
I.J. Engineering and Manufacturing, 2018, 1, 1-15
Published Online January 2018 in MECS (http://www.mecs-press.net)

DOI: 10.5815/ijem.2018.01.01

Available online at http://www.mecs-press.net/ijem

Transmitting Security Enforcement By Text Encrypting and Image

Hiding Technique using Combined Encrypt/Hide Keys

Mohammed Jawar Khami *

Basra technical institute, Southern technical university, Basra, Iraq.

Received: 13 May 2017; Accepted: 11 September 2017; Published: 08 January 2018

Abstract

Comparative study of cryptography and steganography techniques shows that they have some strong and weak

points when they used alone. But as we know from soft computing techniques (neural, genetic, and fuzzy

computing), that when combining (hybridizing), more than one techniques, by the suitable way to do a job, the

outcome will be a better technique with more strong points and less weak points. Work of this paper represents

an attempt to prove that combining cryptography with steganography techniques will result in hard transmitting

system to break and thus enforcing security issues of secret text data transmitting over public channels. Matlab

programs are written to encrypt plain text secret information following AES encrypt/decrypt algorithm with a

key of 128 bits long and then hide/extract the text according to LSB insertion method with a key of 128 bits

long too. System tests show that both techniques enforce each other and private data transmitting become more

secure.

Index Terms: Cryptography, Steganography, Keys combining, AES algorithm, LSB hide/extract techniques.

© 2018 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research

Association of Modern Education and Computer Science.

1. Introduction

Nowadays, the Internet has made it possible for users to send and receive all types of digital data (Audio,

image, text, video), from anywhere around the world. Also, from security point view, communication of private

and secret information (electronic financial transactions, e-business applications, and secure video surveillance

systems), is a major challenge and its complexity increases with the levels of sophistication [1]. Many attempts

have been made to secure data transmitting over the internet either by making it illegible or unreadable through

encoding or masking. In general, solutions for maintaining the secrecy of data transmission over an unsecured

media such as the internet can have two approaches. These are cryptography and steganography. Regardless

* Corresponding author. +964 780 133 4525

E-mail address: mjkhami@stu.edu.iq, mjkhami@yahoo.com

http://www.mecs-press.net/ijem
mailto:mjkhami@stu.edu.iq

2 Transmitting Security Enforcement By Text Encrypting and Image Hiding Technique using

Combined Encrypt/Hide Keys

many papers showed that neither cryptography nor steganography comes up with the ultimate solution for

privacy preservation in open systems. However, the combination of steganography and cryptography can

greatly increase the security of communication and is usually considered a good practice for securing security

driven communication environments[2].

Cryptography is the process of converting original data into cipher copy so that the original data is not

readable by the third party or making it difficult for intruders to extract the original data. [3], Steganography,

on the other hand, is the process of hiding secret data in another clear covering media so there is no knowledge

of secret data existence in that cover [4]. Comparative study of these two approaches shows that they have

strong and weak points. Security point enforcements come out when combining (hybridizing), both of them in

one system, the outcome will be harder than ever for any intruder to get the original data. Since when the

steganography fails and the secret data can be detected, it is still of no use as it is encrypted and thus

unreadable[5].

There are many algorithms and methods to accomplish data steganography [6-9] and cryptography [10-12].

And to combine them in one system, it requires selecting the best method from each one of them to suit and

verify the intended needs of the applications. In this work, the encryption method is according to the advanced

encrypting standard (AES) algorithm with a Private encrypting key of 128 bits long and the steganography

technique is text-in-image (image hiding technique), hiding by least significant bit (LSB) insertion method [13-

15]. Both methods (Encrypt/Hiding), are selected for many reasons such as their simplicity, difficult to break,

and easily programmed.

