
I.J. Engineering and Manufacturing,  2012, 5, 52-61 
Published Online October 2012  in MECS (http://www.mecs-press.net) 
DOI: 10.5815/ijem.2012.05.08 

Available online at http://www.mecs-press.net/ijem 

  

Identifying Cross-Site Scripting Attacks Based on URL Analysis 

Zhi’hua Tang a, Ning Zheng a, Ming Xu a  

a Institute of Computer Application Technology, Hangzhou Dianzi University, Hangzhou, China, 310018 

Abstract 

Cross-site scripting (XSS) is one of the major threats to the security of web applications. Many techniques 
have been taken to prevent XSS. This paper presents an approach to identify Cross-Site Scripting attacks 
based on URL analysis. The fundamental assumption of our method is that the URL contains a part that can 
produce a valid JavaScript syntax tree. First, we extract the parameters of the URL to produce a valid 
JavaScript syntax tree and weight its parsing depth. If its depth exceeds a user-defined threshold, the URL is 
considered suspicious. Second, to the exception URLs, a second level of defense is formed by analyzing its 
structure. The experimental results demonstrate that our approach can effectively distinguish most of the 
malicious URLs from the benign ones. 
 
Index Terms: Cross-site scripting, depth level, structure 
 
© 2012 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research 
Association of Modern Education and Computer Science. 

1. Introduction 

According to the Open Web Application Security Project (OWASP) [1], cross-site scripting (XSS) is 
already one of the top two vulnerabilities. Cross site scripting attack is a class of web application 
vulnerabilities in which an attacker cause a victim’s browser to execute JavaScript crafted by the attacker to 
gain elevated access privileges to sensitive page-content, session cookies, and a variety of other information. 
These attacks can steal confidentiality of sensitive data, undermine authorization schemes, defraud users and 
defame web sites. Even some XSS attacks can be self-propagating [2] and have the potential to rapidly 
victimize millions of people. For example, the input contains scripting commands like 
<script>…document.cookie…</script>. When such injected code is executed in the client browser, it might 
result in stealing cookies, defacing the document or unauthorized submission of forms. We refer to such 
JavaScript code as unauthorized code and to distinguish it from code that was authorized. There are basically 
two large categories of XSS attacks, a) reflected and b) stored. During a reflected XSS attack the injected code 
is placed in a URL, upon the user clicks on the malicious URL, the injected code executes. On the other hand, 
during a stored XSS attack, the adversary injects the malicious payload in some form of storages utilized by a 

* Corresponding author.  
E-mail address: tangzhihua1101@126.com 



 Identifying Cross-Site Scripting Attacks Based on URL Analysis 53 

web application. In view of the mentioned above, it is an important approach to identify the URLs for 
preventing XSS attacks. 

1.1. Non-persistent XSS 

The non-persistent (reflected) XSS vulnerability results from the data commonly in HTTP query 
parameters or HTML form submissions which are provided by web client. The attacker uses social 
engineering to convince a victim to click on a disguised URL that contains malicious HTML/JavaScript code. 
The user’s browser then displays HTML and executes JavaScript which was a part of the attacker crafted 
malicious URL. This can result in stealing of browser cookies and other sensitive user data. To prevent first-
order XSS attacks applications need to reject or filter input values that may contain script code. 

1.2. Persistent XSS 

The persistent (stored) XSS vulnerability results from the application that store part of the attacker’s input 
in a database, and then inserting it in an HTML page that is displayed to multiple victim users. It is harder to 
prevent stored XSS than reflected XSS for two reasons, a) social engineering is not required, the attacker can 
directly supply the malicious input with tricking users into clicking on a URL, b) a single malicious script 
once planted into a database can execute on the browsers of many victim users later. And applications need to 
use variety techniques to reject or sanitize input values that may contain script code which are used in 
database commands. 

