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Abstract 

Nowadays the rise of the artificial intelligence is with high speed. Even we are far away from the moment when 

machines are going to make decisions instead of human beings, the development in some fields of artificial 

intelligence is astonishing. Deep neural networks are such a filed. They are in a big expansion in a new 

millennium. Their application is wide: they are used in processing images, video, speech, audio, and text. In the 

last decade, researches put special attention and resources in the development of special kind of neural 

networks, convolutional neural networks. These networks have been widely applied to a variety of pattern 

recognition problems. Convolutional neural networks were trained on millions of images and it is difficult to 

outperform the accuracies that have been achieved. On the other hand, when we have a small dataset to train 

the network, there is no success to do it from a scratch. This article exploits the technique of transfer learning 

for classifying the images of small datasets. It consists fine-tuning of the pre-trained neural network. Here in 

details is presented the selection of hyper parameters in such networks, in order to maximize the classification 

accuracy. In the end, the directions have been proposed for the selection of the hyper parameters and of the pre-

trained network which can be suitable for transfer learning. 

 

Index Terms: Pre-trained neural networks, deep learning, transfer learning, accuracy, hyper parameters, small 

datasets. 

 

© 2018 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research 

Association of Modern Education and Computer Science. 

1. Introduction 

Artificial intelligence (AI), deep learning (DL), and neural networks (NN) are powerful machine learning-

based techniques. These techniques are incredibly exciting and used to solve many real-world problems. 
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On one hand, human-like deductive reasoning and decision-making by a computer is still a long time away. 

But on the other hand, there have been remarkable gains in the application of AI techniques and associated 

algorithms of AI. Popular examples of an AI solution includes IBM’s Watson, Apple’s Siri and Amazon’s 

Alexa. Watson was made famous by beating the two greatest Jeopardy champions in history. It is now being 

used as a question answering computing system for commercial applications [29].  

So far AI has been used for speech recognition and natural language applications (processing, generation, 

and understanding). It is also used for other recognition tasks (pattern, text, image, video, audio, facial …), 

autonomous vehicles, medical diagnoses, gaming, search engines, robotics, spam filtering, crime fighting, 

marketing, remote sensing, transportation, classification, etc. 

There are many different goals of AI as mentioned, with different techniques used for each. The 

primary topics of this article are deep neural networks, especially one certain kind of them – convolution 

neural networks and their use for transfer learning.  

At the time of this writing, there are a lot of pre-trained convolutional neural networks, developed by 

scientists or big corporations. The main purpose of these networks is to solve image classification problems. 

Even that the above mentioned CNN were trained on certain image sets, they can be used for image 

classifications on other sets of images. This is so called ‘transfer learning’.  

Transfer learning is a technique of optimization of pre-trained CNN in order to classify a set of images on 

which it was not trained before. Optimization actually consists selection of the hyper parameters of the neural 

network. 

 

Nomenclature 

AI Artificial Intelligence 

DL  Deep Learning 

NN Neural Network 

CNN Convolutional Neural Network 

BP Backpropagation 

SL Supervised Learning 

UL Unsupervised Learning 

RL Reinforcement Learning 

RNN Recurrent Neural Network 

MLP Multilayer Perceptron 

KSH Krizhevsky, Sutskever, and Hinton 

ILSVRC ImageNet Large-Scale Visual Recognition Challenge 

GPU  Graphic Processor Unit 

RGB Red Green Blue 

ReLU Rectified Liner Unit 

2. Neural Networks and Deep Learning 

A standard neural network (NN) consists of many neurons. They are simple, connected processors, each 

producing a sequence of real-valued activations. Input neurons differ from the other neurons of the neural 

network. They get activated through sensors perceiving the environment. Other neurons (hidden and output) get 

activated through weighted connections from previously active neurons. As input neurons are affected by the 

surrounding, also some neurons may influence the environment. Learning is about finding weights that make 

the NN behaves in the desired way, such as driving a car. Such behavior may require long causal chains of 

computational stages. It depends on the problem and how the neurons are connected. Each stage transforms the 

aggregate activation of the network. As mentioned in reference [1] Deep Learning is about accurately assigning 

weights across many such stages. 