2. Proposed System

The goal of this work is to design a software to Encrypt file of secret English plain text first and then embed

it into gray or color cover image. The size of encrypted text (and thus the original secret plain text size), is

bounded only by the size of the selected cover image. Many programming tricks have been included in writing

this software. For example, at encryption stage and in order to make any attempt for breaking the encrypting

technique much harder, the main encrypting key is generated by combining two different keys. First key (S-

Key), is the one that must be given by the sender while the second key (R-Key), should be obtained from the

receiver. Each key should be exactly 128 bits (16 characters) long, and so will the length of the combined key

(SR-Key). By this way, an effort to decrypt the encrypted text and getting back the original secret plain text

needs to know not just one key but both of them at the same time and Knowing the way by which they

combined together, and this is less probable to happen.

At the embedding stage the following steps are included:

 Hide encrypted text at the least significant bit, in bit-plain-1, of the cover image starting at byte 1 of the

image, seems to be easy to extract it back, this may look true but the difficulty comes out here by not

letting intruders knowing the exact size of the embedded text and thus any attempt to read and reconfigure

it back will be definitely difficult since, if the encrypted text size is unknown then decrypting it also will

be difficult.

 The applied hiding technique uses a hiding key. This key is the sender key (S-Key) which will be

embedded in the same cover image on bit-plain-2 of randomly selected bytes. The randomness of

locations, where sender key is hidden, depends on setting the seed of system random number generator to

the value of the receiver key (R-Key).

The proposed system can be described in steps at two locations as follow:

Sender location:

 Transmitting Security Enforcement By Text Encrypting and Image Hiding Technique using 3

Combined Encrypt/Hide Keys

Step-1: Read input plain text,

 Read cover image data matrix,

 Read sender key string (S-Key), and,

 Read receiver key string (R-Key).

Step-2: Combine S-Key and R-key into the same length encrypting key (SR-Key).

Step-3: Encrypt input plain text according to AES encrypting algorithm and SR-Key.

Step-4: Hide encrypted text in cover image starting at byte 1 and bit-plain-1.

Step-5: Hide size of encrypted text in last 32 bytes of the cover image and in bit-plain-1.

Step-6: -Set system random number generator seed to the value of R-Key string,

 Use system random number generator to create a vector of 128 elements. All vector elements values

are unique and in the range from 1 to (cover image size – 32).

 Hide S-Key in the cover image at byte locations equal to element values of the created vector and in

bit-plain-2.

Step-7: Modified image with hidden text is ready to transmit.

Receiver location:

Step-1: -Read the received image data matrix, and

-Read receiver Key string (R-Key)

Step-2: Extract size value of encrypted text from the last 32 bytes of the received image and from bit-plain-1.

Step-3: Extract encrypted text from received image starting at byte 1 and from bit-plain-1.

Step-4: Set system random number generator seed to the value of R-Key string,

 Use system random number generator to create a vector of 128 unique elements values in the range

of 1 to (cover image size – 32).

 Extract S-Key from cover image byte on locations equal to element values of the created vector and

from bit-plain-2.

Step-5: Combine S-Key and R-key into decrypting key SR-Key of the same length.

Step-6: Decrypt the obtained encrypted text according to AES encrypting algorithm and SR-Key.

Step-7 Use the decrypted text as the retrieved secret plain text.

The proposed system is coded using Matlab programming language. Main program descriptive flow charts

are depicted in Fig. 1. for the sender location and Fig. 2. for the receiver location. The written program can

deal with image’s files of type ‘.bmp’, ‘.tif’, ‘.png', and ‘.jpg'. The current plain text should be from English

text writing. These programs could be edited and modified to be capable of encrypting/hiding Arabic and other

writing languages. Main programs and functions are listed at the end of this paper (Appendix A). The only

unlisted functions are the encrypt (cipher), and decrypt (decipher), functions. These functions have a standard

form and can be easily downloaded from the internet.

4 Transmitting Security Enforcement By Text Encrypting and Image Hiding Technique using

Combined Encrypt/Hide Keys

Fig.1. System Flow Diagram at Sender Location.

Fig.2. System Flow Diagram at the Receiver Location.

