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Abstract 

Differential Evolution algorithm is a new competitive heuristic optimization algorithm in the continuous field. 

The operators in the original Differential Evolution are simple; however, these operators make it impossible to 

use the Differential Evolution in the binary space directly. Based on the analysis of problems led by the 

mutation operator of the original Differential Evolution in the binary space, a new mutation operator was 

proposed to enable this optimization technique  can be used in binary space. The new mutation operator, which 

is called semi-probability mutation operator, is a combination of the original mutation operator and a new 

probability-based defined operator. Initial experimental results of two different combinatorial optimization 

problems show its effectiveness and validity. 
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1. Introduction  

Differential Evolution (DE) is a competitive optimization technique for numerical optimization problems with 

real parameter [1]. It is a simple yet powerful algorithm for global optimization over continuous spaces, which 

use the greedy selection criterion to determine which of the rivals to remain in the next generation. Since its 

invention, the DE algorithm has become quite popular in the machine intelligence and cybernetics. It has been 

successfully been applied to diverse fields of science and engineering, such as mechanical engineering design [2], 
signal processing [3] and pattern recognition [4]. It has been proved to perform better than the Genetic 

Algorithm (GA) or the Particle Swarm Optimization (PSO) by numerical benchmarks experiments [5]. Despite 

the simplicity and successful application in many engineering fields, its application on the solution of binary 

optimization problems with binary decision variables is still unusual. One of the possible reasons for this lack is 

that DE cannot keep the closure when the original DE operators are used in discrete domain directly, for the 

operators designed in the original DE are designed only for continuous domain. A few works exploit its usage 
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for discrete optimization problems, particularly the combinatorial optimization problem. The Differential 

Evolution with binary encoding in [6] may be the first version of binary Differential Evolution. In our recent 

work [7], a novel binary Differential Evolution without scale factor F was proposed. 

In this work, the mutation result of the original Differential Evolution was analyzed in depth and then a new 

semi-probability mutation operator was derived for the binary variables. 

The remainder of this paper is structured as follows. Section 2 gives a brief introduction of original DE. A 

new binary encoding DE (BeDE) is presented in section 3. Two different combinatorial optimization problems 

used to evaluate this binary encoding DE in section 4. Section 5 concludes this paper. 

2. Differential evolution 

DE is a population-based stochastic optimizer that starts to explore the search space by sampling at multiple, 

randomly chosen initial points.  

It is a kind of float point encoding evolutionary optimization algorithm. AT present, there have been several 

variants of DE [1]. One of the most promising schemes, DE/RAND/1/BIN scheme of Storn & Price, is presented 

in great detail. The pseudo code of DE is given as follows. 

Initial Population Generation  

REPEAT 

Mutation 

Crossover 

Selection 

UNTIL (termination criteria are met) 

In order to clarify the notation used in this paper, the minimization of the objective function )(xf is referred.  

2.1  Generation of Initial Population  

The DE Algorithm starts with the initial target population nmijxX  )(  with the size m  and the 

dimension n , which is generated by the following way. 

))(1,0()0( l
j

u
j

l
jji xxrandxx                                                                                                                   (1) 

where mi ,,2,1  , nj ,,2,1  ,
u
jx denotes the upper constraints, and 

l
jx  denotes the lower constraints.

2.2 Mutation Operator 

For each target vector ),,2,1( mixi  , a mutant vector is produced by 

)()1( 321 rrri xxFxth                                                                                                                        (2) 

where },,2,1{,, 21 mrri   are randomly chosen and must be different from each other. And F  is the scaling 

factor which has an effect on the difference between the individual 1rx  and 2rx . 

2.3 Crossover Operator 

DE employs the crossover operation to add the diversity of the population. The approach is given below. 
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where mi ,,2,1  , nj ,,2,1  , ]1,0[CR  is crossover constant and ),2,1()( nirand   is the randomly 

selected index. In other words, the trial individual is made up with some components of the mutant individual, 

or at least one of the parameters randomly selected, and some of other parameters of the target individual. 

2.4 Selection Operator 

To decide whether the trial individual )1( tui  should be a member of the next generation, it is compared to 

the corresponding )1( thi . The selection operation is based on the survival of the fitness among the trial 

individual and the corresponding one such that: 
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DE can adapt itself during the search process and find the optimum efficiently and effectively. The mutation 

operator can not be used in the binary space directly, while the crossover operator and selection operator can be 

used in binary space directly. 