Due to the prevalence of XSS attacks and current trend in web applications, there exists a strong need for 
preventing these attacks. Fixing XSS vulnerabilities in a large web site is a very challenging task if it is not 
impossible.  In this paper, we make the following contributions: 

●Presenting a system that can actively identify suspicious URLs in the network. 
●Implementing a solution that can automatically learn the depth of attack vectors’ syntax tree from 

practical data analysis, and modeling a parsing depth model of attack vectors. 
● Giving a second level of defenses to the URLs which mismatch or miss the parsing depth model. 

2. Related work 

XSS defenses techniques can be largely classified into three categories: server side defenses, client side 
defenses and client-server cooperative defenses. This section describes current XSS defenses methods and 
their weakness. 

2.1. Purely server side defenses 

Server-side validation of untrusted content has been the most commonly adopted defense in practice, and a 
majority of defense techniques [3-4] were proposed in looking for scripting commands or mate-characters in 
untrusted input, Employing filter provides a first layer of defense against XSS attacks, but this consistency has 
been missing and infeasible because there are many scenarios where filtering is difficult to deal with. 
Otherwise a common problem with purely server-side mitigation strategies is the assumption that parsing on 
the client browser is consistent with the process of server-side. This is troublesome due to the diversity of 
popular web browsers which contain subtle parsing quirks that allow scripts to evade detection. 



54 Identifying Cross-Site Scripting Attacks Based on URL Analysis 

2.2. Purely client side defenses 

Client-side XSS defenses focus on ensuring confidentiality of sensitive data by analyzing the flow of data 
through the browser [5]. One main technique is preventing unauthorized script to execute [6-7]. First, such 
solutions can not distinguish untrusted data generated by the server from user-generated data, leading to high 
false negatives and false positives. Second, they are largely targeted towards attacks that steal sensitive 
information. Noncespaces [6] and Document Structure Integrity [7] are all related in the goal of preserving the 
integrity of document structure on the browser to defense XSS attacks. They are all designed to prevent 
untrusted content to be displayed on existing browsers but without any assurance about protecting from XSS 
attacks on these browsers. In general, only on the client-side without server-side specification, either raise 
false positives or tend to be too specific to certain attack vectors. 

2.3. Client-server cooperative defenses 

Client-server cooperative defenses [8-10] for XSS defense have emerged to deal with the inefficiencies of 
purely client and server based mechanisms. BEEP [8] proposed white list legitimate scripts policies in web 
application and then enforced by the browser to protect against the injection codes. But this approach has 
problem of scalability from the web application’s point of view; every client user needs to have a copy of this 
specialized browser that can understand this non-standard communication. BLUEPRINT [10] reduced the web 
application’s dependency on unreliable browser parsers and provides strong assurance. 

3. Our approach 

The goal of our approach is to learn the depth of attack vectors’ syntax tree in the URLs and generate a 
model to prevent XSS attacks. The architecture of our system is shown in Fig.1. The Attack vector catcher 
extracts the URLs’ parameters which then were sent to XSS vector depth parsing. A depth threshold was 
produced by analyzing the parameters which contain XSS attack vector. Depth learning of XSS vector’ syntax 
tree is the kernel part and an algorithm is proposed to training the threshold depth. Structure analysis provides 
a second level of defense of XSS attacks. 

 

 

Fig.1.1 Architecture of our system 

3.1. XSS Attack Vector Catcher 

The attack vector catcher decodes the obtained XSS attack URLs and then attempts to extract the elements 
of attack vectors from the known XSS URLs. It involves two phases: decoding phase and extractor phase. 

1) XSS Attack URLs Decoding 



 Identifying Cross-Site Scripting Attacks Based on URL Analysis 55 

An existing exploit can be obfuscated to avoid the detection, such obfuscation can be achieved by encoding 
it in various ways such as UTF-8, HEX, special entities and so on. For example, “"” can be encoded as 
“&quot”, “&#34”and “&#x22” respectively by corresponding encoding approach. So it is necessary to decode 
the obfuscated XSS URLs first. In the decoding phase, it needs to examine the obfuscated source code of the 
URLs and use some regular expression to decode. Thus, the attack vector catcher is able to identify suspicious 
parts from XSS attack URL and extract the elements of attack vectors. In short, if the XSS Attack Vector 
Catcher processes these obfuscated XSS URLs directly, not only will it fail to identify the XSS attack, but also 
the token extractor will lose a lot of information about the attack vector. To obtain the original information of 
the attack vector, the Attack Vector catcher handles the URL encoding. 