3. System Test and Implementation

The proposed system is tested, as shown in Fig.3., by using two files of English plain text. First one contains

4361 characters while the second has 215 characters. Also, the test is done with color and gray images of

different types (bmp, tiff, png, and jpg images), with different images size. All peak signal to noise ratio

 Transmitting Security Enforcement By Text Encrypting and Image Hiding Technique using 5

Combined Encrypt/Hide Keys

(PNSR), calculations have been written in Table 1. and they all satisfy the purposes of the hard visual detection

of the embedded text. The only noticeable value that was shown in Table 1. is the big change in the row for the

image of type ‘jpg'. Its size changes from 12.8 kB to 240 kB. That is because after the text is hidden in it, its

type is changed deliberately from ‘jpg’ to ‘bmp’, in order to save the image without compression, (since ‘.jpg'

image changes its size when re-saving it again due to compression processing property).

Fig.3. System Implementation.

Table 1. PSNR for Different Image Types and Hidden Text Sizes

Image Filename
Image

Type

Image

Color

Image

RowXCol

Size

(kB)

New

Image

Type

New

Size (kB)

Text of

4361

Bytes

Text of

215 Bytes

PSNR

(db)

PSNR

(db)

Autumn Tiff color 345X206 208 tiff 209 58.8741 70.6561

cameraman Tiff grey 256X256 64.5 tiff 63.5 53.7751 65.3126

Football Jpg color 320X256 12.8 bmp 240 59.5572 71.2441

Forest Tiff grey 447X301 120 tiff 120 56.9068 68.8658

lighthouse Png color 480X640 473 png 472 65.3014 77.0427

Fruit Bmp color 615X456 822 bmp 822 64.9221 76.5239

4. Conclusions

Combining AES encrypt/decrypt algorithm with 128 bits key, and hide/extract LSB insertion method with

128 bits hiding key too, give new and more secured transmitting technique. Sender and receiver Keys

Combined
Key

Main Encrypt
Text and Hide

It In Image
Matlab

Program

Main Extract
and Decrypt
Text From

Image
Matlab

Program

Receiver Key

Public
Transmitting

Channel

6 Transmitting Security Enforcement By Text Encrypting and Image Hiding Technique using

Combined Encrypt/Hide Keys

combining make the process of breaking any one of them more difficult, since intruder need to know both keys

to break the system. if one technique fails, the system will continue securing the secret information by the other

technique. Experiments show that secret text size only bounded by cover image size. Noise added to the cover

image, due to embedding process, is small and modifications on original images are hard to be detected for

most image types (except for ‘.jpg’ image type). This paper programs can be updated easily to encrypt-hide-

extract-decrypt text writing other than English text. The programs can be used also in increasing security

features in communication technology for smartphones since security issues for these devices are limited.

References

[1] Palak Mahajan, “Steganography: A data hiding technique”, International journal of advanced research in

computer science and software engineering, Vol. 4, Issue 11, Nov. 2014.

[2] Auqib Hamid Lone, Ab Waheed Lone, Moin Uddin, "A novel scheme for image authentication and secret

data sharing", International journal of computer network and information security(IJCNIS), Vol.8, No.9,

pp.10-18, 2016.DOI: 10.5815/ijcnis.2016.09.

[3] A. Anuradha, Hardik B. Pandit, “Review on information techniques: A comparative analysis”, IJRET, Vol.

5, Issue 2, Feb. 2016, pp. 128-132.

[4] Ramanpreet Kaur, Baljit Singh, “Survey and analysis of various steganography techniques”, IJESAT, Vol.

2, Issue 3, May-June 2012.

[5] Arvind Kumar, Km. Pooja, “Steganography – A data hiding technique”, IJCA (0975-8887), Vol. 9, No. 7,

Nov. 2010, pp. 19-23.

[6] Sahar A. El_Rahman, "A comprehensive image steganography tool using LSB scheme", IJIGSP, vol.7,

no.6, pp.10-18, 2015.DOI: 10.5815/ijigsp.2015.06.02

[7] Sabyasachi Samanta, Saurabh Dutta, Goutam Sanyal,"A Novel approach of text steganography using

nonlinear character positions (NCP)", IJCNIS, vol.6, no.1, pp.55-60,2014. DOI: 10.5815/ijcnis.2014.01.08

[8] Fahd Alharbi,"Novel high-quality data hiding system", IJIGSP, vol.5, no.7, pp.47-53, 2013.DOI:

10.5815/ijigsp.2013.07.07

[9] Ibrahim M. Hussain, M. Kamran Khan, Mohammad Naseem, Aisha Ajmal, Osama M. Hussain,

"Improved bit plane splicing LSB technique for secret data hiding in images using linear congruent

method", IJIGSP, vol.4, no.7, pp.1-14, 2012.