In the history of neural networks first, shallow NN-like models appeared. Shallow NNs with several 
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successive nonlinear layers of neurons date back at least to the 1960s and 1970s. Backpropagation (BP) 

algorithm is an efficient gradient descent method for teacher-based Supervised Learning (SL) indiscrete, 

differentiable networks of small depth. It was developed in the 1960s and 1970s and applied to NNs in 1981. 

But despite the case of the shallow NNs, training of deep NNs with many layers with BP-based algorithm had 

been found to be not so successful by the late 1980s. It had been put a lot of efforts in an extensive research on 

that subject by the early 1990s. Unsupervised Learning (UL) enabled DL to some extent. In the 1990s and 

2000s also many improvements of exclusively supervised DL were achieved. In the last fifteen years, as 

explained in [2] and [3], deep NNs have finally attracted wide-spread attention. It has been mainly due to the 

fact that they outperformed the alternative machine learning methods such as kernel machines in numerous 

important applications. In fact, since 2009, supervised deep NNs have won many official international pattern 

recognition competitions. Deep NNs achieved the level of superhuman visual pattern recognition results in 

limited domains. These networks also have been set up for a good solution for Reinforcement Learning (RL). 

In Reinforcement Learning there is no supervising teacher. 

Two types of deep neural networks, NNs (FNNs) and recurrent NNs (RNNs) have won contests. Reference 

[4] says that RNNs are the deepest of all NNs. Their main purpose is to create and process memories of 

arbitrary sequences of input patterns. RNNs can learn programs that mix sequential and parallel information 

processing in a natural and efficient way. Authors agree with [1] that RNNs are exploiting the massive 

parallelism, which is crucial for the rapid decline of computation cost over the past 75 years. 

Deep learning is about two “deep” things - computational models and representation of data. Computational 

models are composed of multiple processing layers and they learn representations of data with multiple levels 

of abstraction. Deep learning has dramatically improved the state-of-the-art in speech recognition, visual object 

recognition, and object detection. Face recognition (FR), which has numerous practical applications in the area 

of biometrics, information security, access control, law enforcement, smart cards, and surveillance system can 

be done with DL neural network [31]. DL is beneficial in many other domains such as drug discovery and 

genomics. BP algorithm discovers intricate structure in large data sets. It shows how a machine should change 

its internal parameters (weights) that are used to compute the activation in each layer from the activation in the 

previous layer. Convolutional networks–CNN, have brought breakthroughs in processing images, video, speech, 

and audio, for example, recognition of car number plates on images with a complex background [32]. RNN has 

performed better results on sequential data such as text and speech [5]. 

3. Related Work 

For classification of small sets of images, there is a benefit of transfer learning. It helps to overcome the lack 

of training samples. Transfer learning technique is related to the pre-trained network which is used to transfer 

the knowledge from. In our case, it is a type of convolutional neural network AlexNet [6]. CNNs are the pretty 

much novel concept of neural networks. They are successors of feed forward neural networks and are 

especially useful for classification of images. AlexNet made a revolutionary step with its unique architecture 

and achieved accuracy on the large international contest in visual pattern recognition in 2012. It leaved well 

behind itself the other competitors. Here we optimize a part of the neural network hyper parameters during 

transfer learning from AlexNet [6], in order to maximize the classification accuracy of small sets of images.  

3.1. Convolutional Neural Networks 

A convolutional neural network (CNN) is one kind of a deep neural network. It has vast application to a 

variety of pattern recognition problems, such as image recognition, speech recognition, etc. The CNNs were 

first developed by Hubel & Wiesel [7]. Then other researches followed. Some successful implementations of 

CNN are NeoCognitron [8], LeNet5 [9], HMAX [10], AlexNet [6], GoogLeNet [11], ResNet [12], etc. 

There is a problem that often occurs in the feed forward neural networks. The problem is all Multilayer 

Perceptron (MLP) layers are fully connected to each other. Such a network architecture does not take into 
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account the spatial structure of the images [13], which is such that the parts of the image which are close to 

each other are dependent on each other as well. The basic idea of CNN is to build invariance properties into 

neural networks by creating models that are invariant to certain inputs transformation.  

