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Abstract 

This paper proposes a new fuzzy multi-objective optimization approach to solve a multi-objective nonlinear 

programming problem in context of a structural design. We have been developed a multi-objective structural 

problem of a planar truss structural model in fuzzy environment. Here, the objectives are (i) to minimize 

weight of the structure and (ii) to minimize the vertical deflection at loading point. In this model, the design 

variables are the cross-section of the truss members and the constraints are the stresses in members. This 

approach is used to solve the structural model under uncertainty based on different operator. A numerical 

illustration is given to support our approach. 
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1. Introduction 

Optimization involves maximizing or minimizing an objective function (e.g. cost, weight) of a Structural 

system which has been frequently employed as the evaluation criterion in Structural engineering applications. 

In real life Structural optimization problems, usually more than one objective are required to be optimized, 

such as minimum mass or cost , maximum stiffness, minimum displacement at specific structural points and 

maximum structural strain energy. This makes it necessary to formulate a multi-objective optimization model. 

Scientist Pareto introduced the concept of Pareto solution of multi-objective optimization problem. Since then 

the determination of the compromise set of a multi-objective problem is called Pareto optimization which 

finds application in engineering and other fields. Pareto optimization has been in use ever since. Different 

optimization algorithms and techniques are used to solve structural optimization problem, like Ray 
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optimization[14], artificial bee colony algorithm[17], particle swarm optimization[10,13,16], genetic 

algorithm[11,15], ant colony optimization[12,13] etc. 

Practically, the problem of structural design exhibits nonlinearity, and is aptly represented as a non-linear 

programming problem with both objective functions and constraints functions. Coefficients or parameters of 

non-linear Structural models are assumed to be deterministic and fixed. But, there are many situations where 

they may not be exactly known i.e. they may be somewhat uncertain in nature. Thus decision making methods 

under uncertainty are needed. The fuzzy programming has been proposed from this point of view. In decision 

making process, fuzzy set theory was first implemented by Zadeh [2]. Then Zimmermann [4] proposed a 

fuzzy multi-criteria decision making set, defined as the intersection of all fuzzy goals and their constraints. 

Several researchers like Wang et al. [1], Rao [7], Yeh et.al [6], Xu [5], Shih et.al [8,9] made distinctive 

implementation of the fuzzy set theory to optimize Structural model. 

In the real world, we have to deal with imprecision on a regular basis. A fuzzy number is a quantity whose 

value is imprecise, rather than exact as is the case with ordinary numbers. Fuzzy numbers offer a realistic 

depiction of the outside world. It may well serve as the validation representation of the imprecise data. Fuzzy 

decision making is implemented here. The decision makers should assess the alternatives with fuzzy number 

and rank them accordingly before making a decision. The ranking of fuzzy numbers is of utmost importance 

while solving a fuzzy programming problem. The ranking outcomes vary with every decision-maker as they 

differ in their preference and perspective. Bortolan and Degani [18] have made a proposition with regard to 

the ranking of fuzzy number. Here, the ranking method of Liou and Wang [20] has been considered for the 

sake of simplicity. 

In this paper we have introduced fuzzy multi-objective mathematical programming with generalized 

Trapezoidal fuzzy number and it is applied as objective and constraints coefficients to a structural problem 

subject to stress constraints. Pareto optimal solution of this multi-objective mathematical programming is 

established. The structural model consists of two objectives. They are (i) to minimum weight and (ii) to 

minimum vertical deflection of loaded joint. Numerical example has been provided to illustrate the problem. 

The remainder of this paper is organized in the following way. In section 2, we discuss about Multi-

objective Structural Model of a three bar truss. In section 3, we discuss about prerequisite mathematics i.e. 

fuzzy set, convex fuzzy set, normal fuzzy set and generalized fuzzy number.  In section 4, we discuss about 

fuzzy structural model with imprecise applied load and imprecise material density. In section 5, we discuss 

about mathematical analysis like fuzzy programming technique to solve MONLP using max-min operator and 

max-additive operator. Solution of crisp multi-objective structural model by fuzzy programming technique 

and numerical solution of structural model of three bar truss are discussed in section 6 and 7 respectively. 

