
I.J. Information Engineering and Electronic Business, 2020, 4, 21-29 
Published Online August 2020 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijieeb.2020.04.03 

Copyright © 2020 MECS                    I.J. Information Engineering and Electronic Business, 2020, 4, 21-29 

Reduction of Multiple Move Method Suggestions 

Using Total Call-Frequencies of Distinct Entities 
 

Atish Kumar Dipongkor 
Department of Computer Science and Engineering 

Jashore University of Science and Technology, Bangladesh 

Email: atish.cse@just.edu.bd 

 

Rayhanul Islam 
Institute of Leather Engineering and Technology, University of Dhaka 

Email: rayhanul.islam@du.ac.bd 

 

Nadia Nahar, Iftekhar Ahmed, Kishan Kumar Ganguly, S.M. Arif Raian, Abdus Satter 
Institute of Information Technology, University of Dhaka 

Email: nadia@iit.du.ac.bd, iftekhar.ahmed@rwth-aachen.de, kkganguly@iit.du.ac.bd, arif0224@gmail.com, 

abdus.satter@iit.du.ac.bd   

 

Received: 21 March 2020; Accepted: 24 June 2020; Published: 08 August 2020 

 

 

Abstract: Inappropriate placement of methods causes Feature Envy (FE) code smell and makes classes coupled with 

each other. To achieve cohesion among classes, FE code smell can be removed using automated Move Method 

Refactoring (MMR) suggestions. However, challenges arise when existing techniques provide multiple MMR 

suggestions for a single FE instance. The developers need to manually find an appropriate target classes for applying 

MMR as an FE instance cannot be moved to multiple classes. In this paper, a technique is proposed named 

MultiMMRSReducer, to reduce multiple MMR suggestions by considering the Total Call-Frequencies of Distinct 

Entities (TCFDE). Experimental results show that TCFDE can reduce the multiple MMR suggestions of an FE instance 

and performs 77.92% better than an existing approach, namely, JDeodorant. Moreover, it can ensure minimum future 

changes in the dependent classes of an FE instance. 

 

Index Terms: Feature Envy, Move Method Refactoring. 

 

 

1.  Introduction 

The expected behavior and characteristics of object-oriented (OO) software design is low coupling and high 

cohesion among software components [1, 2, 26, 27]. Although these are important characteristics, Feature Envy (FE), 

considered as one of the code smells, usually makes software more coupled and lower cohesive which eventually 

ensues less maintainable software [8, 9, 26, 27]. Moreover, it increases software’s fault-proneness and decreases 

productivity and rework of a software [3, 4, 5, 6, 7]. FE occurs in source code when an entity (method or attribute) 

uses/envies too many entities of other classes to obtain data and/or functionality [10]. Considering the impact of high 

coupling and low cohesion in software maintenance, FE instances should be identified and eliminated from source code 

through Move Method Refactoring (MMR) techniques [8, 9, 10, 11, 12, 29]. MMR is applied to move an FE instance 

from its source class to the envied class for ensuring low coupling and high cohesion among components. However, the 

main problem is when an FE instance envies the equal number of entities from multiple classes. In such situations, the 

developer cannot choose appropriate envied or target class to apply MMR automatically. For example, 

sendSingleMessage() (in Fig. 1) is an FE instance as it envies more entities from the class TP and 

ByteArrayDataOutputStream than its source class NoBundler. For this reason, sendSingleMessage() can be moved 

either to TP or ByteArrayDataOutputStream. However, there is a hidden maintenance cost associated with each target 

class that involves the frequency of entity calls (3 and 6 respectively) from TP and ByteArrayDataOutputStream. The 

FE instance sendSingleMessage() calls methods from ByteArrayDataOutputStream more frequently and thus it is more 

coupled with ByteArrayDataOutputStream than TP. Now, if sendSingleMessage() is moved to TP and changes occur in 

the three distinct methods of ByteArrayDataOutputStream, it needs to be modified six times in TP due to the higher call 

frequencies (6>3). On the contrary, if sendSingleMessage() is moved to ByteArrayDataOutputStream and changes 
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occur in the three distinct methods of TP, it needs to be modified three times in ByteArrayDataOutputStream. To this 

end, a technique is required to find an appropriate target class for the FE instances like sendSingleMessage(). 