2) XSS Attack Token Extractor 
After decoding phase, the XSS Attack Vector Catcher examines the entire XSS URL to identify where the 

attack vectors exist. According to URL syntax, the part of the URL follows the “?” character, named as the 
query string which isolated from the rest of the URL. The query string contains all parameters which take part 
in an HTTP GET/POST request. All parameters are separated using the “&” character and each parameter is 
in the form of “key = value”. The term “value” here is the value of a parameter in a URL. The delimiters “=” 
are used to separate the parameters from their values. The XSS Attack Vector catcher complies with the 
delimiters to obtain one or more values in a XSS URL and estimates the most possible value where a XSS 
attack exists by learning level features. At the same time, we limit minimum length of the malicious 
parameters, because only a certain length of code can exploit a script. 

3.2. XSS Vector Depth Learning 

After the process of the XSS Attack Vector Catcher, We extract all the parameters in the URLs. Our system 
refers to the JavaScript source code engine of Mozilla Spider Monkey [11] to generate parse tree. We weight 
the depth of the syntax tree depends on the tokens that the parameter composed. A URL is considered 
suspicious if it includes some part that can produces a JavaScript parse tree within a certain depth. We propose 
our algorithm of calculating the depth of the syntax tree in Fig.2. 

The motivation of our approach is that, first benign URL usually did not compose the especially tokens 
which often exist in rich-content HTML, second the actual JavaScript code has a high probability to include 
certain tokens. For example, the"<" character needs to be present in hyperlinks and text formatting, and the 
"character needs to be present in generic text content. Someone can input a string prefixed double quote like 
""<script>alert()</script>", through variable "alert" to trigger the vulnerability. However, the following attack 
“<script>alert()</script>”may not work,. It is clear that double quote is the critical character to introduce the 
attack body, and the attack vector is double quote in here. The string “"><script>alert()</script>"” is even 
better, as it is seamlessly embedded in the page. A typical example of weighting the parsing depth is depicted 
in Fig. 3. It is a URL selected from [13] that contains XSS attack codes. 

3.3. Attack Vector Profile 

Once the level learning model is built, an attack vector profile will be published. We introduce some formal 
definitions for the threshold. 

 
 
 
 
 
 
 
 



56 Identifying Cross-Site Scripting Attacks Based on URL Analysis 

1 url← File.Readline(String); 
2 url1← decoding(url); 
3 param ← getparameters(url1); 
4 while(param){  //more than one parameter 
5   if(param.length >K){ 
6    getDepthlevel() { 
7        function1(){ 
8                find "((<)[^\n]+(>)).*(<)((<)//[^\n]+(>))"); 
9                depth++； 
10                text ← ReplaceFunction(param);      
11                        } 
12    function2(text){ 
13             find("'", "" ",">");   
14             depth ++;  (each) 
15                text2← ReplaceFunction();     
16                       } 
17    function3(tex2){ 
18                find("alert\\((.+?)\\)")); 
19                depth++; 
20                text3← ReplaceFunction();   
21                     } 
22    function4(tex3){  
23             find((<)[^\n]+(>))| "(()[^\n]+())");  
24             depth++; (each)          
25                     } 
26             array[]=depth;        
27               } 
28       Depth←Maxarray[]; 
29          if(Depth > threshold)   
30             It is a suspicious URL! 
31      else  
32               Structual (param);  
33        }                               

Fig.2. An example of  operating on weighting the parsing depth 

 

Fig.3. An example of operating on weighting the parsing depth. 