[10] P. Srinivasarao, P. V. Lakshmipriya, P. C. S. Azad, T. Alekhya, K. Raghavendrarao, K. Kishore, “A

technique for data encryption and decryption”, International journal of future generation communication

and networking, vol. 7, no. 2 (2014), pp.117-126.

[11] Thomas Baigneres, Pascal Junod, Yi Lu, Jean, “A classical introduction to cryptography exercise book”,

Springer science & business media, 2006.

[12] Douglas Selent, “Advanced encryption standard”, nSight: Rivier academic journal, Vol. 6, Num. 2, Fall

2010.

[13] Mohammed J. Khami, Lemya G. Shehab and Zeynab M. Jawar, “Matlab Coding For Text Steganography

System By Using LSB Insertion Method With Key”, Basrah journal of science (A) Vol.33 (2), 37-51,

2015.

[14] Champakamala .B.S, Padmini.K, Radhika .D. K., “Least significant bit algorithm for image

steganography”, International journal of advanced computer technology (IJACT) ISSN: 2319-7900 34 |

Vol. 3, Issue. 4. August 25, 2014.

[15] Gabriel Macharia Kamau, Stephen Kimani, Waweru Mwangi, “An enhanced least significant bit

steganographic method for information hiding”, Journal of information engineering and applications ISSN

2224-5782 (print) ISSN 2225-0506 (online) Vol 2, No.9, 2012.

 Transmitting Security Enforcement By Text Encrypting and Image Hiding Technique using 7

Combined Encrypt/Hide Keys

Authors’ Profiles

Mohammed Jawar Khami (1953) is an assistant professor of computer science at Basra

technical institute in the Southern technical university, Iraq. He received his B.Sc. (Hon.) in

electrical and electronic engineering 1982 from Sunderland Polytechnic, England, UK. Also, he

received his MSc (1989) and Ph.D. (2000) in computer science from college of science, Basra

University, Iraq. His area of research includes pattern recognition, computer based device’s

control systems, data encryption, and data hiding. He is a former computer center manager and

head of the computer systems department at Basra technical institute.

Appendix A. The proposed system Matlab software

A.1. Encrypt/Hide Program.

% EncryptHide.m

% Dr. Mohammed J. Khami

% Comp. Sys. Dep./ Basra Tech. Institute.

% mjkhami@stu.edu.iq, mjkhami@yahoo.com, mjkhami@gmail.com

% 29/04/2017

%

clc; clear; close all;fclose all; commandwindow; WD=cd();

% Set off warning for big size image.

warning ('off','images:initSize:adjustingMag') ;

%

% This program is to encrypt content of plain text file "filename.txt"

% by AES-algorithm with sender and receiver keys. And to save output

% encrypted-text in "En_filename.txt" file on the same path of the

% input plain text file. And then hide it in image.

% Note: Sender and Receiver keys have maximum lengths of 128 bits.

%% Input Cover image Path and Filename

[CoverImageFilename, CoverImagePth]=uigetfile({'Image file(*.png;*.tif;

 .jpg;.bmp)'},'Choose Cover Image To Encode.');

if isequal(CoverImageFilename,0) || isequal(CoverImagePth,0)

 return % User canceled.

End

% Read CoverImage Data Matrix.

fmt=CoverImageFilename(end-2:end); % Get image type

CoverImage= imread([CoverImagePth, CoverImageFilename],fmt);

%% Prog. Section-2 : Get Encryption/Decryption PlainKey.

[S_key, R_key]=getplainkey5(); %Get S-key/R-Key (each of 128 bit long).

PlainKeyLength1=length(S_key); PlainKeyLength2=length(R_key);

% Make sure each key is 128 bit long.

