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Abstract 

Recently, there has been a lot of interest in modeling real data with a heavy tailed distribution. A popular 

candidate is the so-called generalized autoregressive conditional heteroscedastic (GARCH) model. 

Unfortunately, the tails of normal GARCH models are not thick enough in some applications. In this paper, 

we propose a GARCH model with normal scale mixture innovations, the parameters estimation procedure 

using EM algorithm is also provided. It is shown that GARCH models with normal scale mixture innovations 

have tails thicker than those of normal GARCH models. Therefore, the GARCH models with normal scale 

mixture innovations are more capable of capturing the heavy-tailed features in real data. Shanghai Stock 

Market Index as a real example illustrates the results. 
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1. Introduction 

The volatility of returns has important theoretical and practicality meaning in the applications of risk 

management and asset pricing. Volatility clusters (i.e. Volatility may be high for certain periods and low for 

other periods) are commonly seen in financial time series. Also, financial time series, which marginal 

distribution have higher excess kurtosis, typically exhibit the feature of heavy tail.  

In the past two decades, various models have been proposed in order to describe these features. Among 

them, the generalized autoregressive conditional heteroscedastic (GARCH) model of Bollerslev (1986) has 

been proven to be a powerful one in capturing the empirical features. The GARCH(p,q) model is defined as 
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Where , 0p q   are integers; 00  , 0, ij   are constants , to ensure positivity of th , for all t ; t  

are i.i.d. with zero mean and unit variance; and 
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   , to ensure covariance stationarity. The 

random variables t  are called the innovations and usually assumed to be standard-normal. When 0p , the 

model reduces to the ARCH model of Engle (1982). 

Unfortunately, the normal GARCH models seem to be much thinner than the tails apparent in the data, that 

is to say, the normal GARCH model can’t interpret all the excess kurtosis. A popular candidate is the GARCH-t 

model (Bollerslev, 1987), which used the t distribution innovations assumption. However, the discussion of 

GARCH process excess kurtosis makes some senses only if the freedom of t innovation distribution greater 

than 4, otherwise, the ability of capture the tails behavior for the model will be cut down. Other papers dealing 

with alternative mixture GARCH models are Wong and Li (2001), Zhang (2006). 

In the statistics literature, mixtures of distributions have been widely used in modeling of heavy-tailed 

distributions, and noticed the fact that we can obtain heavier tail marginal distribution than the innovations’ 

distribution by the GARCH process, we considered a natural extension of Bollerslev (1986) by using NSM 

innovations instead of normal innovations in this paper. 

The rest of this paper is organized as follows. Section 2 presents the GARCH model with mixture normal 

innovations and illustrates its flexibility in capturing the characteristics in financial time series. Section 3 

describes the parameters estimation procedure using EM algorithm for the model. Section 4 illustrates our 

procedure for the log return series of the Shanghai Market Index which is a clear example of a series large 

kurtosis and extreme returns. 

2. The GARCH model with normal scale mixture innovations 

2.1. Normal Scale Mixture Distribution 

Mixture Models are a type of density model which comprise a number of component functions, usually 

Gaussian. The two component normal scale mixture (NSM) distribution under considered is defined by 
2
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An alternative definition of ~ ( , )Y NSM    as 
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This family was introduced to model a population which follows a normal distribution except on those 

few occasions where a grossly atypical observation is recorded. 

We can deduce an important property of NSM distribution concerned on its kurtosis by calculating some 

expectations. 

THEOREM 1.  Suppose ),(~ NSMY , 1,0   . Then the kurtosis of Y is given by 

33  eY KK  , where 
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2.2. The Definition of GARCH Model with Normal Scale Mixture Innovations 

We consider the innovations in equation (1) follow normal scale mixture distribution, that is t ~ 

( , )NSM   , so we have the GARCH(p,q)- ( , )NSM   model defined by 
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Where 0, qp  are integers; 1,0   ; 
T

q ),,( 0    and 
T

p ),,( 1    follow the 

restrictions, 00  , 0, ij   are constants , 1
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so that 1)( tVar  . 

 According to the definition, the innovations t  are generated from a normal distribution with variance 
2  

with probability  , or from a normal distribution with variance  2
 with probability 1 . We also 

impose the condition that the probability   is restricted to the interval (0.5, 1) to ensure that the component 

with largest number of elements is the one with smallest variance. 