3. Binary encoding differential evolution 

A conclusion can be easily drawn from the mutation operator, denoted by the formula (2), that it can only 

keep the closure in the field of real numbers. However, the original DE cannot keep the closure when it is 

applied in discrete domain. Thus it cannot be used in discrete optimization problems directly. A Binary-coding 

DE with new mutation rules was proposed to expand DE into the binary space. 

3.1 Semi-probability Mutation Operator  

A new binary mutation operator was derived from the table of original DE mutation results. Assumed that the 

binary encoding is used ant the value of F  is 1. All the possible results of the original DE mutation operator in 
binary space directly are shown in table 1. 

It is easy to see that there are eight kinds of different combination of the mutually different 1rx
, 2rx

 and 3rx
. 

And 3/4  of the different kinds of combination of the three individuals can achieve binary number, shown in bold 

form in table 1. Hence this six kinds of combination are eligible even the individual is in binary encoding. 

Furthermore, the following rules can be derived. 
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Table 1 Results of original DE operator on binary space  

1rx
 2rx

 3rx
 

F  results 

0 0 0 1 0 

0 0 1 1 -1 

0 1 0 1 1 

0 1 1 1 0 

1 0 0 1 1 

1 0 1 1 0 

1 1 0 1 2 

1 1 1 1 1 

 

(a)If 1rx
 equals to zero and 2rx

 equals to 3rx
,or 1rx

 equals to one and 2rx
 equals to zero and 3rx

equals to 

one,  then the result of mutation equals to zero. 

(b)If 1rx
 equals to one and 2rx

 equals to 3rx
,or 1rx

 equals to one and the three variables are identical,  then 
the result of mutation equals to one. 

The results of the rest two kinds of combination are not zero or one. Some modifications must be done to the 

original DE mutation operator. By further analyzing the remainder forms of the three individual’s combination, 

probability-based rules can be proposed. A probability denoted by pr  can be defined as (6). 
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The semi-probability Mutation operator in this paper is defined as fellows. 
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3.2 Flowchart of the BeDE 

The flowchart of the BeDE is given as Fig. 1. 

4. Numerical examples  

The 0-1 knapsack problem and one-max problem are the typical combinatorial optimization problems. This 
section will use three knapsack problems with different size and One-Max problem to initially evaluate the 

BeDE. 
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Fig 1.  the flowchart of Binary Encoding Differential Evolution 

4.1 Knapsack problems 

4.1.1 Model of 0-1 knapsack problem 

The typical 0-1 knapsack problem (KP) is that there are n  given items has to be packed in a knapsack of 

weight capacityV . Each item has a profit ip  and a weight iw . The problem is to select a subset of the items 

whose total profit is a maximized, while whose total weight does not exceed thecapacity V . Then the 0-1 

knapsack problem can be formulated as (7) [8]. 
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4.1.2 Infeasible solution handling  

During the evolution of searching the best solution of the knapsack problem, infeasible solutions will appear 

which means that the conditions in the formula (7) cannot be met. When the total items outrange the capacity of 

the knapsack, the items with lower profit density will be discarded by priority. In this way, the remainder of the 

items is closer to the optimum than that of random way. A fixed-up operation is defined to solve this problem. 

Two steps are adopted in the fixed-up operation. Firstly, all the items are sorted in profit density ascending order. 

Then one solution is infeasible, the items are discarded in the order of profit density until it is feasible. 

Numerical experiment 

In this section, the BeDE was used to solve the three 0-1 knapsack problems in [7]. The data of the three 0-1 

knapsack problems are as fellows. 

KP1: n=20 

P={92, 4, 43, 83, 84, 68, 92, 82, 6, 44, 32, 18, 56, 83, 25, 96, 70, 48, 14, 58}  

W={44, 46, 90, 72, 91, 40, 75, 35, 8, 54, 78, 40, 77, 15, 61, 17, 75, 29, 75, 63} 

V=878.  

KP2: n=50 

P={220, 208, 198, 192, 180, 180, 165, 162, 160, 158, 155, 130, 125, 122, 120, 118, 115, 110, 105, 101, 100, 

100, 98, 96, 95, 90, 88, 82, 80, 77, 75, 73, 72, 70, 69, 66, 65, 63, 60, 58, 56, 50, 30, 20, 15, 10, 8, 5, 3, 1}  

W={80, 82, 85, 70, 72, 70, 66, 50, 55, 25, 50, 55, 40, 48, 50, 32, 22, 60, 30, 32, 40, 38, 35, 32, 25, 28, 30, 22, 
25, 30, 45, 30, 60, 50, 20, 65, 20, 25, 30, 10, 20, 25, 15, 10, 10, 10, 4, 4, 2, 1}  

V=1000.  