The architecture of CNN usually is composed of a convolutional layer and a sub-sampling layer as shown in 

Fig.1 [27]. The convolutional operation is implemented in the convolutional layer, and a sub-sampling 

operation is implemented in the sub-sampling layer (pooling layer). In the root of CNN are basically three main 

concepts, i.e., local receptive fields, weight sharing, and pooling. 

 

 

Fig.1.The Architecture of a CNN 

Unlike in MLP, each neuron in a hidden layer in CNN will be connected to a small field of the previous layer. 

This filed is called a local receptive field. If the local receptive field has a 3 × 3 area, a neuron of the first 

convolutional layer is referred to 9 pixels of the input layer. The local receptive field is shown in Fig.2 (a) [27]. 

The lines represent where the neuron is connected to. Each connection from the local receptive filed of the 

input layer to the hidden neuron learns a weight and the hidden neuron itself learns an overall bias as well. 

 

 

Fig.2. (a) Convolutional Layer - Local Receptive Fields; (b) A Pooling Layer In A Feature Map 

Feature maps are multiple parallel hidden layers in the convolutional layer, where the neurons are organized 

into. Each neuron in a feature map is connected to a local receptive field. It is important to emphasize that all 

neurons for every feature map share the same weight parameter that is known as filter or kernel. The output for 

the j,k-th hidden neuron is: 
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Where σ is the neural activation function, b is the value of the bias, wl,m is a 3×3 array weights and ax,y is the 
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input activation at position x,y. As it is mentioned previously, the values of the bias and weights are shared for 

the neurons of the local receptive field. 

Beside convolutional layers, CNN contains pooling layers, as well. It is usually used immediately after a 

convolutional layer. Pooling layer generates translation invariant features by computing statistics of the 

convolution activations from a small receptive field that corresponds to the feature map. Fig.2 (b) illustrates an 

example of how it works for each feature map [27]. Usually, there are more than a single feature map. The 

example of that case is depicted in Fig.3 [27]. 

Fig.3 illustrates one concrete example for pooling procedure, so-called max-pooling. When it comes to max-

pooling, a pooling unit outputs the maximum activation in the input region, in our case 2x2 region. 
 

 

Fig.3. Overlapping Pooling with size 2 × 2 for Each Feature Map 

Another kind of pooling is known as L2 pooling. Here, despite the maximum pooling where we take the 

maximum activation of an input region of neurons, it is taken the square root of the sum of the squares of the 

activations in the input region [13].  

3.2. AlexNet 

A deep convolutional neural network was trained and tested by Krizhevsky, Sutskever, and Hinton (KSH) 

[6]. They trained and tested the network using a restricted subset of the ImageNet data [14]. This subset came 

from (ILSVRC) - the ImageNet Large-Scale Visual Recognition Challenge. The good thing about using the 

ImageNet data is that it is a way of comparing the capabilities of the studied NN to other leading techniques. 

The ILSVRC-2012 training set contained about 1.2 million ImageNet images. The images were categorized 

into 1,000 categories. The validation and test sets had 1,000 categories of images as well and they contained 

50,000 and 150,000 images, respectively. 

The ILSVRC competition has one disadvantage, many ImageNet images contain multiple objects and 

because of this, they are ambiguous. So, an algorithm was considered correct if the actual ImageNet 

classification was among the 5 classifications the algorithm considered most likely (top-5 criterion). The deep 

convolutional network developed by Krizhevsky, Sutskever, and Hinton (which was later named AlexNet) 

achieved an accuracy of 84.7 percent, according to this top-5 criterion. It was better than the next-ranged CNN, 

which achieved an accuracy of 73.8 percent. KSH's network achieved an accuracy of 63.3 percent, strictly 

speaking for the restrictive metric of accuracy. 

The KSH network has 7 layers of hidden neurons - 5 hidden layers which are convolutional layers, and 2 

layers which are fully-connected layers. Some of the convolutional layers are with max-pooling. The output 

layer is a 1000-unit softmax layer. The architecture of the network is shown on Fig.4 [6]. The network was 

trained on 2 GPUs. That’s why many layers are split into 2 parts. Half of the kernels of the KSH network were 

put on the first GPU and the other half of the kernels were put on the second GPU. The GPUs communicate 



 Classification of Small Sets of Images with Pre-trained Neural Networks 45 

only in certain layers. 

