INFORMATION CHANGE THE WORLD

International Journal of Education and Management Engineering(IJEME)

ISSN: 2305-3623 (Print), ISSN: 2305-8463 (Online)

Published By: MECS Press

IJEME Vol.5, No.2, Jun. 2015

A Comparative Study of Data Mining Algorithms for Image Classification

Full Text (PDF, 337KB), PP.1-9


Views:88   Downloads:4

Author(s)

P Thamilselvana, J. G. R. Sathiaseelan

Index Terms

Data Mining;Image Classification;Data Mining Algorithm;Kappa Coefficient;Classification Accuracy

Abstract

Data mining is an important research area in computer science. It is a computational process of determining patterns in large data. Image mining is one of important techniques in data mining, which involved in multiple disciplines. Image Classification Refers the tagging the images into a number of predefined sets. It's also includes image preprocessing, feature extraction, object detection, object classification, object segmentation, object classification and many more techniques. Image classification to produce the accurate prediction results in their target class for each case in the data. It is a very predominant and challenging task in various application domains, including video surveillance, biometry, biomedical imaging, industrial visual inspection, vehicle navigation, remote sensing and robot navigation. The aim of this study compares the some predominant data mining algorithms in image classification. For this review SVM, AdaBoost, CART, KNN, Artificial Neural Network, K-Means, Chaos Genetic Algorithm, EM Algorithm, C4.5 algorithms are taken.

Cite This Paper

P Thamilselvana, J. G. R. Sathiaseelan,"A Comparative Study of Data Mining Algorithms for Image Classification", IJEME, vol.5, no.2, pp.1-9, 2015.DOI: 10.5815/ijeme.2015.02.01

Reference

[1]William I. Grosky. "Managing multimedia information in database systems," Communications of the ACM, 40 (12) pp 72–80, 1997.

[2]Davide Agnelli, Alessandro Bollini, Luca Lombardi. "Image classification: an evolutionary approach" Pattern Recognition Letters, 23, pp 303–309, 2002.

[3]Yixin Chen, James Z. Wang. "Image categorization by learning and reasoning with regions" Journal of Machine Learning Research, 5, pp 913– 939, 2004.

[4]Aura Conci, Everest Mathias M.M Castro. "Image mining by content" Expert Systems with Applications, 23, pp 377–383, 2002.

[5]Bruzzone L, Prieto D.F. "Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images" IEEE T Geosci Remote S, 39 pp 456–460, 2001.

[6]Figueiredo M.A.T, Jain A.K. "Unsupervised learning of finite mixture models" IEEE T Pattern Ana, 24 pp 381–396, 2002.

[7]J.C Luo, Q.M Wang, J.H Ma, Y Liang, C.H Zhou. "The EM-based maximum likelihood classifier for remotely sensed Data" Acta Geod E 31, pp 234–239, 2002.

[8]Chakravarty S, Qian Du, Hsuan Ren. "Adaptive Gaussian mixture estimation and its application to unsupervised classification of remotely sensed Images" Geoscience and Remote Sensing Symposium, IGARSS'03. Proceedings. France: IEEE International 3, pp 1796–1798, 2003.

[9]Kersten P.R, Jong-Sen Lee, Ainsworth T.L. "Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering" IEEE T Geosci Remote S 43, pp 519–527, 2005.

[10]Thales Sehn Korting, Luciano Vieira Dutra, Guaraci Jose Erthal, Leila Maria Garcia Fonseca. "Assessment of a modified version of the EM algorithm for remote sensing data classification" Lect Notes Comput Science 6419, pp 476–483, 2010.

[11]Yang H L, Peng J H, Li S H, et al. "Log-principal component transformation based EM algorithm for remote sensing classification" Acta Geod E 39, 378–382, 2010.

[12]Yang HongLei, Peng JunHuan, Xia BaiRu, Zhang DingXuan. "An improved EM algorithm for remote sensing classification" Springer, Chinese science bulletin Vol.58 No.9 doi: 10.1007/s11434-012-5485-4, pp 1060-1071, 2012.

[13]S.K. Mathanker, P.R. Weckler, T.J Bowser, N. Wang, N.O. Maness. "AdaBoost classifiers for pecan defect classification" Elsevier Computers and Electronics in Agriculture 77, pp 60–68, 2011.