Considering maintenance issues, it is needed to apply MMR based on the frequency of entity calls for above 

scenario. To the best of the author’s knowledge, there is no automated technique to alleviate this problem. Although 

developers can manually check the frequency of entity calls while refactoring, it is a time-consuming in terms of 

software maintenance. Thus, an automated technique by considering the frequency of entity calls will be helpful to 

resolve this problem. However, it is challenging to automatically identify the frequency of entity calls for FE instances, 

because they call/use entities from both built-in and used-defined classes. As it is not possible to move FE instances in 

the built-in classes, only user defined classes should be considered for checking the frequency of entity calls. 

 

 

Fig. 1. Multiple MMR target classes for an FE instance 

Several automated techniques provide MMR suggestions to move FE instances in the suitable target class. 

However, these techniques cannot provide appropriate MMR suggestion for the FE instances those call/envy equal 

number of entities from different classes. Basically, these techniques provide multiple MMR suggestions in these kinds 

of scenarios which requires manual interaction from developer to find an appropriate MMR suggestion. Simon et al. [13] 

used distance-based cohesion metric for identifying MMR opportunities in small applications. Tsantalis et al. [14] 

proposed an improved technique named JDeodorant with compared to distance-based cohesion metric. The technique 

identifies FE instances based on their entity usages from other classes. Another approach is proposed by Jehad Al Dallal 

[15] to predict MMR opportunities in object-oriented software systems. This approach considered both coupling and 

cohesion aspects of methods for predicting MMR scopes. There are some other techniques, for example, JMove, that 

provide MMR suggestions based on similarity measurements. JMove [16] provides MMR suggestions by measuring the 

similarity coefficient of dependency sets. MMRUC3 [17] provides MMR suggestions using Jaccard and Contextual 

similarities of the dependency set. Methodbook [18] identifies MMR opportunities using Relational Topic Models. 

TACO [19] provides MMR suggestions based on textual similarities of methods. HIST [20] identifies FE instances and 

provides MMR suggestions based on historical co-changes. All the techniques mentioned here provide promising MMR 

suggestions except the case - when an FE instance calls/envies equal number of entities from different classes. 

In this paper, a technique is proposed, named MultiMMRSReducer to reduce multiple MMR suggestions of an FE 

instance. The main aim of this technique is to find an appropriate target class as it is not possible to move an FE 

instance in multiple classes. At first, a method is considered as an FE instance and MMR suggestion(s) is generated 

using an existing technique [l4] if it calls/envies more distinct entities from other classes that its own. Then, all the FE 

instances having multiple MMR suggestions are separated. After that, for each FE instance, the frequency of calls to 

distinct entities in each envied class is calculated. Finally, the most frequently called envied class is selected as an 

appropriate MMR suggestion.  

To evaluate the proposed technique, an empirical study is conducted on nine open source Java projects. The 

experimental results show that the proposed technique can avoid multiple MMR suggestions for an FE instance with 

compared to an existing approach named JDeodorant [14]. Moreover, it is found that MMR suggestions of the proposed 

technique can ensure minimum number of changes in the FE instances. 

2.  Literature Review 

Due to coupling and cohesion issues, Move Method Refactoring (MMR) has been drawing researchers’ attention 

for many years. In this section, existing works on MMR are discussed with their strengths and weaknesses. Moreover, 

these works are grouped into two categories based on their methodologies such as (a) Identifying MMR suggestions 

using Coupling and Cohesion and (b) Identifying MMR suggestions based on Similarity [28]. 
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2.1 Identifying MMR suggestions using Coupling and Cohesion 

The existing works discussed here identify FE instances based on the Degree of Coupling. Besides, they provide 

MMR suggestions to increase cohesion and reduce coupling among software components. Although the MMR 

suggestions of this techniques are promising, some major issues are observed which indicate opportunities for further 

work. In order to identify Move Method and attribute scopes, Simon et al. [13] have proposed a distance-based 

cohesion metric. According to this technique, an entity (method or attribute) should be moved if it uses or used by other 

entities of the different classes than its source class. In real world, an entity can use or be used by equal number of 

entities from different classes. Thus, it is not clear from this approach which class is appropriate for moving that entity. 

Moreover, this approach does not examine behavior-preserving [21] preconditions before identifying Move Method and 

attribute situations.  

With compared to Simon et al. [23], Tsantalis et al. [14] have proposed an improved technique named JDeodorant 

for identifying MMR opportunities in source code. Their technique treats a method m as an FE instance if it calls/uses 

more entities from class Ci than its current class C. Then, it suggests moving m in Ci if m meets some 

behavior-preserving preconditions (Compilation, Behavior-Preservation and Quality). However, their technique 

suggests multiple classes to move m if m calls/uses equal number of distinct entities from different classes. Although 

their technique evaluated maintenance effects (in terms of coupling and cohesion) of MMR suggestions using entity 

placement metric, it did not provide any direction for multiple suggestions issue for a single FE instance. 