8 Transmitting Security Enforcement By Text Encrypting and Image Hiding Technique using

Combined Encrypt/Hide Keys

if PlainKeyLength1<1 || PlainKeyLength1>16 ...

 || PlainKeyLength2<1 || PlainKeyLength2>16

 ttext='Error: Sender/Reciever Keys must be 1-to-16 characters Long.';

 uiwait(msgbox({ttext},'Error','error','modal'));

 cd(WD); clc; return;

end

% Combine S_Key with R_Key to Get SR_Key by calling (two_keys_in_one5)

SR_key=two_keys_in_one5(S_key, R_key);

PlainKey=SR_key; % Encryption key is ready.

% Prepare AES algorithm's Parameters, by calling standard function

% 'aes_init.m' loaded from the internet.

[s_box, inv_s_box, w, poly_mat, inv_poly_mat] = aes_init(PlainKey);

%% Read Plaintext Filename

[filen1, path1] =uigetfile({'*.txt';},'Choose Plain Text File: ');

if isequal(filen1,0) || isequal(path1,0)

 ttext='Error: Filename must not be empty';

 uiwait(msgbox({ttext},'Error','error','modal'));

 cd(WD); return % User cancelled.

end

PlainTextFileName=[path1,filen1]; FE1=fopen(PlainTextFileName,'r');

% Read Plaintext

plaintext=fread(FE1); PlainText=plaintext';

%% Divide the read Plaintext into slices of 16 characters wide.

PlainTextLength=length(PlainText);

loop_int=fix(PlainTextLength/16); loop_rem=mod(PlainTextLength,16);

if loop_rem>=1 && loop_rem<=15

 for i=loop_rem+1:16

 PlainText=[PlainText,' '];

 end

 loop_int=loop_int+1;

end

PlainText = double(PlainText);

for cy=1:loop_int

 PlainText1=PlainText((cy-1)*16+1:cy*16);

 % Encrypt one text slice at a time by calling cipher function.

 ciphertext = cipher (PlainText1, w, s_box, poly_mat);

 if cy==1

 EncText =ciphertext;

 else

 EncText =[EncText,ciphertext];

 end

end % End of Ciphering all file contents.

 Transmitting Security Enforcement By Text Encrypting and Image Hiding Technique using 9

Combined Encrypt/Hide Keys

%% Hide encrypted text in CoverImage

% 1) Hide encrypted text in CoverImage by LSB in bit-plain-1 of image

% data starting from the first byte from the CoverImage.

% 2) Calculate encrypted-text-size then hide size value at the last 32

% bytes of the CoverImage (after converting text size value into

% binary string of 32bits).

% 3) Hide Reciever key string in bit-plain-2 of randomly selected data

% points of CoverImage.

% All above Hidings will be done by calling function:

% "EmbedEncryptedTextInImageWithKeys.m".

%

ModifiedCoverImageH=EmbedEncryptedTextInImageWithKeys(CoverImage,EncText,

 S_key,R_key);

% End of hiding Process.

figure(1);

subplot(121);imshow(CoverImage,[]);title('Original Cover Image');

subplot(122);imshow(ModifiedCoverImageH,[]);title('Image with hidden text');

OutPutImageFilename=[CoverImagePth,'O_', CoverImageFilename];

% When image is of '.jpg' type it must be save as '.bmp' file.

if lower(OutPutImageFilename(end-2:end))=='jpg'

 OutPutImageFilename(end-2:end)='bmp';

end

imwrite(ModifiedCoverImageH,OutPutImageFilename);

fclose all; cd(WD);

% End of Encryption/Hide Program.

A.2. Extract/Decrypt program.

% ExtractDecrypt.m

% Dr. Mohammed J. Khami

% Comp. Sys. Dep./ Basra Tech. Institute.

% mjkhami@stu.edu.iq , mjkhami@yahoo.com , mjkhami@gmail.com

% 29/04/2017

%

clc; clear; close all; fclose all;

% Set warning for big size image off.

warning ('off','images:initSize:adjustingMag');

%% Read the Modified Image Data File.