Finally we draw conclusions from the results in section 8. 

2. Multi-objective Structural Optimization Model of a Three-Bar Truss 

A well-known three bar [9] planar truss structure is considered. The design objective is to minimize weight 

of the structural  1 2,WT A A  and minimize the vertical deflection  1 2,A A  at loading point of a statistically 

loaded three-bar planar truss subjected to stress  1 2,i A A constraints on each of the truss members 1,2,3i  . 
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Fig. 1. Design of the three-bar planar truss  

The multi-objective structural optimization problem (MOSOP) can be stated as follows: 
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Where P = applied load;  =material density, L = Length, Allowable   tensile stress =  T .Allowable 

compressive stress = C   , Young’s modulus = E , 1A = cross section of bar-1 and bar-3 2A =cross section of 

bar-2. 

3. Prerequisite mathematics 

Fuzzy set theory was first introduced by Zadeh [2] in 1965 as a mathematical way of representing 

impreciseness or vagueness in everyday life. 

3.1.  Fuzzy set 

A fuzzy set A  in a universe of discourse X  is defined as the following set of pairs 

   , :
A

A x x x X  .Here : [0,1]
A

X   is a mapping called the membership function of the fuzzy set 
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A  and  
A

x  is called the membership value or degree of membership of x X  in the fuzzy set A .The 

larger  
A

x is the stronger the grade of membership form in A . 

3.2.  Convex fuzzy set  

A fuzzy set A of the universe of discourse X  is convex if and only if for all 1 2,x x  in X , 

 

       1 2 1 21 min ,
A A A

x x x x        when 0 1  . 

3.3.  Normal fuzzy set 

A fuzzy set A  of the universe of discourse X  is called a normal fuzzy set implying that there exist at least 

one x X  such that   1
A

x  . 

3.4.  Generalized Fuzzy Number (GFN) 

In [21,22], Chen represented a generalized trapezoidal fuzzy number (GTrFN) A  as  , , , ;A a b c d w  

where 0 1w   and , ,a b c and d  are real numbers. The generalized fuzzy number A  is a fuzzy subset of 

real line R , whose membership function  A
x  satisfies the following conditions: 

 

 1
 

 
A

x  is a continuous mapping from R  to the closed interval [0,1] . 

 2
 

  0
A

x   where x a   ; 

 3   
A

x  is strictly increasing with constant rate on [ , ]a b   

 4
 

 
A

x w   where b x c  ; 

 5   
A

x  is strictly decreasing with constant rate on [ , ]c d ; 

 6    0
A

x   where d x   . 

 

Note: A  is a convex fuzzy set. It will be normalized for 1w  . 

If w = 1, the generalized fuzzy number A  is called a trapezoidal fuzzy number (TrFN) denoted 

 , , ,A a b c d . 

 

 i  If a b  and c d , then A is called crisp interval [ , ]a b  . 

 ii  If b c , then A  is called a generalized triangular fuzzy number (GTFN) as  , , ;A a b c w  

 iii  If b c , 1w   then it is called a triangular fuzzy number (TFN) as  , ,A a b c . 

 iv  If a b c d    and 1w  , then A is called a real number a .  
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3.5. Definition  

A GTrFN  , , , ;A a b c d w  is a fuzzy set of the real line R whose membership function : [0, ]
A

R w   is 

defined as  
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where a b c d    and (0,1]w
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Two generalized trapezoidal fuzzy number A and B  

Figure 2 shows two different GTrFNs  1, , , ;A a b c d w and  2, , , ;B a b c d w  which denote two different 

decision maker’s opinions. The values 1w  and 2w  represents the degrees of confidence of opinions of 

decision makers A  and B  respectively .Here 1 0.8w   and 2 1.0w  . 