Dq: 
Rab: 
Lab:  
Name: 
Lp: 

Name: 
Dot: 

Lab 

http://www.ncsbe.gov/content.aspx?id=16%22%3E%3Cscript%
3Ealert(document.cookie)%3C/script%3E

http://www.ncsbe.gov/content.aspx?id=16"><script>alert(docum
ent.cookie)</script>

16"><script>alert(document.cookie)</script 

8 



 Identifying Cross-Site Scripting Attacks Based on URL Analysis 57 

● Definition 1. U denotes the set of URLs, M denotes the set of suspicious parts of a certain 
URL u, M∈u, u∈U. 

● Definition 2.  S(ti) denotes the parsing depth of Mi which is proposed in my algorithm, and 
Mi∈M, i>1. 

● Definition 3. S(t) stands for the maximum of the S(ti),which is means the parsing depth of 
the URL u. 

● Definition 4. If u∈U, such that S(t) exceeds a customized threshold T, we call u  is 
suspicious of XSS attack. 

 
The threshold T evaluated from our experimentation by analyzing the depth on 250 known attack URLs. 

The parsing depths are represented in Fig. 5. According to our definition, the URLs whose depth level exceeds 
the threshold will be considered as suspicious. 

3.4. Attack vector structure detection 

There are a few cases that mismatch and bypass our system. First, the URL don’t have the “?” to split the 
domain from the search parameter. Second, the URL don’t contain XSS attack vector directly but redirect to a 
hyperlink where the attacker want. Third, a few URLs might escape our threshold but are malicious.  
Considering those reasons, we design this component to provide a second level of prevention. First, many 
pairs of HTML tags, popular JavaScript constructs like document.write(), String.fromCharcode(), and event 
handlers like error(), onload(), were pre-stored in a file. Second, in order to find out whether there are any 
substrings of the URL existing in the file, a progress of comparing the file with URL is invited. If there are 
some substrings of the URL exist in the file also, the URL is considered as suspicious. For example, 
URL“http://www.mil.ee/?sisu="><iframesrc=http://xssed.com>” in http://www.xssed.com/mirror/66421/. Its depth is 
less than the defined threshold, so it can bypass our threshold method, but it will be detected by the structural 
analysis approach because it has HTML tags “iframe” and “src”. 

4. Challenges 

We now proceed and present various challenges that we have to deal with. We present an example taken 
from xssed.com for each particular case. 

4.1. Existing obfuscation methods： 

An existing exploit can be obfuscated to avoid the detection, HTML entity codes, URL encoding, Base64 
and double encoding are common obfuscation techniques used in practice. Encoded URLs not only lead 
human hard to read and write but also inflate its own size. Fig.4 shows an URL that is encoded twice by HEX 
encoding. 

 

 

Fig.4. An example of an obfuscated URL. 

[http://xssed.com/mirror/274--- founder: ruzgar_18] 
http://fr.netlog.com/go/search/go/search/view=people&q=%2522%253
e%253c%2573%2563%2572%2569%2570%2574%253e%2561%256
c%2565%2572%2574%2528%2522%2561%2563%2569%256b%252
2%2529%253c%252f%2573%2563%2572%2569%2570%2574%253
e&submit=Ara&amp;v=g



58 Identifying Cross-Site Scripting Attacks Based on URL Analysis 

For this instance, the decode step is a necessary and we introduce some steps to pretreatment before 
extractor the attack vectors. We deal with the decoding process automatically. After our decoding process, the 
true appearance of the URL in the Fig.4 is http://fr.netlog.com/go/search/go/search/view =people&q="><script>alert("acik") 

</script>&submit=Ara&amp;v=g. Some cases are impossible to handle since the URLs was encoded in a scheme 
only know by themselves. 