The reason of using the NSM distribution to model the innovations instead of a Student’s t distribution are 

as follows. If t  follows a Student’s t distribution with v  degrees of freedom, then 46  vK . Note that 
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the second and fourth moments of tX  only exist if 4v , implying that the excess kurtosis K  should be 

positive. However, in practice, the degrees of freedom parameter, v  is either fixed to be larger than or equal 

to 5, in which case the implied kurtosis of the estimated model does not match the observed kurtosis, or it is 

estimated, in which case its estimate is usually smaller than 5, and the estimated excess kurtosis does not exist. 

3. Estimation via EM algorithm 

In this section, we discuss the estimation of the parameters of a GARCH model with normal scale mixture 

innovations using the EM algorithm (Dempster et al., 1977). Suppose that the observed time series 

 Trrr ,,1  is generated from the following model (5). 
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where t  is a stationary mean process of }{ tr , other notations are same as (4), (5).Let },,{ 1 Tzzz  be 

the unobserved indicators, where tz  equals to 1 if ),0(~ 2 Nt  and equals to 0 if ),0(~ 2  Nt . 

Then, conditional on these indicators, we have that, 
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We call r  the incomplete data with missing data z . Let 
TTT ),,,(    be the parameter vector of 

model (5). The likelihood is given by 
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where ),max( qpc  ; )(  is standard normal density function, For simplicity, we denote that 
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According to (8), we can obtain the (conditional) log-likelihood as follows 
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The iterative EM procedure for estimating the parameters by maximizing the log-likelihood function (9) 

consists of an E-step and an M-step. These steps are described in the following. 
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E-step: Let 
)0(  be the value specified initially for , Then on the (m)th iteration of the EM algorithm, the 

E-step requires the computation of the conditional expectation of l  given z , using 
)1( m  for  , which can 

be written as 
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M-step: The M-step on the (m)th iteration requires the global maximization of ),( )1( mQ   with respect 

to   over the parameter space   to give the updated estimated 
)(m , which can be obtained by solve the 

equations 0
),( )1(




 



 mQ  

The estimates of the parameters   are obtained by iterating the E and M steps until convergence. 

4. An example 

The word “data” is plural, not singular. In American Eng As an illustration, we select the Shanghai stock 

market daily closing index from December 16th, 1996, to April, 27th, 2007 (2500 observations). The 

computational results and the analysis of the real data example in this section have been carried out by means 

of various routines written by the author in MATLAB (The MathWorks, Inc.). The sample mean, variance and 

kurtosis coefficient of the log return series are
41030.5  , 41046.2  , 8.97 respectively. Note the large 

sample kurtosis of the returns.  

We first fit a normal GARCH model to the log return series , in which innovations assumed to be standard-

normal. It is also the best model in the sense that it minimizes the AIC and BIC over all the normal GARCH 

models. The estimated model is given in the following (11), 
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where the numbers in brackets are T statistics values. According to the upper graph in Fig.1, in  which 

displays a quantile-quantile plot of stand residuals versus standard normal distribution in model (11), it is not 

difficult to find that model (11) is poor in capturing the heavy-tailed features in the data. 

The inadequate of model (11) suggest us consider a GARCH model with heavy-tailed innovations 

distribution for the data. A candidate can be GARCH model with normal scale mixture innovations which 

provided in (4). The GARCH model with normal scale mixture innovations can be estimated using the EM 

algorithm in part 2 for detail and given in the following (12), 
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For purposes of comparison the two candidate models, we plot the quantile-quantile plot of stand residuals 

versus innovations’ distribution each other and put together in Fig 1. Obviously, the GARCH model with 

normal scale mixture innovations is much better than the normal GARCH model for fitting this series. On the 

other hand, the BIC and AIC model selection criteria also give the same choice. 

 

 

Fig. 1 PP plots of the two comparative models 

5. Conclusion 

The proposed GARCH model with normal scale mixture innovations provides an extension of the standard 

GARCH model. Its tail behavior can be thicker than that of the normal GARCH model. The GARCH Model 

with Normal Scale Mixture Innovations may be worth considering if accurate modeling of the tail is important 

in such applications like the estimation of value-at-risk. 
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