Because of the traditional fuzzy arithmetic operations we can deal with any normalized fuzzy numbers, 

they not only change the type of membership function of fuzzy number after arithmetical operations, but also 

have a drawback of requiring troublesome and tedious arithmetical operations. Thus Chen [21] proposed the 

function principle, which could be used as the fuzzy numbers arithmetic operations between generalized fuzzy 

numbers, where these fuzzy arithmetic operations can deal with the generalized fuzzy numbers. In Hsieh and 

Chen [19] pointed out that arithmetic operators on fuzzy numbers presented in Chen [21] does not only 

change the type of membership function of fuzzy numbers after arithmetic operations, but they can also 

reduce the trouble sameness and tediousness of arithmetical operations. Thus in this paper, we use Chen’s [21]  

1 

0.8 

a  b  c  d  

B  

A  

 x  

0 
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fuzzy numbers arithmetical operators to deal with the fuzzy number arithmetical operations between 

generalized fuzzy numbers. 

The difference between the arithmetic operations on generalized fuzzy numbers and the traditional fuzzy 

numbers is that the former can deal with both non-normalized and normalized fuzzy numbers, but the latter 

can only deal with normalized fuzzy numbers. Let [0,1]  be a pre-assigned parameter called the degree of 

optimism. The graded mean [22] value (or, total  -integral value) of A  is defined as 

       1R LI A I A I A      where  RI A  and  LI A  are the right and left interval values of A  

defined as 

   
1

0

w
w w

L L A
I A d w  

 
  
   

   
1

0
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w w
R R A

I A d w  
 

  
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Now, for GTrFN  , , , ;A a b c d w
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Therefore the left and right integral values are  
2

w
L
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 
  
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 and  
2
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Hence the total  -integral value of A is    1
2 2

w c d a b
I A  

      
      

    
 

The total  -integral value is a convex combination of the right and left integral values through the degree 

of optimism. The left integral value is used to reflect the pessimistic viewpoint and the right integral value is 

used to reflect the optimistic viewpoint of the decision-maker. A large value of   specifies the higher degree 

of optimism. For instance, when 1  , the total integral value    1
2

w w
R

c d
I A I A

 
  
 

 represents an 

optimistic viewpoint. On the other hand, when 0  , the total  -integral value is    0
2

w w
L

a b
I A I A

 
  
 

 

represents a pessimistic viewpoint. When 0.5   the total  -integral is  0.5
4

w a b c d
I A

   
  
 

. It reflects 

a moderately optimistic decision-makers viewpoint and is the same as the defuzzification of the fuzzy 

number A . 

4. Fuzzy Structural Model 

In our multi-objective structural optimization problem (MOSOP), we have considered that the applied load 

P and material density  as fuzzy number, the above crisp model (1) reduces to  
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The generalized trapezoidal fuzzy numbers here represent the applied load and material density. This are 

 1 2 3 4 1, , , ;P P P P P w  and  1 2 3 4 2, , , ;w     . For a fixed value of  , the  -integral value for P  and   
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integral values of the fuzzy applied load P  and fuzzy material density   in the above problem (2) we get 
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5. Mathematical Analysis 

5.1  Fuzzy programming technique to solve MONLP problem 

A multi-objective non-linear programming (MONLP) or a vector minimization problem (VMP) may be 

taken in the following form: 

       1 2, ,....,
T

kMinimize f x f x f x f x                                                                                                    (4) 

  : 1,2,..., ; 0 ,n
j jsubject to x X x R g x or or b for j m x         

and , 1,2,...,i i il x u i n    

Zimmermann (4) showed that fuzzy programming technique can be used to solve the multi-objective 

programming problem.  

To solve MONLP problem, following steps are used  

Step 1: Solve the MONLP (4) as a single objective non-linear programming problem using only one 

objective at a time and ignoring the others, these solutions are known as ideal solution. 