4.2. Javascript relaxed syntax 

In the paper we have mentioned that there are many attack vectors to be embedded scripts contents in 
URLs， the XSS exploit code can be partial or mixed up with other irrelevant text. During the statistical of 
the test data we found there are the following main classifications: (1) Use script code <script>….</script> 
directly. (2) Use JavaScript: pseudo-URL. (3) event handlers such as error(), onload(); And there are at least 
94 event handers reported [12] (4) Tag attributes such as src, iframe and other content-rich html.(5) There are 
many URLs use HTTP POST instead of HTTP GET for attacking the web application. By this way, it is easier 
to draw into false positives. 

4.3. Weighted the parse node level 

Overview all the URLs were collected from XSSed.com, the repository classifies all attacks into two 
categories: Direct and Redirect XSS. We declare that it is easier to draw into false positives in the paper. For 
example, parse nodes such as “.” (DOT) and “"” (Dq), can be repeated several times in an expression and thus 
result to parsing nodes that contribute to the final syntax tree’s depth. These tokens occur frequently in URLs, 
without being part of a JavaScript code. Although, there are tokens that are more likely to be part of valid 
JavaScript code, such as the LP token, which denotes a left parentheses occurrence. These tokens occur less 
frequently in URLs and much more frequently in JavaScript code. Which otherwise would be introduce false 
positives. 

5. Experiment and Results 

In this section, we evaluated the proposed approach that is designed for learning attack vector’s levels to 
identify the vulnerabilities in URLs. The architecture of our system is shown in Fig.1. The training dataset are 
250 known XSS URLs selected from XSSed.com. The accounted URLs are about 13,000 URLs also 
collected from [13] and other 800 URLs collected from social websites. 

5.1. Statistics of the collected URLs 

XSSed.com is a public XSS repository, and it document recently successful XSS attacks on major blog and 
social networking sites. A statistics of these collected URLs which were collected from July 2008 to October 
2010 is shown in Fig.5. 

 



 Identifying Cross-Site Scripting Attacks Based on URL Analysis 59 

alert():58%

document.cookie:
14%

Others:22%

string.fromcharco
de:4%

iframe:2%

 

Fig.5. The distribution of announced XSS URLs. 

5.2. Depth level threshold analysis 

In theory, the malicious script codes usually can produce a valid JavaScript syntax tree. According to the 
algorithm which is proposed in previous section, we analyze on the 250 known URLs. And we exhibit the 
level of each URL in Fig.6. As we can see, 98% of the collected URLs’ depth exceeds 6, so we set it as the 
threshold. In our experiment, some URL’s depths even exceed 57 since it contains rich html- content. 

 

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

 B

T
he

 p
ar

si
ng

 d
ep

th
 o

f e
ac

h 
at

ta
ck

 U
R

Ls

The number of the Training URLs 

 

Fig.6. The distribution of parsing depth. 

5.3. Results 

Because the target programs have been examined by previous researches, we regarded to the effectiveness 
of our system for assisting vulnerability scanner in attack string generation by two metrics, that is, the false 
positive (FP) and the recall rate (Recall). We give the definitions as follows. The FP rate denotes the ratio of 
the number of false testing attacks to the number of successful testing attacks. Recall rate denotes the ratio of 
the number of success identifying attacks to the numbers of total vulnerabilities. How is the effectiveness of 
our system to find out the existed vulnerabilities showing in TABLE I. 

 
 



60 Identifying Cross-Site Scripting Attacks Based on URL Analysis 

Talbe.1. Result of the experiment 

 Total 
URLs 

Identified 
attacks 

Recall
%  

FP
%

Only  depth parsing 13250+800 9845 74.3 2.3

Add structural 
analysis 

13250+800 9845+848 80.7 2.1

 
There are some cases that our approach can’t to deal with although the second level defense was introduced. 

For example, URL was obfuscated with unrecognizable techniques .Others like 
http://bharat.gov.in/outerwin.php?id=http://pakbugs.com in http://www.xssed.com/mirror/66483/, which just 
contains a link to redirect but without any attack vectors. Yet there are only a few cases. 