KP3: n=100 

P={597, 596, 593, 586, 581, 568, 567, 560, 549, 548, 547, 529, 529, 527, 520, 491, 482, 478, 475, 475, 466, 

462, 459, 458, 454, 451, 449, 443, 442, 421, 410, 409, 395, 394, 390, 377, 375, 366, 361, 347, 334, 322, 315, 

313, 311, 309, 296, 295, 294, 289, 285, 279, 277, 276, 272, 248, 246, 245, 238, 237, 232, 231, 230, 225, 192, 

184, 183, 176, 174, 171, 169, 165, 165, 154, 153, 150, 149, 147, 143, 140, 138, 134, 132, 127, 124, 123, 114, 

111, 104, 89, 74, 63, 62, 58, 55, 48, 27, 22, 12, 6}  

W={54, 183, 106, 82, 30, 58, 71, 166, 117, 190, 90, 191, 205, 128, 110, 89, 63, 6, 140, 86, 30, 91, 156, 31, 70, 

199, 142, 98, 178, 16, 140, 31, 24, 197, 101, 73, 169, 73, 92, 159, 71, 102, 144, 151, 27, 131, 209, 164, 177, 

177, 129, 146, 17, 53, 164, 146, 43, 170, 180, 171, 130, 183, 5, 113, 207, 57, 13, 163, 20, 63, 12, 24, 9, 42, 6, 

109, 170, 108, 46, 69, 43, 175, 81, 5, 34, 146, 148, 114, 160, 174, 156, 82, 47, 126, 102, 83, 58, 34, 21, 14}  

V=6718.  

The parameters of the  BeDE and the NBDE [7] is presented in table 2. 

Table 2 Parameters of Binary encoding DE for the three KPs 

Example

s 

Population size  CR Maxge

n 

Kp1 20 0.5 50 

Kp2 50 0.5 200 

Kp3 50 0.5 1000 

 

For each of the three knapsack problems, 50 trials have been conducted and the best results (Best), average 

results (Avg), worst results (Worst) and standard deviations (Dev) of the BeDE and NBDE are shown in Table 

3. 

The results in table 3 show us that BeDE can find the optimums of the three Knapsack Problems with 

comparable small size of population. The BeDE is better than the NBDE in Avg, Worst, and Dev terms.  
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Table 3 The statistical results of the three knapsack problems 

Problem

s 

Algorith

m 

Bes

t 

Avg Wors

t 

De

v 

KP1 
BeDE 1042 1041.8 1037 1.8516 

NBDE 1042 1039 1030 3.2482 

KP2 
BeDE 3119 3116.6 3111 1.2898 

NBDE 3119 3114.4 3102 4.7559 

KP3 
BeDE 26559 26555.3 26535 5.1912 

NBDE 26559 26550 26529 9.378 

4.2 One-Max problem 

The aim of a One-Max problem is simply to maximize the ones in a binary string. The fitness of a string is the 

number of ones it has. The string length 120 is used for this study, with optimum 120. 
The parameters set in this study for the One-Max problem is as fellows. Population size is set to 50, 

15.0CR  and the maximum generation is 500. 

For each of the One-Max problem with length 120, 50 trials have been conducted and the best results (Best), 

average results (Avg), worst results (Worst) and standard deviations (Dev) of BeDE and NBDE [7] are shown in 

Table 4. 

Table 4 The statistical results of the One-Max problem 

Algorithm Best Avg Worst Dev 

BeDE 120 119.96 119 0.1979 

NBDE 120 119.84 119 0.3703 

 

The results in talbe IV show us that the proposed BeDE can find the optimum and the performances of Avg , 

Worst and Dev are slightly better than that of the NBDE. 

5. Conclusions 

DE is a recently developed algorithm that is very efficient for global optimization over continuous spaces. A 

binary encoding DE using semi-probability based mutation operator was proposed in this paper to extend the 

field of DE from the continuous domain to the binary field.  The new mutation operator can be applied in 

binary space directly. Initial experiments on the three different sizes of Knapsack Problems and One-Max 

problem with size length 120 show that the proposed BeDE is an effective and efficient way to solve 

combinatorial optimization problems compared with the other one version of  binary DE. 
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