Jehad Al Dallal [15] used a statistical technique to predict MMR opportunities in Object-Oriented systems. Both 

coupling and cohesion aspects of methods are considered for identifying MMR scopes. However, there is no direction 

about predicting MMR opportunities when a method becomes equally coupled with multiple classes. Besides, the 

author claimed high precision of his technique but there is no comparative study with the existing techniques. 

2.2 Identifying MMR suggestions based on Similarity 

All the techniques discussed in here provide MMR suggestions using some similarity measures, i.e., structural, 

semantical and so forth. Under these techniques, a method should be moved if it is more like another class than its 

source class. To the best of our knowledge, these techniques include problems of providing multiple MMR suggestions 

for a single FE instance. 

Using similarity coefficient [23, 24] of dependency sets, JMove [16] provides MMR suggestions to group similar 

methods together. Firstly, for a given method m, it calculates similarity coefficient with all methods of its current class. 

Then, it calculates similarity coefficient with rest of the methods in other classes. If the similarity coefficient is higher in 

a class other than its current class and m satisfies all behavior-preserving preconditions proposed by JDeodorant [14], 

this approach provides MMR suggestion for m. The major issues of this technique are: (a) it provides multiple MMR 

suggestions for a method when the similarity coefficients become equal with multiple classes and (b) its MMR 

suggestions contain a high percentage of false-positive compared to JDeodorant.  

MMRUC3 [17] is a JMove-like technique which also provide MMR suggestions for eliminating FE instances. The 

main differences between MMRUC3 and JMove are - MMRUC3 uses a different similarity measurement (Jaccard 

Similarity), and consideration of contextual similarity along with the dependency sets similarity. With compared to 

JMove, this approach introduced two new things, but it did not provide any justification for that. Moreover, there is no 

direction for the methods having equal similarity coefficient with multiple classes.  

Methodbook [18] identifies MMR opportunities using Relational Topic Models (RTM) [25] for removing FE 

instances. According to this approach, a method m should be moved to another class Ci if Ci contains more friends of m 

than its own class C. To find friends of the method m, Methodbook considers three types of similarity with the methods 

of other classes such as (1) similarity in using same attributes, (2) similarity in calling same methods and (3) semantic 

similarity between methods. From this approach, it is not clear where a method should be moved when it contains equal 

number of friends in multiple classes. Moreover, the finding of Methodbook showed that it could not perform better 

than JDeodorant. 

TACO [19] gives MMR recommendations to eradicate FE instances based on the textual similarity of methods. If a 

method m is textually like another class Ci than its current class C, then m should be moved to Ci. In this approach, 

Cosine Similarity is used to measure the Textual similarity among methods. The main issues of this approach are (a) it 

provides multiple MMR suggestions when similarity becomes equal with several classes, (a) it does not examine any 

behavior-preserving preconditions before providing MMR suggestions and (c) it cannot provide accurate MMR 

suggestions without enough textual information. 

HIST [20] provides MMR suggestions based on historical co-changes for eliminating FE instances from source 

code. According to this approach, if a method m changes more frequently when changes occur in its dependent class Ci 

then it should be moved to Ci. The main limitations of this approach are (a) it cannot provide accurate MMR 

suggestions without enough historical information (b) it does not consider any structural information (i.e., whether m 

calls any methods and/or attributes from Ci or not) and (c) there is no guidance where a method should be moved if 

historical co-changes occur in the method and several classes at the same time. 
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3.  Proposed Technique  

The proposed technique aims at finding the appropriate target class automatically for an FE instance and ensuring 

minimum future changes in other dependent classes of the instance. Consider, a method m calls/uses equal number of 

distinct entities from two different classes, for example, E1 = {e1, e2} from class C1 and E2 = {e3, e4} from C2. According 

to the existing approaches, any of these two classes (C1 or C2) can be the target class for applying MMR because m is 

equally coupled [n(E1) = n(E2)] with both classes. However, there is a maintenance issue when total call frequencies of 

these distinct entities vary between C1 and C2. For instance, F1 and F2 are the total number of calls to all members of E1 

and E2 where F1 is less than F2. As m uses entities from C2 more frequently (F1 < F2), we can say it is more coupled 

with C2 than C1. That being said, if someone ignores this total call frequencies and move m to C1, future change rate 

will be higher in m (if all members of E2 change). On the other hand, if m is moved to C2 and changes occur in all 

members of E1, then change rate will be less in m. To this end, a formula is defined for calculating Total 

Call-Frequencies of Distinct Entities (TCFDE) between a method m and target class C. 
 