The input layer of KSH network contains 3×224×224 neurons. They represent the RGB values for 

a 224×224 image. Krizhevsky, Sutskever, and Hinton expanded the training data in order to reduce the 

overfitting. AlexNet is a large network, so expanding the training data is particularly helpful in such networks.  

Because ImageNet contains images of varying resolution, KSH rescaled each image in a way shorter side had 

length 256. After this, they cropped out a 256×256 area in the centre of the rescaled image. Krizhevsky, 

Sutskever, and Hinton extracted random 224×224 sub images from the 256×256 images. They extracted 

horizontal reflections as well. These 224×224 images were used as inputs to the network. 

 

 

Fig.4. Architecture of AlexNet 

The first hidden layer in AlexNet is a convolutional layer, with local receptive fields of size 11×11, and a 

stride length of 4 pixels. There are a total of 96 feature maps. They are split into two groups of 48 each. The 

first group of 48 feature maps is processed on one GPU, and the second 48 feature maps are processed on the 

other GPU.  

The second hidden layer is also a convolutional layer. Its parameters are 5×5 local receptive fields, a total 

of 256 feature maps. The feature maps are split into two groups of 128 each and are processed on each of the 

GPUs separately. 

KSH network has three more convolutional layers: the third, fourth and fifth hidden layers. The third hidden 

layer has 384 feature maps, with 3×3 local receptive fields, and 256 input channels. The fourth hidden layer has 

384 feature maps, with 3×3 local receptive fields, and 192 input channels. The last convolutional layer has 256 

feature maps, with 3×3 local receptive fields, and 192 input channels.  

Next two hidden layers, the sixth and seventh, are fully-connected layers. Each of them has 4096 neurons. 

The output layer is a softmax layer with 1000 neurons. 

As can be noticed on Fig.4, GPUs communicate only in the third convolutional layer, its kernels are 

connected to all kernel maps in the second layer. The kernels of the other convolutional layers, the first, second, 

fourth and fifth, are connected only to those kernel maps in the previous layer which reside on the same GPU. 

The sixth and seventh layer are fully connected, their neurons are connected to all neurons in the previous layer.  

Response-normalization layers follow the first and second convolutional layers. They are followed, the same 

as the fifth convolutional layer, by max-pooling layer with 3×3 regions. The pooling regions are allowed to 

overlap and are just 2 pixels apart. In order to speed up training, the ReLU (Rectified Linear Unit) non-linearity 

is applied to the output of every convolutional and fully-connected layer; the activation function is f (z) ≡ max 

(0, z) [13]. 

The KSH network takes advantage of many techniques. KSH network was susceptible to overfitting because 

it had roughly 60 million learned parameters. To solve this problem Krizhevsky, Sutskever and Hinton 

expanded the training set using the random cropping of the image set, they also used a variant of L2 
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regularization and dropout. AlexNet was trained with a BP algorithm, momentum-based, mini-batch stochastic 

gradient descent. 

3.3. Transfer learning 

The purpose of transfer learning is to transfer knowledge between the source and target domains. For image 

classification, the main benefit of transfer learning is to overcome the deficit of training samples for some 

categories. It is done by adapting classifiers trained for other categories. A neural network gains knowledge 

from the training data. Knowledge is contained in weights of the network. In a case when there is a lack of 

training data, training a network from a scratch is not useful, nor the accuracy is satisfying. In these situations, 

we extract the weights of the original network and “transfer” the learned features [28].  

Transfer learning has been successfully applied to text sentiment classification [15], image classification [16, 

17], human activity classification [18], software defect classification [19], and multi-language text 

classification [20]. Pan [21] in 2010 published a transfer learning survey paper. Since then there have been over 

700 academic papers written about this topic. It surveys transfer learning on different levels: new algorithm 

development, improvements to existing algorithms, as well as algorithm deployment in new application 

domains. 

ImageNet dataset [14] is huge and diverse. This is the reason why existing networks, pre-trained on 

ImageNet, demonstrate a good ability to classify images outside this dataset via transfer learning. What is 

actually done is fine-tuning the pre-existing model. In reference [28] is explained how it is performed in three 

ways: 

 

1. Feature extraction – This is the situation when a pre-existing model is used as a mechanism for feature 

extraction.  Here the output layer is removed and then for the new data set the entire network can be used 

as a fixed feature extractor. 