[14]Bárbara Maria Giaccom Ribeiro, Leila Maria Garcia Fonseca. "Urban Land Cover Classification using WorldView-2 Images and C4.5 Algorithm" IEEE proceeding of the JURSE, pp 21-23, 2013.

[15]Helio Radke Bittencourt, Robin Thomas Clarke. "Use of Classification and Regression Trees (CART) to Classify Remotely-Sensed Digital Images" Geoscience and Remote Sensing Symposium, IGARSS '03. Proceedings. IEEE International (Volume: 6) pp 3751 – 3753, 2003.

[16]C. Bhuvaneswari, P. Aruna, D. Loganathan. "A new fusion model for classification of the lung diseases using genetic algorithm" Elsevier, Egyptian Informatics Journal, Volume 15, Issue 2, pp 69-77, 2014.

[17]Dr. G. G. Rajput, Preethi N. Patil. "Detection and classification of exudates using k-means clustering in color retinal images" Fifth IEEE International Conference on Signals and Image Processing DOI 10.1109/ICSIP.2014.25 pp 126-130, 2014.

[18]F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines" IEEE Transaction On Geoscience and Remote Sensing, vol. 42, no. 8, pp. 1778-1790, 2004.

[19]G. Camps-Valls, and L. Bruzzone, "Kernel-based methods for hyperspectral image classification" IEEE Trans. on Geoscience and Remote Sensing, vol. 43, no. 6, pp. 1351-1362, 2005.

[20]Begum Demir, S. Erturk. "Improving svm classification accuracy using a hierarchical approach for hyperspectral images" 16th IEEE International Conference on Image Processing ISSN: 1522-4880 pp 2849-2852, 2009.

[21]Guo Yiqiang, Wu Yanbin, Ju Zhengshan, Wang Jun, Zhao Luyan. "Remote sensing image classification by the Chaos Genetic Algorithm in monitoring land use changes" Elsevier Mathematical and Computer Modelling 51, pp 1408-1416, 2010.

[22]U Ravi Babu, Y. Venkaswarlu, Aneel Kumar Chintha. "Handwritten Digit Recognition Using K-Nearest Neighbour Classifier" IEEE World Congress on Computing and Communication Technologies ISBN: 978-1-4799-2876-7 pp 60-65, 2014.

[23]Chien-Cheng Lee, Pau-Choo Chung, Jea-Rong Tsai, Chein-I Chang. "Robust Radial Basis Function Neural Networks" IEEE Trans. on Neural Networks, vol. 29, no. 6, 1999.

[24]Chuan-Yu Chang, Shih-Yu Fu. "Image Classification using a Module RBF Neural Network" IEEE Proceedings of the First International Conference on Innovative Computing, Information and Control (ICICIC'06) ISBN 0-7695-2616-0, pp 270-273, 2006.

[25]M. Soranamageswari, C. Meena. "Statistical Feature Extraction for Classification of Image Spam Using Artificial Neural Networks" Second IEEE International Conference on Machine Learning and Computing, ISBN: 978-1-4244-6007-6, pp 101-105, 2010.

[26]Min Han, Ben Liu. "Ensemble of extreme learning machine for remote sensing image classification" Elsevier Neurocomputing, Volume 149, Part A, 3 pp 65-70, 2015.

[27]S. Amini, S. Homayouni, A. Safari. "Semi-Supervised Classification Of Hyperspectral Image Using Random Forest Algorithm" IEEE International on Geoscience and Remote Sensing Symposium (IGARSS), pp 2866-2869, 2014.

[28]P. R. Kersten, J. S. Lee, T. L. Ainsworth. "Classification of POLSAR Images using a Fast Fuzzy C-Medians Clustering Algorithm" IEEE International on Geoscience and Remote Sensing Symposium, IGARSS '04. Proceedings. Volume: 1 ISBN: 0-7803-8742-2 pp 552-555, 2004.

[29]Yan Wang, M. Jamshidi, P. Neville, C. Bales. "Multispectral Landsat Image Classification Using A Data Clustering Algorithm" International IEEE Conference on Machine Learning and Cybernetics, Volume: 7, ISBN: 0-7803-8403-2 pp 4380-4384, 2004.