% Get the ModifiedCoverImageH Filename and its Path

[filen pth]=uigetfile({'O_*.*'},'Choose Modified Cover Image To Encode.');

if isequal(filen,0) || isequal(pth,0)

 return % User cancelled.

end % if

ModifiedCoverImageH= imread([pth filen]); % Original cover image

close all;

% Gets Rows and Columns of input image.

[ImageRows,ImageCols,ImageClr]=size(ModifiedCoverImageH);

if ImageClr>1

10 Transmitting Security Enforcement By Text Encrypting and Image Hiding Technique using

Combined Encrypt/Hide Keys

 ModifiedCoverImage=ModifiedCoverImageH(:,:,1);

else

 ModifiedCoverImage=ModifiedCoverImageH(:,:);

end

RetrievedCoverImageInBinary=dec2bin(ModifiedCoverImage);

% Get Reciever R_Key

R_Key=getplainkey_receiver();

% RC_Hidden is row & col. number where we hide the secret text size.

RC_Hidden='';

for i=ImageRows*ImageCols-31:ImageRows*ImageCols

 RC_Hidden=[RC_Hidden,char(RetrievedCoverImageInBinary(i,8))];

end

Row_tr=bin2dec(RC_Hidden(1:16)); Col_tr=bin2dec(RC_Hidden(17:32));

RetrievedTextInBinary=RetrievedCoverImageInBinary(1:Row_tr*Col_tr,8);

RetrievedTextIn_ascii=bin2dec(reshape(RetrievedTextInBinary ,Row_tr,Col_tr));

RetrievedTextInChar= char(RetrievedTextIn_ascii)';

% Set seed of the random number generator to R_Key

rkey=0;

for i=1:16

 rkey=rkey+2^i*double(R_Key(i));

end

rng(rkey);

% Generate random byte locations

indx=randperm(size(ModifiedCoverImage,1)*size(ModifiedCoverImage,2)-32,128);

% Hide S_Key in the randomly generated byte locations

S_Key_Bin='';

for i=1:128

 S_Key_Bin=[S_Key_Bin,RetrievedCoverImageInBinary(indx(i),7)];

end

S_Key='';

for i=1:8:128

 S_Key=[S_Key,char(bin2dec(S_Key_Bin(i:i+7)))];

end

CompositeKey=two_keys_in_one(S_Key, R_Key);

PlainKey=double(CompositeKey);

% Prepare AES algorithm parameters.

[s_box, inv_s_box, w, poly_mat, inv_poly_mat] = aes_init(PlainKey);

PlainText=RetrievedTextInChar; PlainTextLength=length(PlainText);

% Divide PlainTex into slices each of 16-characters.

loop_int=fix(PlainTextLength/16); loop_rem=mod(PlainTextLength,16);

if loop_rem>0 && loop_rem<16

 for i=loop_rem+1:16

 PlainText=[PlainText,' '];

 end

 loop_int=loop_int+1;

end

 Transmitting Security Enforcement By Text Encrypting and Image Hiding Technique using 11

Combined Encrypt/Hide Keys

PlainText0 = double(PlainText);

for cy=1:loop_int

 if cy==1

 PlainText1=PlainText0((cy-1)*16+1:cy*16);

 else

 PlainText1=PlainText0((cy-1)*16+1:cy*16);

 end

 decText = inv_cipher (PlainText1, w, inv_s_box, inv_poly_mat);

 if cy==1

 DecText =decText;

 else

 DecText =[DecText,decText];

 end

end

DecText=char(DecText);

DecText

% End of Extract/Decrypt Program.

A.3. Getplainkey Function

function [SPlainKey, RPlainKey]=getplainkey()

% Function to returns sender key ‘SPlainKey' and Receiver key 'RPlainKey'

% using inputdlg() matlab command.