2. Use the Architecture of the pre-trained model – In this scenario, all we use from the pre-trained model 

is the architecture. All the weights are initialized randomly. The network is trained according to the 

dataset of interest. 

3. Train some layers while freezing others – Third way to use a pre-trained network is to train it partially. 

In these cases, the weights of the lower layers of the network are kept unchanged, while the higher model 

layers are retrained. It is a matter of trial and test as to how many layers to be kept unchanged and how 

many layers to be trained. 

 

Fig.5 represents diagram how to make a decision to proceed with using the pre trained model in a specific 

case [28]. 

 

Case 1- Size of the data set is small and the data similarity is very high – Here there is no need to retrain 

the network. It is due to the similarity of data set, which is high. The pre-existing model is used as a 

mechanism for feature extraction. But certainly pre-existing model needs some changes. The output 

layers should be customized and modified according to our problem.  

Case 2- Size of the data is small and data similarity is very low – In this scenario, a certain number of lower 

layers (k for example) are frozen. The remaining (n-k) higher layers of the pre-existing network model 

have been trained again. Because of the fact that new data set has low similarity with the data set the 

network was originally trained on, it is important to retrain the higher layers of the pre-existing model.  

Case 3- Size of the data set is large and the data similarity is very low – The first condition for the 

effectiveness of a neural network training is the size of the data set to be sufficient. In this scenario the 

dataset is large and it is very different compared to the data set on which the network was originally 

trained, so the best solution is to train the neural network from a scratch. 

Case 4- Size of the data is large and there is high data similarity – Since the data set is large, there is a 



 Classification of Small Sets of Images with Pre-trained Neural Networks 47 

possibility to retrain the whole network. It is needed to keep the architecture of the model and the 

initial weights of the model. After this, the neural network should be re-trained with the weights as 

initialized in the pre-trained mode. 

 

 

Fig.5. Transfer Learning According to the Dataset 

3.4. Hyper Parameters 

Different learning algorithms involve different sets of hyper-parameters [30]. Here we are discussing the 

hyper parameters which are optimized in our simulation scenario. 

 

The initial learning rate (η0) - is the most important hyper parameter. Researches put efforts to tune it up to 

approximately a factor of 2. When the inputs of a neural network are standardized (they are in the interval (0, 

1)), the values of initial learning rate moves in the range (10-6, 1). This should not be taken so strictly. During 

the network training, there is a possibility to adapt the learning rate according to a given schedule. In equation 

(2) τ is time constant, which when τ → ∞ means that the learning rate is constant over whole network training. 

The constant value of learning rate gives satisfying results in most cases of neural network training. An 

example of O (1/t) learning rate schedule, used in [22] is 
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0






t
t                                                                                                                                                 (2) 

Here learning rate is kept constant for the first τ steps and then decreases it in O (1/tα). 

 

The mini-batch size B –the value 32 is a good default value. Usually, B takes a value between 1 and few 

hundreds. When the value of B is a couple of tens, network training takes advantage of matrix-matrix products. 

Selection of the mini-batch size has strictly computational meaning. With larger B computations are faster, but 

in those scenarios, we need a larger training set. It is because network training requires visiting more data in 

order to reach the same accuracy since there are fewer updates per epoch [30]. 

Number of training iterations T - this hyper-parameter is optimized using the principle of early stopping. 

As neural network training progresses (every N updates of a mini-batch), we keep track on accuracy estimated 

on a validation set. The rule for termination the training concerns best classification accuracy: if it doesn’t 
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improve for quite some time (number of training iterations), then training stops. 

Momentum β- the idea with momentum is to remove some of the noise and oscillations that gradient 

descent has. A long time thesis for temporally smoothing out the stochastic gradient samples obtained during 

network training has been present [23]. A moving average of the past gradients is given with 

.)1( ggg    Parameter g is the gradient in a moment 






 ),( tzL
or a mini batch average. The other 

parameter β controls how much the old examples influence the moving average. It typically takes values 

between 0 and 1. The function of momentum is to make the updates proportional to smoothed gradient 

estimator g . Without momentum β updates are proportional to instantaneous gradient g.  