Step 2: From the result of step 1, determine the corresponding values for every objective at each solution 

derived. With the values of all objectives at each ideal solution, pay-off matrix can be formulated as follows 

 

 

 

 

 

 

 

 

 

 

 

Here 1x , 
2x , 3x ,….., kx are the ideal solutions of the objectives 1( )f x , 2 ( )f x ,….., ( )kf x  respectively. 

So  1 2max ( ), ( ),......, ( )k
r r r rU f x f x f x    and   1 2min ( ), ( ),......, ( )k

r r r rL f x f x f x  for 1,2,....,r k  

Where rU and rL  be upper and lower bounds of the 
thr objective function ( )rf x  for 1,2,3,........,r k . 

Step 3: Using aspiration level of each objective of the MONLP (4) may be written as follows: 

Find x so as to satisfy 

( )r rf x L for 1,2,3,........,r k
                                                                                                                        (5)

 

x X . 

Here objective functions are considered as fuzzy constraints. These types of fuzzy constraints can be 

quantified by eliciting a corresponding membership function 

 
1( )f x  2 ( )f x  …. ( )kf x  
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* 2
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…. …. …. …. …. 

kx  
*
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2 ( )kf x   *( )k
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r r rL L   where 
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Fig. 3. Rough sketch of membership for objective functions  rf x  

Having elicited the membership functions (as in (5)) ( ( ))r

r

w
rf x  for 1,2,3,........,r k , introduce a general 

aggregation function, 

1 2
1 2( ) ( ( ( )), ( ( )),......, ( ( )))r r r r

kD

w w w w
kx F f x f x f x     

So a fuzzy multi-objective decision making problem can be defined as 

( )

.

r

D

w
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


                                                                                                                                     (7) 

According to fuzzy decision [3] based on max–min operator , the problem (7) is reduced to

'
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According to fuzzy decision [3] based on max-additive operator, the problem (7) is reduced to  
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1
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k
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r k W


   

Step 4: Solve (8) and (9) to get Pareto optimal solutions.  

6. Fuzzy Programming Technique to Solve Crisp Multi-Objective Structural Model 

To solve MOSOP (1) step-1 of (5.1) is used. From the result of step 1, determine the corresponding values 

for every objective at each solution derived. With the values of all objectives at each ideal solution, pay-off 

matrix can be formulated as follows: 

 

 

 

 

 

 

 

 

 

 

From the pay-off matrix, the bounds  1 1

1 1 2 2

2 2max ( , ), ( , )WTU WT A A WT A A  and 

 1 1

1 1 2 2

2 2min ( , ), ( , )WTL WT A A WT A A for weight function 1 2( , )WT A A
 
(where 1 2( , )WT WTL WT A A U  ) and the 

bounds  1 1

1 1 2 2

2 2max ( , ), ( , )U A A A A    and  1 1

1 1 2 2

2 2min ( , ), ( , )L A A A A   for deflection function 

1 2( , )A A
 
(where 1 2( , )L A A U   ) are identified. 

Here for simplicity linear membership functions  1 2( , )WT WT A A  and
 

 1 2( , )A A   for the objective 

functions 1 2( , )WT A A  and 1 2( , )A A  respectively are defined as follows: 

 
1 2( , )WT A A  1 2( , )A A  

1
1 1

2,A A  1
* 1 1

2( , )WT A A  1
1 1

2( , )A A  

1
2 2

2,A A  1
2 2

2( , )WT A A  1
* 2 2

2( , )A A  
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Fig. 4. Rough sketch of membership for objective weight function  1 2,WT A A
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Fig. 5. Rough sketch of membership for objective weight function  1 2,A A  

where    ' ' ' '

1 1 2 2 1 2, , 0, , 0,WT WT WTL L L L U L U L            

According to step-3, having elicited the above membership functions crisp non-linear programming 

        
'L  U
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'

WTL  
WTU

 

 1 2,WT A A  
0 

1 
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problem is formulated as follows: 

Using max-min operator 

Maximize                                                                                                                                                    (10) 
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The problem (10) can be written as 

Maximize                                                                                                                                                    (11) 

subject to  
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where 1W and 2W  are two normalized positive weights of two objectives. 

