. The information sources may come from different experiments, 

tests and simulations, or come from the historical data of analogous system, and even the judgments of 

experts. 

To calculate the reliability of series-parallel systems in above situation, D-S evidence theory is used to 

represent the unit failure probability. Multi-sources information is fused, and belief and plausibility function 

are used to calculate the reliability of series-parallel systems by evidential reasoning. 

2. D-S Evidence Theory 

Definition 1:   is the whole hypothesis space, which is a non-empty set. If m is a mass function on   , the 

function : 2 [0,1]Bel    defined by [12] 
 

( ) ( )
B A

Bel A m B


            (1) 

 

is a belief function, and the function : 2 [0,1]Pl    defined by 
 

( ) ( )
B A

Pl A m B
 

            (2) 

 

is a plausibility function, where 2A   and A  . 

They are related to each other by the following equation 

 

( ) 1 ( )Bel A Pl A            (3) 
 

Theorem 1: Let 1 2, , , nm m m  be the mass functions on  , and the focal elements are ( 1,2, , )iA i N , 

then 
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Eq. (4) is the Dempster’s rule of multi-sources information combination [13]. 

Theorem 2: Let Bel and Pl be the belief function and plausibility function on   respectively, then 
 

( ) ( )Bel A Pl A           (5) 
 

where 2A  [14]. 

Eq. (5) shows that as a measure of “event A is true”, ( )Pl A  is a more optimistic evaluation than ( )Bel A . 

If ( )P A  is the true value of the measure of set {A is true}, then 
 

( ) ( ) ( )Bel A P A Pl A            (6) 
 

Theorem 3: Consider a set 
XA , and define a mapping : ,f A B  and { : ( ), }Y XB B f A A     is 

another frame of discernment, then 
 

1( ) ( ( ))Y XPl B Pl f B           (7) 

1( ) ( ( ))Y XBel B Bel f B          (8) 
 

The proof of (7) and (8) can be seen in Ref. [15]. 

3. Calculation of Failure Probability of Series and parallel System 

Suppose each unit in series-parallel system is two-state event, that is, working or failure. Every units are 

independent each other. 

For a system of n units, failure probability of i
th

 unit is expressed as a function with several basic design 

parameters 
 

1 2( , , , ),   1,2, ,i i i i inF f x x x i n          (9) 
 

where 1 2, , ,i i inx x x is the basic design parameters of ith unit. Failure probability of system, Pf, is  
 

1 2( , , , )f nP g F F F                      (10) 

 

where function ( )g  describe the relationship of each units. 

For f i
th

 unit, because of the uncertainties of design parameters 1 2{ , , , }i i inx x x
i

X , iF  is imprecise. In 

practice, the interval value of iF  could be obtained by experiments, simulations, and estimates of experts.  

Let F  be the frame of discernment of n units 
1 2{ , , , }nF F F F , and frame of discernment of failure 

probability of system is { : ( ), }P i i i i FB B g A A    . 

For series system, as shown in Fig. 1, failure probability of system is 
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Fig. 1  Series system 

 

For parallel system，as shown in Fig. 2, failure probability of system is 
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Fig. 2  Parallel system 

 

For parallel-series system, as shown in Fig. 3, failure probability of system is 
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Fig. 3  Parallel-series system 

For series-parallel system, as shown in Fig. 4, failure probability of system is 
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Fig. 4  Series-parallel system 

 

From (7) and (8), then 
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Where { : , }p f f f PY p p p p   . 

From (15) and (16), the lower and upper bounds of system failure probability can be obtained, where 

( )P fBel p p  is the lower bound and ( )P fPl p p is the upper bound. 

4. Numerical Example 

For series-parallel system in Fig. 4, basic belief assignment (BBA) of each unit is shown in table 1. For 

simplicity, suppose unit 1 is same as unit 2, and unit 3 same as unit 4. 
 

Table I.BBA of series-parallel system 

F1 , F2 m(x1) F3 , F4 m(x2) 

[0.003,0.004] 0.5 [0.003,0.005] 0.4 

[0.002,0.005] 0.3 [0.004,0.006] 0.3 

[0.002,0.007] 0.1 [0.002,0.006] 0.2 

[0.001,0.008] 0.1 [0.002,0.007] 0.1 

 

Form (14), system failure probability function is monotone decreasing. So with (15) and (16), lower and 

upper bounds of failure probability Pf is obtained by vertex method [16], as shown in Fig. 5. 

From Fig. 2, system failure probability Pf is in the interval 6 4[7.99 10 ,2.23 10 ]   , and probability of 

51.50 10fP    is 0.03 ， probability of 41.73 10fP   is 0.98, so Pf belong to interval 

5 4[1.50 10 ,1.73 10 ]    with confidence of 95%. If interval analysis is used to calculate this issue [8-10], the 

result is that Pf is in the interval 6 4[7.99 10 ,2.23 10 ]    , which is similar with D-S evidence method. But 

there is no additional information can be obtained. 
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Fig. 5  Probability box of failure probability of Series-parallel system 
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5. Conclusions 

In the situation that unit failure probability is imprecise when calculation the failure probability of system, 

classical probability method is not applicable, and the analysis result of interval method is coarse. To calculate 

the reliability of series-parallel systems in above situation, D-S evidence theory was used to represent the unit 

failure probability. Multi-sources information was fused, and belief and plausibility function were used to 

calculate the reliability of series-parallel systems by evidential reasoning. By this mean, lower and upper 

bounds of probability distribution of system failure probability were obtained. The simulation result shows 

that the proposed method is preferable to deal with the imprecise probability in reliability calculation, and can 

get additional information when compare with interval analysis method. 

In future work, back-up redundancy, k-out-of-n and consecutive k-out-of-n system, which basic units are 

uncertain, should be studied. Also the failure probability functions of these systems are different from series 

and parallel systems, but the method to deal with these uncertainties are same by using D-S evidence theory. 
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