Layer-specific optimization hyper parameters –sometimes researches use different values for the hyper-

parameters (such as the learning rate) on different layers of a deep neural network. This is a case especially 

when there is a big difference in a number of neurons from layer to layer. Also, there is a possibility to use 

different learning rates for the different types of parameters one finds in the model. In deep learning networks 

such an example are biases and weights.  The importance of different learning rate for separate parameters is 

bigger when parameters such as precision or variance are also included [24]. 

A number of hidden neurons (layers) – during designing the model of a neural network, we also need to 

set the number of neurons in each hidden layer. We are free to choose the size of layers in a neural network as 

big as we need because there are many techniques that combat overfitting - early stopping, weight decay, etc. 

Variation of this parameter is a number of hidden layers.  

Weight decay regularization coefficient λ – a way to reduce overfitting is to add a regularization term to 

the cost function, in order to make network prefers to learn small weights. There are two types of regularization 

L2 and L1. First one adds a term i i

2  to the cost function, while the second one adds a term i i . 

They act differently: L2 penalizes large weights strongly; L1 tends to concentrate the weights of the network in 

a small number of high-important connections, the others go to zero [30]. Some researches during neural 

network training regularize only the weights w and not the biases b associated with the hidden neurons 

activations. 

Neuron non-linearity- if x is the vector of inputs into the neuron, w the vector of weights and b the bias 

parameter, then neuron output is s(a) = s(w′x+b). Following non-linear functions, s can be used for hidden 

neurons: the sigmoid 1/(1+e−a), the rectifier max (0, a), the hyperbolic tangent and the hard tanh [25]. 

The above mentioned hyper parameters are generic choices. There are also a number of other hyper 

parameters which can be optimized with different architectures and learning algorithms, among them: sparsity 

of activation, weights initialization scaling coefficient, random seeds, pre-processing etc. 

4. Simulations 

This section describes the efforts of the authors in order to achieve their goal, that’s it to optimize pre- 

trained neural network for classification of small data sets on which it was not trained before, with acceptable 

accuracy. The following issues are explained: a pre-trained neural network which is used, along with the 

training and test data sets, transfer learning scenario, software, and hardware simulation platform. It should be 

mention that due to lack of the original training and test images, here the images from CIFAR-10 data set are 

used. But, it is good to evaluate transfer learning technique with training and test images from our own data set. 

Simulation results give an overview of the achieved classification accuracy in case of different values for each 

of the proposed hyper parameters. It should be mention that the choice of the optimized hyper parameters is not 

unique and there is always a possibility of another selection.  

4.1. Simulation Scenario
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As it is mentioned before, the aim of our work is to optimize (fine-tune) the hyper parameters of a pertained 

convolutional neural network, in order to use it for classification of small datasets on which it was not trained 

before. Here it is used AlexNet [6] as pre-trained model architecture. AlexNet was trained on a restricted subset 

of the ImageNet data [14] by its creators. The goal is to classify a set of images on which the neural network 

was not trained before. Used images are a subset of CIFAR-10 dataset [26]. The subset consists images which 

belong to 5 categories. 

The CIFAR-10 dataset consists of 10 classes of images with 6000 images per class or 60000 32x32 colour 

images in total. From 60000 images, 50000 are training images and 10000 are test images. There are five 

training batches and one test batch, each consisted of 10000 images. Test batch contains 1000 images from 

each class, while training batches contain 5000 images from each class. Images in a test batch are randomly 

selected while remaining images belong to training batches. There is no overlapping of categories between 

different classes of images. 

In section III.Related work, subsection 3.3 Transfer learning, there are briefly explained four possible 

scenarios during transfer learning. Which scenario should take place, it depends on two variables: the size of 

the dataset and the similarity between the dataset on which the convolutional neural network was trained at first 

and the dataset which should be classified. The CIFAR-10 dataset has 60000 training and test images, but we 

will use only a part of them. So, the dataset is definitely small. ImageNet data is consisted of 1000 object 

categories, for example, keyboard, mouse, pencil, and many animals. Compared to images in the CIFAR-10 

dataset, we can say that the similarity between the two datasets is big. This situation can be resolved by 

scenario 1 – we fine tune the output layers of the pre-trained neural network.  
Actually, here we use AlexNet as a feature extractor. We then use these features and send them to dense 

layers which are trained according to our dataset. The last three layers form the original AlexNet architecture: a 

fully connected layer with 1000 neurons, a softmax layer, and the classification output layer are removed. They 

are replaced with new layers relevant to our problem: a fully connected layer with 5 hidden units (because we 

will classify images from 5 categories), softmax layer and classification layer of 5 categories. Optionally, we 

added an additional fully connected layer with 75 neurons before the last fully connected layer with 5 hidden 

neurons. 