SPlainKey=''; RPlainKey=''; PlainKey='';

prompt = {'Sender (Encryption) Key?','Receiver (Decryption) Key?'};

dlg_title = 'Input Keys'; num_lines = 1; defaultans ={'Khami1953';''};

options='on';

PlainKey=inputdlg(prompt,dlg_title,num_lines,defaultans,options);

if isempty(PlainKey)

 return;

end

PlainKey1=char(PlainKey{1}); PlainKey2=char(PlainKey{2});

while true

 if PlainKey1(1)==char(32)

 PlainKey1=PlainKey1(2:end);

 else

 break;

 end

end

while true

 if PlainKey2(1)==char(32)

 PlainKey2=PlainKey2(2:end);

 else

 break;

 end

end

PlainKeyLength1=length(PlainKey1); PlainKeyLength2=length(PlainKey2);

12 Transmitting Security Enforcement By Text Encrypting and Image Hiding Technique using

Combined Encrypt/Hide Keys

if PlainKeyLength1<16

 for i=1:16-PlainKeyLength1

 PlainKey1=[PlainKey1,' '];

 end

end

if PlainKeyLength2<16

 for i=1:16-PlainKeyLength2

 PlainKey2=[PlainKey2,' '];

 end

end

SPlainKey=PlainKey1; RPlainKey=PlainKey2;

% End of function 'getplainkey()'.

A.4. Two_keys_in_one Function

function CompositeKey = (SenderKey ,RecieverKey)

% Function to convert two key strings each of 16 char's into one

% composite 16 char key.

%% Make sure both given keys are 16 char long.

s=length(SenderKey); r=length(RecieverKey);

if (s~=16)||(r~=16)

 CompositeKey='';

 return

end

a_bin=''; b_bin='';

for i=1:16

 a_bin=[a_bin,dec2bin(SenderKey(i),8)];

 b_bin=[b_bin,dec2bin(RecieverKey(i),8)];

end

ab=[];

for i=1:128

 ab(i)=xor(str2num(a_bin(i)),str2num(b_bin(129-i)));

end

nk=reshape(ab,16,8); CompositeKey=[];

for i=1:16

 CompositeKey(i)=(bin2dec(num2str(nk(i,1:8))));

end

% End of function 'two_keys_in_one(SenderKey,RecieverKey)'.

A.5. EmbedEncryptedTextInImageWithKeys function

function ModifiedCoverImageH =

EmbedEncryptedTextInImageWithKeys(CoverImage,Message,S_Key,R_Key)

% Function 'EmbedEncryptedTextInImageWithKeys' to do the following:

% 1) Hide encrypted text 'Message' in CoverImage by LSB in bit-plain-1 of

% image data starting from the first byte from the CoverImage.

% 2) Calculate encrypted-text-size then hide size-value in the last 32

% bytes of the CoverImage (after converting text size-value into

 Transmitting Security Enforcement By Text Encrypting and Image Hiding Technique using 13

Combined Encrypt/Hide Keys

% binary string of 32 bits).

% 3) Hide Reciever key 'R-Key' string in bit-plain-2 of randomly selected

% data points of CoverImage.

%

MessageInDouble=Message;

% Convert text array into binary number of ii*jj rows and 8 columns.

MessageInBinary=dec2bin(MessageInDouble,8);

% Get size of the binary message

[MessageBinaryRows, MessageBinaryCols]=size(MessageInBinary);

% Combine MessageBinaryRows & MessageBinaryCols into one string in

% binary representation.

MessageBinaryRowsInBinary=dec2bin(MessageBinaryRows,16);

MessageBinaryColsInBinary=dec2bin(MessageBinaryCols,16);

MessageBinaryRows_ColsInBinary=[MessageBinaryRowsInBinary,MessageBinaryColsInBinary];

% Test if the CoverImage is Color image

[ImageROW,ImageCOL,ImageColor]=size(CoverImage);

if ImageColor>1

 % Change cover image to be gray image

 gray_cover_im=CoverImage(:,:,1);

else

 gray_cover_im=CoverImage;

end

% Convert gray_cover_im image into a binary representation.