TCFDC(m, c) = ∑ 𝐶𝐹𝐷𝐸𝑖
𝑛
𝑖=1                                  (1) 

 

Where m = FE instance, C = given target class, n = Total distinct entities m uses from C, CFDEi = total number of 

times i
th

 distinct entity of C is used by m. 

Using Equation (1), an algorithm is proposed for finding appropriate target class for an FE instance which is 

equally coupled multiple classes. Initially, the proposed Algorithm requires an FE instance and its target classes as input 

to find an appropriate target class for it. In order to identify FE instances and their respective target classes from the 

source code, an existing Algorithm [14] is used which consists of following steps: 
 

1. Identification of candidate target classes T from where a method m uses/calls more entities than its current 

class. 

2. Examination of preconditions for each class of T such as compilation, behavior-preservation and quality. This 

step ensures the applications behaviors if m is moved to any class of T. 

3. Examination of whether method m modifies a data structure in each class of T. This step ensures strong 

conceptual binding with a specific target class. 

4. Filtering T based on step #2 and #3. If a class of T satisfies all preconditions, it will be considered as MMR 

target class and m is identified as an FE instance. 
 

After identifying FE instances and their respective MMR target classes using existing Algorithm [14], only the FE 

instances having multiple MMR target classes is sent to the proposed MultiMMRSReducer  algorithm one by one. The 

aim of the proposed algorithm is to find appropriate target class Atc for each FE instance. Initially, Atc is empty (in line 

#2). Then, a variable MAXTCFDE is defined to store maximum TCFDE between an FE instance m and its target classes in 

line #3. Finally, it is iterated over the list of target classes of m (line #4 to #9). In each iteration, it is verified whether the 

TCFDE between m and current iterated class t is greater than MAXTCFDE. If it is found that TCFDE (m, t) is greater than 

MAXTCFDE, Atc is updated with t and MAXTCFDE is updated with TCFDE (m, t). After the final iteration, the value of Atc is 

selected as the appropriate target class for m. 

4.  Implementation and Result Analysis 

For comparative result analysis, the proposed Algorithm was implemented as a software tool (Eclipse-plugin), 

MultiMMRSReducer, using Java. Then, an empirical study was conducted on seven open-source projects from Github to 

evaluate the effectiveness of MultiMMRSReducer. The detailed description of the dataset
1
, i.e., Lines of Code (LOC), 

Number of Classes (NOC), Number of Methods (NOM), etc. is shown in Table 1. Then, to show the effectiveness, the 

developed software tool- MultiMMRSReducer was compared with an existing tool named JDeodorant. 

Table 1. The dataset used in this study. 

Project LOC NOC NOM 

base spring 2579 44 147 

greenhouse 27376 440 1703 

jgroup 103081 770 8186 

SpringBlog 2241 46 185 

SpringMVCDemo 457 6 53 

spring-petclinic 2527 37 144 

greenmail 22658 268 1386 

                                                        
1 https://bit.ly/2IUqku0 
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In Table 1, 1
st
 column: Name of the Projects, 2

nd
 column: LOC - Lines of code in each project, 3

rd
 column: NOC- 

Number of Classes in each project, 4
th

 column: NOM- Number of Methods in each project. 

4.1 Environmental Setup 

This section outlines the required steps for conducting the experimental analysis of the proposed algorithm. At the 

initial step, multiple MMR suggestions from the dataset (Table 1) were identified to examine if MultiMMRSReducer can 

reduce these suggestions automatically or not. The identification phases of multiple MMR suggestions were performed 

by following a set steps which are described below-   

 

1. At first, Move Method Refactoring (MMR) suggestions from the dataset were computed using the JDeodorant 

[14] Eclipse Plug-in. 

2. Next, the FE instances having multiple MMR suggestions were manually separated. The Table 2 contains 

project-wise multiple MMR suggestions identified manually. 

 

After identifying the list of multiple MMR suggestions manually, Number of Distinct Entities (NDE) used/called 

by an FE instance from each target class and Total Call-Frequencies of Distinct Entities (TCFDE) in each target class 

are calculated by analyzing the source code. This information is represented in 6
th

 and 7
th

 column of Table 2, 

respectively. Then, these FE instances are grouped in two categories based on the values of TCFDE in each target class 

such as (a) Equal TCFDE and (b) Not Equal TCFDE. This categorization is performed for evaluation purpose of the 

proposed technique. 