Because the similarity of images which belong to ImageNet data and CIFAR-10 is high, during training we 

wanted to keep the weights of the lower layers of AlexNet pretty much unchanged or changed a little. Despite 

this, the weights of the last layers we introduced in the network should learn faster than the others. That’s why 

weight learn rate factor and bias learn factor are from order 101.  

During training the network, we used train dataset and test dataset, which size was 20% the size of the 

training dataset. We were plotting the training accuracy in order to visualize the process and to realize when the 

network starts severly overfitting. We performed the simulations in MATLAB with GeForce GTX 960 GPU 

(Graphic Processor Unit). 

In the next subsection we will present and discuss the simulation results from optimization of the following 

hyper parameters: size of a training set, learning rate, regularization parameter λ, weight and bias learn rate 

factor, size of a mini batch, number of training epochs (iterations), number of hidden layers (units).  

4.2. Simulation Results 

Size of a training data is not a hyper parameter actually. But, it is interesting to see which is the scale of the 

data set, for which the pre-trained convolutional network gives acceptable accuracy. Fig.6 shows the overall 

accuracy which is accomplished by CNN with transfer learning from AlexNet, as a function of the number of 

training images. It can be seen that with only a couple of thousands of images, the accuracy is nearly 85%. One 

has always to have on his mind that compared to this, AlexNet was originally trained on nearly 1.2 million 

images. 

Fig.7 (a) depicts the training accuracy of the neural network as a function of the learning rate. We used a 

single constant value for the learning rate. For bigger learning rates 0.1 and 0.01 our classification accuracies 
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are no better than chance and our network is acting as a random noise generator. The best accuracies are 

achieved for learning rates 0.001 and 0.0001. Learning rate 0.00001 is too small and it slows down stochastic 

gradient descent. Fig.7 (b) shows the process of training CNN with transfer learning from AlexNet with 

different learning rates. It can be seen that with η= 0.001 the network suffers from severe overfitting, so η= 

0.0001 is a better option. 

 

 

Fig.6. Accuracy of Pre-trained CNN as a Function of Dataset Size 

  

Fig.7. (a) Accuracy of Pre-trained CNN as a Function of a Learning Rate η; (b) Process of Training with Different Learning Rates η 

  

Fig.8. Accuracy of Pre-trained CNN as a Function of L2 Regularization Parameter λ with (a) MBS=128; (b) MBS=32 
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Next parameter we tried to optimized is L2 regularization parameter λ. AlexNet was originally trained with 

λ=0.0005. We searched for the appropriate value of λ in the surrounding of that value, decreasing or increasing 

with factor 5 or 10. For λ=0.0001 we got a little bit better accuracy, Fig.8 (a), and after that the improvement 

was negligible. Here, it should be mentioned that value of the MBS (mini batch size) was selected to be 128. 

Fig.8 (b) depicts the achieved accuracy in the process of transfer learning for different values of λ and MBS=32. 

One can notice that the values in the second case are fluctuating and a conclusion can’t be made. This is due to 

the severe overfitting, which is explained in details in the following paragraph. 

Choosing a size of a mini batch is a compromise. If mini batch size is too small, then neural network training 

won’t benefit from fast hardware and matrix libraries optimized for it. But if it is too large, the weights are not 

updated often enough. We were training our network for 20 epochs with a mini batch size 8, 16, 32, 64 and 128 

respectively. Since the number of iterations was biggest for MBS (mini batch size) 8 –more than 4000, and it 

was smallest for MBS 128 – below 500, CNN experienced enormous overfitting for smaller mini batches and 

less overfitting for larger mini batches. During training of the network, we introduced an accuracy threshold of 

99.5, in order to stop the training process because of the overfitting. The training was stopped in cases when the 

size of a mini batch was 8 and 16. Fig.9 (a) illustrates the process of training the network with MBS=16 and the 

severe overfitting it introduced. Fig.9 (b) shows the accuracy which was achieved with different values of MBS. 