CoverImageInBinary=dec2bin(gray_cover_im);

%% First: Hide Encrypted Text size "Row % Columns" in bit-plan-1

% of the last 32 byte of CoverImage.

temp=0;

for i=ImageROW*ImageCOL-31:ImageROW*ImageCOL

 temp=temp+1;

 CoverImageInBinary(i,8) =MessageBinaryRows_ColsInBinary(temp);

end

%% Second: Hide all Encrypted Text in bit-plain-1 of last-32 bytes of CoverImage.

for i=1:MessageBinaryRows*MessageBinaryCols

 CoverImageInBinary(i,8) =MessageInBinary(i);

end

%% Third: Hide S_Key in bit-plain-2 of randomly select byte location of CoverImage.

% This requires first, putting S_Key in 128 bit string format

S_Key_Bin=''; DSKey=double(S_Key);

for i=1:16

 S_Key_Bin=[S_Key_Bin,dec2bin(DSKey(i),8)];

end

% then second set the seed of the random number generatore to R_Key.

rkey=0;

for i=1:16

14 Transmitting Security Enforcement By Text Encrypting and Image Hiding Technique using

Combined Encrypt/Hide Keys

 rkey=rkey+2^i*double(R_Key(i));

end

rng(rkey);

% Generate random byte locations

indx=randperm(size(CoverImage,1)*size(CoverImage,2)-32,128);

% Then third hide S_Key in the randomly generated byte locations.

for i=1:128

 CoverImageInBinary(indx(i),7) =S_Key_Bin(i);

end

SKey='';

for i=1:128

 SKey=[SKey,CoverImageInBinary(indx(i),7)];

end

S_Key='';

for i=1:8:128

 S_Key=[S_Key,char(bin2dec(SKey(i:i+7)))];

end

% Convert CoverImageInBinary to unsigned 8-bit integer, after reshaping

% it as an array of (r) rows and (c) column as in the original cover

% image array.

ModifiedCoverImage=uint8(reshape(bin2dec(CoverImageInBinary),ImageROW,ImageCOL));

if ImageColor>1

 ModifiedCoverImageH(:,:,1)=ModifiedCoverImage;

 ModifiedCoverImageH(:,:,2)=CoverImage(:,:,2);

 ModifiedCoverImageH(:,:,3)=CoverImage(:,:,3);

else

 ModifiedCoverImageH=ModifiedCoverImage;

end

% End of function 'EmbedEncryptedTextInImageWithKeys'.

A.6. Getplainkey_Receiver Function

function PlainKey=getplainkey_receiver()

% Function "PlainKey=getplainkey()" returns key-text 'PlainKey' of 16

% characters using inputdlg() matlab command.

PlainKey='';

while 1

 prompt={'Input Reciever Key (1 to 16) characters? '};

 name = 'Input Reciever Key'; defaultans = {' '};

 options.Resize ='on'; options.WindoStyle ='modal';

 options.Interpreter = 'tex';

 PlainKey=inputdlg(prompt,name,[1 40],defaultans,options);

 PlainKey=char(PlainKey);

 if isempty(PlainKey)

 return;

 end

 PlainKey=PlainKey;

 Transmitting Security Enforcement By Text Encrypting and Image Hiding Technique using 15

Combined Encrypt/Hide Keys

 % Remove any leading spaces if in PlainKey.

 while true

 if PlainKey(1)==char(32)

 PlainKey=PlainKey(2:end);

 else

 break;

 end

end

 PlainKeyLength=length(PlainKey);

 if PlainKeyLength<1 || PlainKeyLength>16

 uiwait(msgbox([{'Error: Key length must be in'};{'between 1- to-

 16 characters.'}],'Error','error','Modal'));

 cd(WD); clc; return;

 end

 break;

end

% Append spaces if it is not 16 char. long.

add_key=16-PlainKeyLength;

if PlainKeyLength<16

 for i=1:16-PlainKeyLength

 PlainKey=[PlainKey,' '];

 end

end

return

How to cite this paper: Mohammed Jawar Khami,"Transmitting Security Enforcement By Text Encrypting

and Image Hiding Technique using Combined Encrypt/Hide Keys", International Journal of Engineering and

Manufacturing(IJEM), Vol.8, No.1, pp.1-15, 2018.DOI: 10.5815/ijem.2018.01.01