Using max-additive operator  



36 A Fuzzy Programming Technique for Solving Multi-objective Structural Problem  

 

1 2 1 2

1 1 2 2' '

( , ) ( , )

WT

WT

WT

U WT A A U A A
Maximize W w W w

U L U L






        
       

               

                                                       (12) 

subject to 

1 2

1 1'

( , )
0

WT

WT

WT

U WT A A
w w

U L

 
  

  

, 1 2

2 2'

( , )
0

U A A
w w

U L






 
  

  

, 

 
 

 
1 2

1 1 2 2
1 2 1

2
, ,

2 2
T

P A A
A A

A A A
 


 


 

   

   

2 1 2

1 2

2
3 1 2 2

1 2 1

min max
1 2

, ,
2

, ,
2 2

, 1,2., 1.

T

C

i i i

P
A A

A A

PA
A A

A A A

A A A i W W

 

 

 


 


    

 

The problem (12) can be written as 
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where 1W and 2W  are two normalized positive weights of two objectives. 
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7. Numerical Solution of a Multi-objective Structural Optimization Problem (MOSOP) of a Three-Bar 

Truss: 

The input data for MOSOP (1) is given as follows 

Table 1. Input data for crisp model (1) 

Applied 

load P
 

 KN  

Material 

density 
 

 3/KN m  

Length 

L
 

 m  

Maximum 

allowable 
tensile  

stress T
 

 2/KN m  

Maximum 

allowable 

compressive 

stress C
 

 2/KN m  

Young’s 

modulus E
 

 2/KN m  

min
iA and 

max
iA of cross 

section of bars 

 4 210 m
 

20  100  1  20  15  72 10  

min
1 0.1A 

 
max
1 5A 

 
min
2 0.1A 

 
max
2 5A   

 

Solution: According to step 2 pay off matrix is formulated as follows: 

 

 
1 2( , )WT A A  1 2( , )A A  

1A  2.638958 14.64102
 

2A  19.14214
 

1.656854
 

 

Here 1 19.14214U  , 1 2.638958L  , 2 14.64102U  , 2 1.656854L  , '

1 3.638958L  , 1 1  , 

2

' 2.656854L  , 2 1  .Here linear membership function for the objective functions 1 2( , )WT A A  and 

1 2( , )A A is defined as follows: 
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Fig. 6. Rough sketch of membership for objective weight function  1 2,WT A A
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Fig. 7.Rough sketch of membership for objective deflection functions  1 2,A A   

Considering the Pareto optimal solutions of the MOSOP (1) with different weights by GFNLP method 

based on different operator is given in table 2 and table 3 respectively. 
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Table 2. Pareto optimal solutions of MOSOP based on max-min operator with different weights 

1W  2W  
4 2

1 10A m  
4 2

2 10A m    2

1 2, 10WT A A KN    6

1 2, 10A A m   

0.5 0.5 0.5927786 3.362761 5.039392 3.739408 

0.6 0.4 1.267122 5.000000 8.583962 2.398602 

0.4 0.6 0.597794 1.738530 3.429341 6.543551 

Table 3. Pareto optimal solutions of MOSOP based on max-additive operator with different weights 

1W  2W  
4 2

1 10A m  
4 2

2 10A m    2

1 2, 10WT A A KN    6

1 2, 10A A m   

0.5 0.5 0.5995887 3.789761 5.485654 3.356200 

0.6 0.4 0.5858620 3.003582 4.4660650 4.137730 

0.4 0.6 0.6111046 4.752674 6.481139 2.727620 

 

Fuzzy model: Considering the GTrFN for applied load and material density of the FMOSOP (2) we take 

applied load  20 17,19,21,23;0.8KN KN  and material density 

3100 /KN m    397,99,100,103;0.9 /KN m and other input data are same as in crisp model (Table 1). The 

Pareto optimal solutions of the fuzzy multi-objective structural model (FMOSM) with different weights by 

GFNLP method based on different operator are given when 0.5   in table 4 and table 5 respectively. 