Equal TCFDE: If the TCFDE between an FE instance and all target classes are equal, then the instance is added 

to this category. From Table 2, the FE instances with ID #5, #7, #9 and #14 were found in this category. 

Not Equal TCFDE: If the TCFDE between an FE instance and all target classes are not equal, then the instance is 

added to this category. From Table 2, the FE instances with ID #1, #2, #3, #4, #6, #8, #10, #11, #12 and #13 were found 

in this category. 

4.2 Evaluation and Result Discussion 

To evaluate the proposed technique, this study answers the following research questions– 

 

1. RQ #1: Is it possible to reduce multiple MMR suggestions using TCFDE? 

2. RQ #2: How much multiple MMR suggestions of JDeodorant is reduced by the MultiMMRSReducer 

effectively? 

 

The above research questions are answered by examining if MultiMMRSReducer can reduce all the multiple 

suggestions collected by the developers (in Table 2). To that end, the MultiMMRSReducer is applied on the dataset. 2
nd

 

column of Table 3 shows the number FE instances having multiple MMR suggestions in each project. 

Table 2. Project wise multiple MMR suggestions for a single FE instance. 

Id Project Method Source Class Target Class NDE TCFDE 

1 

jgroup sendSingleMessage NoBundler 

ByteArrayDataOutputStream 3 6 

TP 3 3 

2 

jgroup createMessage Route 

Protocol 2 4 

Message 2 2 

3 

jgroup removeMessage DeliveryManagerImpl 

MessageInfo 4 4 

Message 4 6 

4 

jgroup setHeader ForkChannel 

Message 3 5 

GossipData 3 4 

5 

SpringBlog updateSettings AdminController 

SettingsForm 3 3 

AppSetting 3 3 

6 

base spring credentialsMatch CredentialValidation 

User 2 3 

UserDAO 2 2 

7 

greenhouse settingsPage SettingsController 

Account 5 6 

Profile 5 6 
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8 

greenmail copyHeaders TopCommand 

Pop3Connection 2 6 

ImapRequestLineReader 2 3 

9 

greenmail copyLines TopCommand 

Pop3Connection 4 4 

InternetPrintWriter 4 4 

10 

greenmail consumeWord CommandParser 

ImapRequestLineReader 3 4 

Partial 3 3 

11 

greenmail nextNonSpaceChar FetchCommandParser 

ImapRequestLineReader 2 5 

SmtpConnection 2 2 

12 

SpringBlog createSpringUser UserService 

User 2 4 

SettingsForm 2 3 

13 Spring 

petclinic addVisit Pet 

Owner 3 3 

Visit 3 4 

14 SpringMVCDe

mo addBlogPost BlogController 

BlogEntity 2 2 

UserEntity 2 2 

 

Answer to RQ #1: As MultiMMRSReducer reduces multiple MMR suggestions based on the value of TCFDE 

between an FE instance and a target class, it is required to check its performance on both Equal (a) and Not Equal 

TCFDE (b) Categories. For Not Equal TCFDE Category (b), MultiMMRSReducer performed accurately. Basically, it 

finds appropriate target class for all FE instances. The reason is that the values of TCFDE were different in each target 

class, and the highest TCFDE valued target class was selected as appropriate one. For example, the FE instance 

sendSingleMessage() with ID #1 in Table 2 has two target classes namely, ByteArrayDataOutputStream and TP as the 

value of NDE is equal in both target classes. The MultiMMRSReducer was able to find appropriate target class 

ByteArrayDataOutputStream as the TCFDE (sendSingleMessage, ByteArrayDataOutputStream) is greater than TCFDE 

(sendSingleMessage, TP). 

 
Algorithm: MultiMMRSReducer - Finding Appropriate Target 

Class for an FE instance having multiple MMR suggestions 

Input: An FE instance m and List of target classes List<Tc> of 

it. Here, m is equally coupled with the all classes in list 

List<Tc>. 

Output: Appropriate target class Atc of m for applying MMR. 

Ensuring that TCFDE between m and Atc will be maximum. 