 

  

Fig.9. (a) Training Accuracy with the Mini Batch size of 16 Images (b) Accuracy of Pre-Trained CNN as a Function of MBS 

 

Fig.10. Accuracy of Pre-trained CNN as a Function of a Number of Training Epochs  
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In order to achieve the same accuracy with MBS=128 as with smaller mini batch sizes, network training 

requires visiting more data since there are fewer updates per epoch. 

As we mentioned above, the influence of the size of the mini batch is closly related to the number of epoches 

(iterations) the network was trained. Fig.10 depicts the accuracy of the pretarined network as a function of the 

tarining epoches. In this case, the mini batch size was 128 images. It can be seen that after a couple of tens of 

epochs, the accuracy reaches over 83%. With transfer learning technique, it is not necessary to train the 

network for hundreds of epochs. Acctually, it is not recommended because of the small dataset and chances for 

overfitting. 

Fig.11 presents the dependence of the accuracy of our trained network upon the learning rate factor of the 

weights and biases of the last fully connected layer. In our simulation scenario, we had a tendency to keep the 

weights and biases of the layers which we took from AlexNet in a great measure. On the other hand, we 

intended to make the new fully connected layer to learn more, compared to the layers of the original network. 

That’s why we introduced layer-specific optimization hyper parameter: the learning rate for weights and biases 

of the neurons of the last fully connected layer. One can notice that the accuracy grows up with the growth of 

the weight and bias learn rate factor. 

 

 

Fig.11. Accuracy of Pre-trained CNN as a Function of Weight and Bias Learn Factor 

  

Fig.12. Accuracy of Pre-trained CNN as a Function of the Number of Hidden Layers with (a) Weight Learn Rate Factor = 10 and Bias 

Learn Rate Factor = 20 of the Last Fully Connected Layer; (b) Weight Learn Rate Factor and Bias Learn Rate Factor of the Last Fully 

Connected Layer Equal то 1 

The last hyper parameter we have optimized is a number of hidden layers (units). As explained in the 

previous section, we imported the layers from AlexNet, except the last three ones. Then we added layers on our  
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own. In the first case, we added one fully connected layer with 5 neurons, softmax layer, and classification 

layer. Then we added another fully connected layer with 75 neurons before the first one. And in the last case, 

we added an additional third fully connected layer with 500 neurons and dropout = 0.5 before the second fully 

connected layer. Neurons in all three cases were ReLU (Rectified Linear Units). Fig.12 (a) represents the case 

when weight learn rate factor and bias learn rate factor of the last fully connected layer is 10 and 20 

respectively. Fig.12 (b) represents the case when weight learn rate factor and bias learn rate factor of the last 

fully connected layer are 1. It can be concluded that as much as we go away from the structure of the original 

AlexNet, we get worse accuracy. 

5. Conclusions 

In our simulation scenario, we used a transfer learning from AlexNet, in order to classify a small dataset of 

images on which the network was not trained before. Actually, we were optimizing the hyper parameters of our 

network with the purpose to maximize the accuracy achieved on the test data. We got an accuracy of over 85% 

in specific cases of a simulation scenario. 

We achieved the accuracy above with the training set of a couple of thousands of images and a short time 

spent for training the network. We didn’t modify the weights too soon and too much. Also, we kept the 

architecture of AlexNet in a great measure, as far as the weights of the imported layers of the pre-trained 

network. 

Sometimes there is no possibility to gain a big training and testing set of images, so training a neural network 

from a scratch is not an option (because of the small accuracy that would be achieved). Then comes to a 

situation when one should take transfer learning from a pre-trained neural network in to consideration. We 

should be very careful when it comes to decision what pre-trained model to be used in a specific scenario. If the 

image set we have to classify differs a lot from the one on which the pre-existing neural network was trained, 

then the classification would be very inaccurate. One must be sure that the pre-trained model selected has been 

trained on a similar data set as the one that he wishes to use it on. There are various architectures people have 

tried on different types of data sets. 
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