Table 4. Pareto optimal solutions of FMOSOP based on max-min operator with different weights for 0.5   

1W  2W  
4 2

1 10A m  
4 2

2 10A m    2

1 2, 10WT A A KN    6

1 2, 10A A m   

0.5 0.5 0.5927786 3.362761 5.026793 3.739408 

0.6 0.4 1.267122 5.000000 8.562502 2.398602 

0.4 0.6 0.5977921 1.738530 3.420768 6.543551 

Table 5. Pareto optimal solutions of FMOSOP based on max-additive operator with different weights for 0.5   

1W  2W  
4 2

1 10A m  
4 2

2 10A m    2

1 2, 10WT A A KN    6

1 2, 10A A m   

0.5 0.5 0.5995887 3.789761 5.471939 3.356200 

0.6 0.4 0.5858620 3.003582 4.648999 4.137730 

0.4 0.6 0.6111046 4.752674 6.464936 2.727620 

 

The Pareto optimal solutions of FMOSOP for different values of   based on different operator are 

presented in table 6 and table 7 respectively. Decision Maker (DM) can get the optimal solutions according to 

desire. 
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Table 6. Pareto optimal solutions of FMOSOP based on max-min operator with equal weights 

Test
 4 2

1 10A m  
4 2

2 10A m    2

1 2, 10WT A A KN    6

1 2, 10A A m   

Optimistic i.e 

1   
0.6480025 3.479624 5.392138 3.950487 

About optimistic i.e 

0.7   
0.6149335 3.410561 5.173030 3.824798 

Moderate i.e 

0.5   
0.5927786 3.362761 5.026793 3.739408 

About pessimistic 

i.e 0.2   
0.5593784 3.288189 4.807035 3.608736 

Pessimistic i.e 

0   
0.5369965 3.236407 4.660157 3.519772 

Table 7. Pareto optimal solutions of FMOSOP based on max-additive operator with equal weights 

Test
 4 2

1 10A m  
4 2

2 10A m    2

1 2, 10WT A A KN    6

1 2, 10A A m   

Optimistic i.e 

1   
0.6562311 3.949402 5.892586 3.524778 

About optimistic i.e 

0.7   
0.622975 3.854818 5.640209 3.424526 

Moderate i.e 

0.5   
0.5995887 3.789761 5.471939 3.356200 

About pessimistic 

i.e 0.2   
0.5653916 3.688927 5.219351 3.251289 

Pessimistic i.e 

0   
0.5425019 3.619376 5.050727 3.179609 

Table 8. Optimal solutions MOSOP based on different operators with equal weights 

Operator 
4 2

1 10A m  
4 2

2 10A m    2

1 2, 10WT A A KN    6

1 2, 10A A m   

max-min 0.5927786 3.362761 5.039392 3.739408 

max-additive 0.5995887 3.789761 5.485654 3.356200 

 

From the above empirical investigation, it is cleared that max-min operator gives better structural weight 

where as max-additive operator gives better node deflection. 

8. Conclusions 

A comparative study for fuzzy multi-objective structural optimization based on different operator has been 

discussed here. Numerical solution shows that the FNLP technique is effective in achieving minimum 

structural weight and minimum node deflection by max-min operator and max-additive operator respectively. 

Here decision-maker may obtain the optimal results according to his expectations of optimistic/pessimistic/ 

moderate values of weights and node deflection. This method presented is quite simple and can be applied to 

other areas of engineering science.  
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