1. function findAppropriateTargetClass(m, List<Tc>) 

2. Atc = ø 

3. MAXTCFDE = 0 

4. for t in List<Tc> do: 

5.      if TCFDE (m, t) > MAXTCFDE then 

6.           Atc = t 

7.          MAXTCFDE = TCFDE (m, t) 

8.      end if 

9. end for 

10. return Atc 

11. end function 

 

Similarly, it selected appropriate target classes Protocol, MessageInfo, Message, User, Pop3Connection, 

ImapRequestLineReader, ImapRequestLineReader, User and Owner, respectively, for the FE instances with ID #2, #3, 

#4, #6, #8, #10, #11, #12 and #13. Although MultiMMRSReducer shows its best performance for Not Equal TCFDE 

Category (b), it could not reduce multiple MMR suggestions for Equal TCFDE Category (a) because the values of 

TCFDE were equal in each target class. For example, the FE instance addBlogPost with ID #14 in Table 2 has two 

MMR suggestions such as (addBlogPost  BlogEntity) and (addBlogPost   UserEntity). Since the TCFDE 

(addBlogPost, BlogEntity) is equal to TCFDE (addBlogPost, UserEntity), MultiMMRSReducer could not find 

appropriate target class for addBlogPost.  Similarly, MultiMMRSReducer miss stepped for the FE instances with ID #5, 

#7, #9 of Equal TCFDE Category (a).  

In Table 2, 1
st
 column represents the ID of FE instances, 2

nd
 column represents the project names, 3

rd
 column 

represents FE instances, 4
th

 column represents the source class of the FE instances, and 5
th

 column represents the target 

classes of the FE instances.
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Table 3. Project wise multiple MMR suggestions reduced by the proposed technique. 

Project Multi MMRS of JDeodorant Proposed MultiMMRSReduced 

spring-petclinic 1 1 

SpringBlog 1 1 

greenhouse 1 0 

jgroups 4 4 

SpringMVCDemo 1 0 

greenmail 4 3 

base spring 1 1 

 

Answer to RQ#2: The MultiMMRSReducer was able to reduce almost all the FE instances having multiple MMR 

suggestions, i.e., 3
rd

 column of Table 3 shows the number FE instances for those multiple suggestions is reduced by 

MultiMMRSReducer. The 2
nd

 column of Table 3 shows the number of FE instances having multiple MMR suggestions 

which are given by the JDeodorant. 

From this Table 3, it can be observed that MultiMMRSReducer reduced multiple MMR suggestions for the all FE 

instances from all projects in our dataset except SpringMVCDemo, greenmail and greenhouse. The reason of not 

reducing multiple MMR suggestions is that the values of TCFDE were equal in each target class. For our dataset, 

JDeodorant provided multiple MMR suggestions for thirteen FE instances whereas MultiMMRSReducer eliminated 

these multiple suggestions for ten FE instances. By comparing this statistic, it can be said that MultiMMRSReducer 

shows performance 77.92 percentage better than JDeodorant. Apart from this, the MultiMMRSReducer can ensure 

minimum future changes inside the FE instances. Basically, the FE instances will go through minimum future changes if 

refactoring is performed based on the selected appropriate target class by MultiMMRSReducer. For example, 

sendSingleMessage is moved to TP, and changes (i.e., addition or deletion of parameters) occur to all envied methods of 

ByteArrayDataOutputStream. Then, sendSingleMessage needs to be changed six times (TCFDE (sendSingleMessage 

ByteArrayDataOutputStream) = 6). On the other hand, if sendSingleMessage is moved to ByteArrayDataOutputStream 

according to MultiMMRSReducer, and changes occur to all envied methods of TP. Then, the number of modifications in 

sendSingleMessage will be three times (TCFDE (sendSingleMessage, TP) = 3). As MultiMMRSReducer ensures 

minimum change occurrences inside the FE instances, it will help developers to write more maintainable and less 

changeable code. 

In Table 3, 1
st
 column: Name of the project, 2

nd
 column: Number of FE instances having multiple MMR 

suggestions, 3
rd 

column: Number of FE instances for those multiple suggestions is reduced by the proposed 

MultiMMRSReducer technique. 

5.  Conclusion 

According to the existing techniques, a Feature Envy (FE) instance can be moved to its any equally coupled target 

classes. However, there is a hidden maintenance cost associated with moving to each target class. To address this issue, 

a new technique is proposed which can find an appropriate target class for an FE instance using Total Call-Frequencies 

of Distinct Entities (TCFDE). To evaluate, an empirical study is conducted on nine open source Java projects. The 

experimental results show that the proposed technique can avoid multiple target classes 77.92% better than an existing 

technique named JDeodorant. As the future work, the feedbacks from the software developers will be added to the 

prposed techniques. Moreover, the performance and reliability of the proposed technique from the developers’ 

perspective will be analyzed.  
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