6. Conclusion 

In this paper, we describe the current XSS defenses and discuss some of their weakness, and then we 
present a depth level mechanism for identifying suspicious URLs that contain XSS attack exploits. We try to 
identify all parts contained in a URL that produce a valid JavaScript parse tree. If a fragment produces a 
syntax tree of a certain depth, then the URL is considered suspicious. To the exception URLs, we propose a 
second line of identifying and detect by analyzing its structure. Throughout this paper, we analyze main 
technical challenges and the implementation. We perform an evaluation using 13,000 URLs that contain XSS 
exploits, collected from XSSed.com, and 800 benign URLs collected from social platform websites. Although 
some cases will miss our approach, the results suggest that our approach has less than 2.1% false positives and 
more than 80.7% recall ratio. 

Acknowledgements 

  This paper is supported by NSFC (No. 61070212, No.61003195), Natural Science Foundation of Zhejiang 
Province, China under Grant No. Y1090114, the State Key Program of Major Science and Technology 
(Priority Topics) of Zhejiang Province, China under Grant No 2010C11050. 

References 

[1] Van der Geer J, Hanraads JAJ, Lupton RA. The art of writing a scientific article. J Sci Commun 
2000;163:51-9. 
[2] Strunk Jr W, White EB. The elements of style. 3rd ed. New York: Macmillan; 1979. 
[1] OWASP (2010). OWASP Top 10 Project , Available at http://www.owasp.org/index.php. 
[2] S. Kamkar, “I’m popular,” 2005, description and technical explanation of the JS.Spacehero (a.k.a. “Samy”) 
MySpaceworm. [Online]. Available: http://namb.la/popular. 
[3] P. Bisht and V. N. Venkatakrishnan. XSS-GUARD: precise dynamic prevention of cross-site scripting 
attacks. In Detection of Intrusions and Malware, and Vulnerability Assessment,2008. 
[4] EnginKirda, Christopher Kruegel, Giovanni Vigna,and Nenad Jovanovic. Noxes: A client-side solution 
formitigating cross-site scripting attacks. In Proceedings of the 21st ACM Symposium on Applied Computing 
(SAC),Security Track, 2006. 
[5] S. Nanda, L.-C. Lam , T. Chiueh. Dynamic multiprocess information flow tracking for webapplication 
security. In Proceedings of the 8th ACM/IFIP/USENIX international conference on Middleware, 2007. 
[6] M. Van Gundy and H. Chen, “Noncespaces: Using randomization to enforce information flow tracking 



 Identifying Cross-Site Scripting Attacks Based on URL Analysis 61 

and thwart crosssite scripting attacks,” in 16th Annual Network & Distributed System Security Symposium, 
San Diego, CA, USA, Feb. 2009. 
[7] P. Saxena, D. Song, and Y. Nadji, “Document structure integrity:A robust basis for cross-site scripting 
defense,” in 16th Annual Network & Distributed System Security Symposium,San Diego, CA, USA, Feb. 
2009. 
[8] T. Jim, N. Swamy, and M. Hicks. Beep: Browser-enforced embedded policies. 16th International World 
World Web Conference, 2007. 
[9] D. Bates, A. Barth, and C. Jackson. Regular Expressions Considered Harmful in Client-Side XSS Filters. 
In Proceedings of the 19th international conference on World Wide Web (WWW). ACM New York, NY, 
USA, 2010. 
[10] M. Ter Louw and V. N. Venkatakrishnan. BluePrint: RobustPrevention of Cross-site Scripting Attacks 
for ExistinBrowsers. In Proceedings of the IEEE Symposium on Securityand Privacy, 2009. 
[11] SpiderMonkey  Engine.http://www.mozilla.org/js/spidermonkey. 
[12] XSS (Cross Site Scripting) Cheat Sheet. Esp: for filter evasion. http://ha.ckers.org/xss.html. 
[13] K. Fernandez and D. Pagkalos. XSSed.com. XSS(Cross-Site Scripting) information and 
vulnerablewebsites archive. http://www.xssed.com. 


